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Preface

One of the areas of Number theory that has attracted many mathematicians since
antiquity is the subject of diophantine equations. A diophantine equation is a
polynomial equation in two or more unknowns such that only the integer solutions are
determined. No doubt that diophantine equation possess supreme beauty and it is the
most powerful creation of the human spirit. A pell equation is a type of non-linear

diophantine equation in the form y* — Dx* =+1where D >0 and square-free. The

above equation is also called the Pell-Fermat equation. In Cartesian co-ordinates, this
equation has the form of a hyperbola. The binary quadratic diophantine equation
having the form

y>=Dx’*+N (N >0; D >0, anon-square integer) (1)
is referred to as the positive form of the pell equation and the form
y>=Dx*~N (N >0; D >0, non-square integer) 2)

is called the negative form of the pell equation or related pell equation. It is worth to
remind that (2) is solvable for only certain values of D and always in the case of (1).
An obvious generalisation to the Pell equation is the equation of the form

ax’* —by*>=N;a,b>0, N =0 which is known as Pell-like equation.

Pell equations arise in the investigation of numbers which are figurate in more than
one way, for example, simultaneously square & triangular and as such they are
extremely important in Number theory. In the solution of cubic equation and in certain
other situations it is desirable to have a method for extracting the cube root of a
binomial surd. This may be accomplished by the aid of the pell equation. We use pell
equation to solve Archimedes’ Cattle problem. Pell’s equation is connected to
algebraic number theory, Chebyshev polynomials and continued fractions. Other
applications include solving problems involving double equations, rational
approximations to square roots, sums of consecutive integers, Pythagorean triangles
with consecutive legs, consecutive Heronian triangles, sums of n and n+1
consecutive squares and so on. Man’s love for numbers is perhaps older than number
theory. The love for large numbers may be a motivation for pellian equation.

In studies on Diophantine equations of degree two with two and three unknowns,
significant success was attained only in the twentieth century. There has been interest



in determining all solutions in integers to quadratic Diophantine equations among
mathemasticians.

The main thrust in this book is on solving second degree Diophantine equations with
two and three variables. This book contains a reasonable collection of special quadratic
Diophantine problems in two and three variables distributed in 12 chapters. The
process of getting different sets of integer solutions to each of the quadratic
Diophantine equations considered in this book are illustrated in an elegant manner. The
articles with solutions and properties presented in chapters 1, 2 & 3 are Pell equations
and in chapters 4,5 &6 are Pell-like equations. The articles with solutions presented in
chapters 7-12 are quadratic equations with three unknowns of the form

x? +y? =(a® +b*)z*. In Cartesian co-ordinates, this equation has the form of a right

circular cone.
Dr. J. Shanthi
Dr. S. Devibala
Dr. M. A. Gopalan
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Chapter 1

Integer Solutions of The Positive Pell
Equation y* = 3x* + a? + 2a — 2

J. Shanthi?, K.B.Abirami?

'Department of Mathematics, Bharathidasan University Trichy, Tamil Nadu, India.
2Department of Mathematics, Bharathidasan University Trichy, Tamil Nadu, India.

Abstract: A binary quadratic equation of the form y? = Dx? + 1, where D is non-
square positive integer has been study by various mathematicians for it non-trivial integral
solutions when D takes different integral values. The binary quadratic Diophantine

non-zero distinct solutions. A few interesting relations among the solutions are given.
Further, employing the solutions of the above hyperbola, the solutions of other choices of
hyperbolas and parabolas are obtained.

Keywords: Binary quadratic, Hyperbola, Parabola, Pell equation, Integral solutions.
2010 Mathematics subject classification: 11D09

1.1 Introduction

A binary quadratic equation of the form y? = Dx? + 1, where D is non-
square positive integer has been study by various mathematicians for it non-trivial
integral solutions when D takes different integral values (Carmichael., 1959;
Dickson., 1952; Mordell., 1969). For an extensive review of various problems,
one may refer (Gopalan et.al., 2012; Mahalakshmi, Shanthi .,2023; Shanthi,
Mahalakshmi .,2023).In this communication, yet another interesting hyperbola
given by y? =3x% + a%+ 2a — 2 is considered and infinitely many integer
solutions are obtained. A few interesting properties among the solutions are
obtained. Further, employing the solutions of the above hyperbola, we have
obtained solutions of other choices of hyperbola and parabola.

https://deepscienceresearch.com



1.2Method of analysis:
The Positive Pell equation representing hyperbola under consideration is

y?=3x?+a?+2a—2 (1.1)
whose smallest positive integer solution is
Xo=Lyo=a+1
To obtain the other solutions of (1.1), consider the Pell equation
y2=3x2+1
whose general solution is given by

" 1 " 1
Xn = ﬁgn;yn = Efn

where
fa=@+VIHM+ (2 -3

gn = 2+V3)" — (2 - V3

Applying Brahmagupta lemma between (x,,v,)&(%,, ¥,)the other integer
solution of (1.1) are given by

3fn , (@+1)V3g
S

3(a+ Dfy 3\/§gn
Yn+1 = 6 + 6

The recurrence relations satisfied by x and y are given by
Xn+1 — 4Xn42 + X3 =0
Yn+1 — 4Yn+2 + Yn43 =0

A few numerical examples are given in the following table 1.1

Table: 1.1 Numerical values

n Xn Yn
0 1 a+1

1 a+3 20+ 5
2 4a + 11 7a + 19
3 15a + 41 26 + 71
4 56a + 153 97a + 265

https://deepscienceresearch.com




From the above table we observe some interesting properties among the
solutions which are presented below:

w

Relations between solutions
Xng1 — 4Xny2 T Xpp3 =0
2Xp41 —Xpp2 T Yne1 =0
Xn41 — 2Xn42 T Yni2 =0
2Xp41 — TXpy2 T Ynez =0
TXp41 — Xnt3 T 4Yn41 =0
Xn41 — Xn+3 T 2Yp42 =0
Xn+1— 7Xn43 T 4Vn43 =0
3%ns1 + 2Vn41 = Yne2 =0
12%p41 + 7Yn41 = Ynaz =0
3%Xn41 + 7Yn42 — 2Yn43 =0
Y1+ 742 — 2Xp43 =0
Ynez2 + 2Xp42 —Xpp3 =0
Yn+3 + Xny2 = 2Xp43 =0
Yne1 T 3%n42 = 2Yp42 =0
Yn+1+ 6Xn42 = Yniz =0
2Yn42 +3%p42 = Ynez =0
TYni2 = 2Yn41 — 3xpy3 =0
TYn+3 = Yn+1 — 12%543 =0
2Yn43 = Ynt2 — 3%p43 =0
Yn+z — 4Vns2 + Yne1 =0

VVYVVVVVVVVYVYVVYVVVYVVYVYVYYVYYVH

1.4 Each of the following expressions represents a cubical integers

1
@rza2) [[2a + 2)x3n44 — (10 + 4a)x3543] + 3[(2a + 2)xp 42 —

(10 + 4a)xp44]]

1
sraaz (@ + Dxanys — (19 + 7@)x3545] + 3[(ar + Dz —

(19 + 7a)xp44]]

https://deepscienceresearch.com



1
(a2+2a-2)

[[(205 + 2)Y3n+3 — 6X3pn43] + 3[Ca + 2)ypiq — 6xn+1]]

1
(@12a-2) [[(@ + Dyspes = (9 + 30)x3n43] + 3[(@ + Dy —

(9 + 3@)xn44]]

1
T(a2+2a-2) [2[(a + DYsnss — (33 + 12a)x3n43] + 6[(a + Dypys —

(33 + 12a)x,41]]

1
@22 [2[2a + 5)xzn45 — (19 + 7Ta)x3p44] + 6[(2a + 5)xp45 —

(19 + 7a)xn+1]]

1
(a2+2a-2)

[[(Za + 5)Y3n+3 — 3x3p44] + 3[Q2a + 5)yniq — 3xn+2]]

1
2 [[(405 +10)y3p44 — (18 + 6a)x3744] + 3[(4a + 10)yp4p —

(a2+2a-

(18 + 6a)xn+2]]

1
(@+2a-2) [[(Za + 5)¥3n+s — (33 + 12a)x344] + 3[(2a + 5)yp43 —

(33 + 12a)x,42]]

1
7(a2+2a-2)

[[(14a + 38)Y3n43 — 6X3p45] + 3[(14a + 38)ynyq — 6xn+3]]

1
@rzaD) [[(7a +19)ysn4s — (9 + 3)x3p45] + 3[(7a + 19y —

(9 + 3a)xp.43]]

1
ey [[(14a + 38)y3n15 — (66 + 240)Y3,45] + 3[(14a +

38)Yn+3 — (66 + 240)x.3]]

1
2 [[(2a + 6)Y3n+3 — 2Y3n+al + 3[Ca + 6)yniq — 2}’n+2]]

(a?2+2a-

https://deepscienceresearch.com



1.5

(a2+2

1
2(a?24+2a-2)

[[(4a + 11)Y3n43 — Yan+sl + 3[(4a + 11)ypq — }’n+3]]

1
wraas LB+ 22)y314 = (6 + 20)Y3p45] + 3[(B + 22) Y42 —

(6 + 205))’n+3]]

Each of the following expressions represents a Bi-quadratic Integer

(uzT [(20+ 2)Xan+s — (10 + 40)Xgnsa + 4[(2a + 2)Xpnes3 —
(10 + 4‘(1)X2n+2]] + 6

1
Nai2a-D) [(@ + Dxanss = (19 + 7@)Xanss + 4[(@ + Dxznis —
(19 + 7a)x5n12]] + 6

(a2+2a 2 |2t + 2)Yanta — 6Xansa + 42 + 2)Y2niz — 6X2n42]] + 6

m [(@ + Dyanss — (9 + 30)X4nsa + 4[(@ + Dyzpys —
(9 + 3a)x2n42]] + 6

m [a + 2)Yanss — (66 + 24@) Xan s + 8[(@ + 1)Yznis —
(33 4+ 12a)x5n42]] + 6

((ZZT [(40_’ + 10)x4n+6 (95 + 35a)x4n+5 + 8[(2a + S)XZn+4 -
(19 + 7a)x5n13]] + 6

m [2a + 5)X4nta — 3Xanss + 4[(2a + 5)Yansz — 3Xanasl] + 6

[(4a +10)Yants — (18 + 6a)x4n45 + 4[(4a + 10)yyn43 —
(18 + 6a)x2n+3 1]+6

https://deepscienceresearch.com



1.6

(a2+2

7(a2+2a 2) [

(a2+2a 2) [

(a2+2

(a2+2a 2)[
2(a?2+2a-2)

(a?2+4+2a— 2)[

[( @+ 5)Van+e — (33 + 12a)x4n15 + 4[(2a + 5)Yan4a —
(33 + 12a)x2n+3]] +6

(14a + 38)y4nta — 6X4n46 + 4[(14a + 38)ypn 42 —
6Xn1a]] + 6

(7a +19)yunss — (9 + 3a)x4n46 + 4[(Ta + 19)y2n43 —
(9 + 3a)x2n44]] + 6

[(1405 + 38)Yant6 — (66 + 24a)X4n 46 + 4[(14a + 38)y2n44 —
(66 + 24a)x2n+4]] +6

[( a+ 6)Yania — 2Vanss + 4[2a + 6)yanysz — 2}’2n+3]] +6

(a2+2
m [(4a + 11)Yanss = Vanss + 4[(4a + 1) Y2012 — Yonsal] + 6
m [(86( + 22)Yan+s — (6 + 2Q)Yanse + 4[(Ba + 22)yyp45 —

(6 + 20)yan14l] + 6

Each of the following expressions represents a Quintic Integer

(2a + 2)xsp46 — (10 + 4a)xs5p45 + 5[(2a + 2)x3n44 —
(10 + 4a)x3p43] + 10[(2a + 2)xp42 — (10 + 4a)xp44]]

[(@ + Dxspe7 — (19 + 7a)xs5p45 + 5[(a + Dxzpes — (19 +
7a)X3p43) + 10[(@ + Dixpyz — (19 + 7a)xy44]]

(Za + 2)Y5n+5 6755n+5 + 5[(2a + 2))’3n+3 - 6x3n+3] +
10[Q2a + 2)yp41 — 6xn+1]]

https://deepscienceresearch.com



1
@20 D [(@ + Dysnss = (9 + 3@)xsn4s + 5[(@ + Dyzpea — (9 +

3a)x3p43] + 10[(a + Dypyr — (9 + 3a)xn+1]]

—7(a2+2a 2 [Ca +2)ysns7 — (66 + 24@)x5n4s + 5[(2a + 2)y3n4s —
(66 + 24a)x3543] + 10[(2a + 2)yn43 — (66 + 24)xy44]]

(aZT [(4a + 10)x5p47 — (38 + 14a)x5p46 + S[(4a + 10)x3545 —
(38 + 14a)x3n14] + 10[(4a + 10)x,43 — (38 + 14) x4, ]]
m [(Za + 5)¥sn+s — 3Xsn+e + 5[(2a + 5)Y3n43 — 3x3p44] +
10[(2a + 5)¥n41 = 3%n42]]

m [(4a +10)y5p46 — (18 + 6@)xX5n 46 + 5[(4a + 10) Y3014 —
(18 + 6a)x3n44] + 10[(4 + 10)ypn42 — (18 + 6a)xn42]]

m [2a + 5)ysni7 — (33 + 12a)xsn46 + 5[(2a + 5)Y3nes —
(33 + 12a)x3p44] + 10[(2 + 5)yn43 — (33 + 122)x45]]

m [(14a + 38)ysnis — 6x5p47 + 5[(14a + 38) Y343 — 6X3n45] +
10[(14a + 38)yn11 — 6Xnys3]]

(aT [(7a +19)ysni6 — (9 + 3a)xsne7 + 5[(7a + 19)ysn4s —
(9 + 3a)x3n45] + 10[(7a + 19)yn42 — (9 + 30)xp43]]

m [(14a + 38)ys,47 — (66 + 24a)x5,47 + 5[(14a + 38)yspy4s5 —
(66 + 24a)x3545] + 10[(14a + 38)y,43 — (66 + 24a)xp3]]

m [2a + 6)ysnss — 2Vsnss + 5[(2a + 6)y3nss — 2¥3nial +
10[2a + 6)yp41 — 2)’n+2]]

m [(4a + 1) Y545 = Ysner + 5[(4a + 1D y3043 — Yanses] +
10[(4a + 11)yp4q — Yn+3]]

https://deepscienceresearch.com



1

2 [(8a + 22)Ysn46 — (6 + 2a)Ysn47 + 5[(Ba + 22)y3p44 —

(a2+2a—

(6 + 2a)Y3n+s] + 10[(8a + 22)yy40 — (6 + 2a)yn43]]

1.7 Remarkable observations:
Employing linear combinations among the solutions of (1.1), one may generate
integer solutions for other choices of hyperbola which are presented in table 1.2

below
Table: 1.2 Hyperbola
Hyperbola (P,Q)
S.NO.
1. 3P% — Q% = 12(a? P=Qa+2)xp,, — (10 + 4a)x,,1
+ 2a Q =18+ 6a)x,;1 — 6Xp42
- 2)2
2. 3P% — Q? = 48(a? P=(a+ Dxpez — (19 + 7a)x,44
+ 2a Q = (33 +12a)x,41 — 3Xp43
- 2)2
3. 3P% — Q% = 12(a? P=Qa+2)y,1 — 6xXp41
+ 2a Q=(6+6a)xns1 — 6yn41
— 2)2
4. P? —3Q?% = 144(a? P=(a+ 1Dy, — (9 +3a)x,41
+ 2« Q=05+6a)x,41 — 3Vn+2
- 2)2
5. 3P2 — Q%2 =588(a®? |P=Qa+2)y,3— (66+24a)x,,q
+ 2a Q =14+ 42a)x,41 — 6Yn43
- 2)2
6. 3P? — Q% = 12(a? P=2Q2a+5)x,,3
+ 2a —2(19 + 7a) X142
—2)? Q =6(11 + 4a)x, 4>
— 6(“ + 3)xn+3
3P% — Q% = 12(a? P=Qa+5)yn41 — 3xn42
7. + 2a Q=314+ a)xpyy —3(@+ 3)yns1
— 2)2
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3P2 — Q2 =12(a®> | P = (4a+10)yn., — (18 + 6a)xps»

8. + 2a Q =30+ 12a)x,4-
—2)* — (18 + 62)yn+2
3P%? — Q% = 12(a? P=Qa+5y,3— B3+ 12a)x,4,
9. + 2a Q =57+ 21a)x,4-
—2)? — (Ba + 9yn+s
3P%2 — Q? = 588(a? P = (14a + 38)y,11 — 6Xp43
10. + 2a Q = (6a+ 6)x,.3
—2)? — (24a + 66)yn11
3P? — Q% = 12(a? P=Ta+19)y,2 — (9 +3a)x,5
11. + 2a Q = (15+ 6a)xp43
—2)? — (12a + 33)yu42
2 _n2 _ 2 _
3P2 — Q% = 12(a P = (14a + 38)y,,4
12. + 2a — (66 + 24a) x5
—2)? Q=014+ 42a)x,45
— (24a + 66)y,43
3P? — Q* = 12(a? P =Q2a+6)yni1— 2Yn+2
13. + 2a Q=0Q+2a0)Yp42 — (10 + 4a) V41
— 2)2
3P% — Q% = 48(a” P=(4a+11)Ynt1 — Ynss
14. + 2a Q=00+ a)ynsz — (7a+19)yn4y
— 2)2
3P%2 — Q% = 12(a? P=(8a+22)y,:2 — (6 +2a)Vn43
15. + 2a Q=000+4a)y,.3
—2)? — (14a + 38)yn42

Employing linear combinations among the solutions of (1.1), one may
generate integer solutions for other choices of parabola which are presented
in the Table 1.3 below

Table: 1.3 Parabola

S.No Parabola (R,Q)
3R(a? + 2a — 2) — Q? R=Qa+2)xy43 — (10 + 4a)x5,,45
1 =12(a® +2(a? +2a —2)
+ 2a — 2)? Q = (18 + 6a)x,1 — 6Xp4z
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6R(a? + 2a — 2) — Q2

R = (a+ Dxznsa — (19 + 7)) X204,

2 = 48(a? +2(a?® + 2a - 2)
+ 2a — 2)? Q = (33+12a)Xp41 — 3%p43
3R(a? + 2a — 2) — Q2 R = Q2a+2)yymiz — 6Xap4p + 2(a?
3 = 12(a? +2a —2)
+ 2a — 2)2 Q= (6 + 6‘7()xn+1 — 6Yn+1
12R(a? + 2a — 2) — Q? R=(a+ 1Yz — (9 +30) X042
4 = 48(a? +2(a® +2a —2)
+ 2a — 2)2 Q= (15 + 6a)xn+1 — 3Yn+2
21R(a® + 2a — 2) — Q2 R =2[(a¢ + D)Yznea — (33
5 = 588(a? + 12a)X3pn42] + 14(a?
+ 2a — 2)? +2a —2)
Q= (114 + 42a)xp41 — 6Yn4s3
6 3R(a? + 2a — 2) — Q? R =2[(5+2a)Xsp44
= 12(a? — (19 + 7a)x3143]
+ 2a — 2)? +2(a?+2a—-2)
Q =6(11+ 4a)x,,y — 6(a + 3)x, 45
7 3R(a® + 2a —2) — Q? R =[(5+ 2a)yzn+2 — 3(x2n43)]
= 12(a? +2(@?+2a-2)
+ 2a — 2)? Q=31+ a)xps — 3(a +3)Yna1
8 3R(a? + 2a — 2) — Q? R=[(10 + 4a)y3,3
= 12(a? — (6a + 18)xy,43]
+ 2a — 2)? +2(a?+2a-2)
Q=(B0+12a)xp, — (18 + 6a)Yn 4,
9 3R(a? + 2a — 2) — Q? R=05+2a)ymms — (33 + 12a)xp,43
=12(a? +2(a®+2a-2)
+2a—2)% | Q=(057+210)x,4, — Ba+9) Yy,
10 21R(a? + 2a — 2) — Q2 R = (38 + 14a)Vyn12 — 6Xopis
= 588(a? + 14(a? + 2a — 2)
+ 2a — 2)? Q = (6a+ 6)x,,3 — (24 + 66)y,.41
11 3R(a? + 2a — 2) — Q? R=(19+7a)yyp+3 — (9 +3a) X944
= 12(a? +2(a?+2a-2)
+ 2a — 2)? Q =15+ 6a)xy5 — (12a + 33) Y42
12 3R(a? + 2a — 2) — Q? R = (38 + 14a)Vyp4a
= 12(a? — (66 + 24a)x31,44
+ 2a — 2)? +2(a?+2a-2)
0 = (114 + 422) %5
— (66 + 24a)yn.3
13 3R(a® + 2a —2) — Q? R = (2a + 6)y2n+2 — 2Y2n4s3
= 12(a? +2(a?+2a—2)
+2a —2)° Q=2+2a)ynsz — (10 + 4a)yn41
14 6R(a® + 2a — 2) — Q? R =(1144a)ysn+2 = Y2n+s
= 48(a? +4(a? +2a—2)
+2a — 2)? Q=0+ a)ynss— Ta+19)yni,

https://deepscienceresearch.com
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15 3R(a? + 2a — 2) — Q? R = (22+8a)ysn43 — (2a + 6)yan4a
=12(a? +2(a’® + 2a — 2)
+ 2a — 2)? Q = (10 + 4a)y,,5 — (14a + 38)y,.42

1.8 Conclusion:

In this paper, we have presented infinitely many integer solutions for
the Diophantine equations represented by the positive pell equationy? =
3x% + a? + 2a — 2. As the binary quadratic Diophantine equations are
rich in variety, one may search for the other choices of pell equations and
determine the solutions with the suitable properties.
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Chapter 2

A GlimpseOn Integer Solutions to Binary Equations
y? =3x* +a* + 6a—3

J. Shanthi !, R. Dhana durga 2

! Department of Mathematics, Bharathidasan University Trichy, Tamil Nadu, India.
2 Department of Mathematics, Bharathidasan University Trichy, Tamil Nadu, India.

Abstract:A binary quadratic equation of the form y? = Dx? + 1, where D is non-square
positive integer has been study by various mathematicians for it non-trivial integral
solutions when D takes different integral values. The binary quadratic Diophantine

non-zero distinct solutions. A few interesting relations among the solutions are given.
Further,employing the solutions of the above hyperbola, the solutions of other choices of
hyperbolas and parabolas are obtained.

Keywords:Binary quadratic, Hyperbola, Parabola, Pell equation, Integral solutions.
2010 Mathematics subject classification: 11D09

2.1 Introduction

A binary quadratic equation of the form y? = Dx? + 1, where D is
non-square positive integer has been study by various mathematicians for it
non-trivial integral solutions when D takes different integral
values(Carmichael., 1959; Dickson., 1952; Mordell., 1969). For an
extensive review of various problems, one may refer(Gopalan et.al., 2015;
Mahalakshmi, Shanthi .,2023; Shanthi.,2023) In this communication, yet
another interesting hyperbola given by y?=3x?2+a?+2a—2 is
considered and infinitely many integer solutions are obtained. A few
interesting properties among the solutions are obtained. Further, employing
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the solutions of the above hyperbola, we have obtained solutions of other
choices of hyperbola and parabola.

2.2Method of analysis:
The Positive Pell equation representing hyperbola under consideration is

y2=3x2+a?+6a-3 (2.1)
whose smallest positive integer solution is
Xo=2,Yo=a+3
To obtain the other solutions of (2.1), consider the Pell equation
y2=3x2+1
whose general solution is given by
1 1

Xn Zﬁgn;yn =§fn

where
fa= @+ -V

gn =2+ V3™ = (2= V3"

Applying Brahmagupta lemma between (x,,y0)&(X,, 3,) the other
integer solution of (2.1) are given by

_ 2\/§fn n (a+3)gn
Xn+1 = 3 3

(a+3)f,  2V3gy
Yn+1 = 2 + 2

The recurrence relations satisfied by x and y are given by
Xn+1 — 4Xni2 + X3 =0

Yn+1 — 4Vn42 + Yni3 =0

A few numerical examples are given in the following table: 2.1

14
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Table: 2.1 Numerical values

n Xn Yn

0 2 a+3

1 a+7 20+ 12
2 4a + 26 7a + 45
3 15a + 97 26a + 168
4 56a + 362 97a + 627

From the above table we observe some interesting properties among the
solutions which are presented below:

2.3 Relations between solutions

Xn+1 — 4Xn42 + X403 =0
2Xp41 —Xpp2 T Yne1 =0
Xn41 — 2Xn42 T Yni2 =0
2Xp41 = TXny2 + Yny3 =0
TXnt1 = Xn43 T 4Yne1 =0
Xn41 — Xn+3 T 2Yn42 =0
Xn41 — 7Xny3 T4V =0
3%Xn+1+ 2Yn41 = Yne2 =0
12%p41 + 7Yn41 = Yn43 =0
3Xn41 + 7Yn42 — 2Yn43 =0
Y1+ 7Xnyo — 2Xp43 =0
Yniz + 2Xp42 —Xp43 =0
Yn+3 + Xniz2 — 2Xp43 =0
Yne1 +3%Xn42 = 2Yp42 =0
Yne1 T 6Xpy2 =Yz =0
2Yn42 +3%n42 = Yniz =0
TYns2 = 2Yn41 — 3%p43 =0
TYne3 = Yn+1 — 12%543 =0
2Yn43 = Ytz — 3%p43 =0
Yn+3 —4Vns2 + Vn41 =0

https://deepscienceresearch.com
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2.4 Each of the following expressions represents a cubical integers

1
@reas) [[2a + 6)x3nia — (24 + 40)X3p43] + 3[(2a + 6) Xy —

(24 + 42)xp44]]

1
YT [[(@ + 3)x3n45 — (45 + 7@)x3n43] + 3[(@ + 3)xp43 —

(45 + 7a)xp14]]

(azé—a_?)) [[(205 + 6)Y3n+3 — 12x343] + 3[2a + 6)yp41 — 12xn+1]]
— [[(@ + 3)y3n4s — (21 + 30)x3043] + 3[(@ + 3ynsz —

(21 + 3a)xp44]]

(a?2+6a-3)
1
ProCT— [2[( + 3)y3n45 — (78 + 12a)x3n43] + 6[(@ + 3)ynys —

(78 + 12a)x,44]]
___[[(4a + 25)X3p45 — (90 + 14@)x3n44] + 3[(4a + 24)x, 45 —

(a?2+6a-3)

(90 + 14a)x,4,]]
: [[(4a + 24)y3n43 — 12x3544] + 3[(4a + 24)yp4q — 12xn+2]]

2(a2+6a-3)

L [[(4a + 24)y3p44 — (42 + 6@)X3n44] + 3[(2 + 24) ;5 —

(a2+6a-3)

(42 + 6a)xn42]]
L [[(2a + 24)y3nss — (156 + 24@)x3n,4] + 3[(4at +

2(a?2+6a-3)

24) Y43 — (156 + 24a)x,4-]]
1
[[(14a +90)y3n43 — 12x345] + 3[(14a + 90)y,4q —

7(a2+6a—3)

12xn+3]]

1
PP [[(14a + 90)y3n14 — (42 + 6a)x3545] + 3[(14a +

9O)yn+2 - (4’2 + 6a)xn+3]]
___[[(14a + 90)ysp4s — (156 + 24a)ysnys] + 3[(14a +

(a?2+6a-3)

90)yn4+s — (156 + 24“)xn+3]]
1
3 [[(2a + 14) Y343 — 4Y3n+al + 3[QRa + 14)yp 4y — 4}’n+2]]

(a?2+6a—
1
[[(8a + 52)¥3n43 — 4Y3nes] + 3[(Ba + 52)yn4q — 4)’n+3]]
———[[(8t + 52)¥3n44 — (14 + 22)Y3n45] + 3[(8a + 52) 4 —

4(a?2+6a-3)
(a2+6a-3)

(14 + 2a)Yp43]]

16
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2.5 Each of the following expressions represents a Bi-quadratic Integer

m [2a + 6)x4nis — (24 + 4@)X4nia + 4[R2 + 6)Xpp 45 —

(24 + 4Q)xn42]] + 6

1
2(a2+6a-3)

(45 + 7a)x3n12]] + 6

[(a + 3)Xanse — (45 + 7)) Xgn 44 + 4[(a + 3)x2p44 —

m [( a4+ 6)YVanta — 12X4n14 + 4[2a + 6) Y24 — 12x2n+2]] +

6
m [(@ + 3)Yanss — (21 + 3@)Xania + 4[(@ + 3)Yop43 —
(21 4 3a)x5n12]] + 6

m [2a + 6)yants — (156 + 24@)X4n1a + 4[(20 + 6)y2nis —

(156 + 12a)x5p42]] + 6

(aZT [(4a + 24)x4n16 — (90 + 140) 4045 + 4[(Ba + 52)x5p44 —

(14 + 2a)x2n43]] + 6

[(46¥ + 28)Xansa — 12X4n45 + 4[(4a + 24)yon42 —

(a2+6

12x5p43]] + 6

((ZZT [(4a + 24) yanss — (42 + 6Q)xXanys + 4[(4a + 24)yones —

(42 + 6a)x5n13]] + 6

m [(4a + 24)yan 46 — (156 + 24@)Xan s + 4[(4a + 24)yon 4y —

(156 + 24)xyn13]] + 6

m [(14a +90)Yan+a — 12x4n16 + 4[(14a + 90)y2p4, —

12x544]] + 6

17
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[(14a + 90)Yanss — (42 + 6a)Xan46 + 4[(14a + 90) o453 —

2(a2+6a 3)

(42 + 6)x2n44]] + 6

[(14a +90)Yanss — (156 + 24a) x4 46 + 4[(14a +

(a2+6

90)Y2n+a — (156 + 240)xzn14]] + 6

m [(2a + 14)y4n1a — 4Vanss + 4[Q2a + 14)Yan12 — 4Vanssl] +
6

m [(8a +52)Yan+s — 4Vants + 4[(8a + 52)Y2ns2 — 4Vansal] +
6

e | (B +52)Yanss — (14 + 20)Yanss + 4((8a +52)Yzn4s —

(14 + 20)yyn44]] + 6

2.6 Each of the following expressions represents a Quintic Integer

(a2+6 [(205 + 6)x5n+6 (24 + 4’“)x5n+5 + 5[(2“ + 6)X‘3n+4 —

(24 4 4a@)x3n13] + 10[(2a + 6)xp 12 — (24 + 4a)xp44]]

m [(a + 3)xSn+7 (45 + 7C¥)X5n+5 + 5[(“ + 3)x3n+5 -

(4‘5 + 7(X)X3n+3] + 10[(“ + 3)xn+3 - (45 + 7a)xn+1]]

m [2a + 6)ysn+s — 12xsn4s + 5[(2a + 6)ysnss — 12X3n43] +

10[(2a + 6)Yn41 — 12%n44]]

m [(@ + 3)ysnse — (21 + 3@) X545 + 5[(@ + 3)Y3n4a —

(21 + 3a)x3n43] + 10[(@ + 3)yni2 — 1 + 3&)xn14]]
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[(20{ + 6)Ysnt7 — (156 + 24a) X545 + 5[(2a + 6) Y345 —

7(a2+6a 3)

(156 + 24)X3n43] + 10[(2a + 6)yn43 — (156 + 24a)x,44]]

[(4a + 24) X547 — (90 + 14a) X5y 46 + 5[(4a + 24) X345 —

(a2+6

(90 + 14a)x3,44] + 10[(4ax + 24)x,,45 — (90 + 14a)xn+2]]

—2(a2+6a 5 [(4a + 205045 — 12X5n46 + S[(4a + 24) Y3043 —

12%3544] + 10[(40 + 24)yp i1 — 12255,

m [(40{ + 24)ysn+6 — (42 + 6a)X5p16 + 5[(4a + 24) Y344 —

(42 + 60)xzn4a] + 10[(42 + 24)Ynsz — (42 + 60)Xn42]

[(4a + 24’)y5n+7 (156 + 24'a)xSn+6 + 5[(46( + 24)y3n+5 -

(a2+6

(156 + 24a)x3,44] + 10[(4a + 24)y,,453 — (156 + 24a)xn+2]]

m [(14a + 90)ysnss — 12x5n47 + 5[(14a +90)y3p43 —

12x3n45] + 10[(14a + 90)yp11 — 12x13]]

1
2(a2+6a-3)

(142 + 6a)x3,45] + 10[(14a + 90)y,4, — (42 + 6a)xn+3]]

[(14a + 90)ysp46 — (42 + 6a)X5n17 + 5[(14a + 90)Y3n1g —

—(QZW 5 [(14a + 90)ysp.7 — (156 + 24a)xsp47 + 5[(14a +

90)y3n4+s — (156 + 24a)x3,45] + 10[(14a + 90)y,. .53 — (156 +
24“)xn+3]]
(aZT [(20{ + 14')ySn+5 4'ySn+6 + 5[(20! + 14)y3n+3 - 4'y3n+4-] +

10[(2a + 14)yns1 — 4Vns2l]

m [(8a + 52) Y545 — 4¥sn+7 + 5[(Ba + 52)y3n13 — 4¥3nss] +

10[(8a + 52)yn41 — 4Vnysl]
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1
(a2+6a-3)

[(8a + 52)ysn+6 — (14 + 2a)Yspi7 + 5[(Ba + 52)y3p44 —

(14 + 2a)y3n4s] + 10[(8a + 52)yp12 — (14 + 2a)yn43]]

2.7 Remarkable Observations:

Employing linear combinations among the solutions of (2.1), one may
generate integer solutions for other choices of hyperbola which are

presented in table :2.2 below

Table: 2.2 Hyperbola

Hyperbola (P.Q)
S.no
1. P? —Q*=4(a*+6a—3)* | P=Q2a+6)xni,— (24 +4a)xyyq
Q = (14 + 2a)V3xp41 — 4V3%04
2. P2 — 4Q?% = 16(a? + 6a P = (a+3)xp.3 — (45 + 7Q)Xp4q
—3)? Q = (13 + 2a)V3xn41 — V325
3. P? — Q? = 4(a® + 6a — 3)? P = (2a+6)yni1 — 12xp14
Q = (6 + 2a)V3xn41 — 4V3ynis
4, P2 — Q2 = 4(a?® + 6a — 3)? P =(a+3)yn+2 = (21 +3a)xp41
Q = (12 + 2a)V3xn11 = 2V3yn4,
5. P2 — Q% =196(a? + 6a P = (2a+6)yn43 — (156 + 24a)xp4q
— 3)2 Q = (45 + 7a)2V3xp41 — 4V3%p43
6. 3P2 —Q? =12(a? + 6a P = (4a + 24)x,.3 — (90 + 14a) x4
—3)2 Q = (52 + 8a)V3x,1
— a4+ 14)V3x,43
P?—Q*=16(a®*+6a—3)* | P = (4a+24)yps1 — 12X,
7. Q = (6 +2a)V3xp4,
— 2a +14)V3yn,y
P? —Q*=4(a*+6a—3)* | P=(4a+28)ypir — (42 + 60)xp4,
8. Q = (24 + 4a)V3x,12
— (14 + 2a)V3yny,

https://deepscienceresearch.com
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P2 — Q2 = 16(a® + 6a — 3)?

P =(4a+ 24)y,43

9. — (156 + 24a)x,.,
Q = (90 + 14a)V3x,,,
— (2a + 14)V3yp43
P? — Q% =196(a? + 6a P = (14a +90)yn41 — 12Xp43
10. —3)2 Q = a + 6)V3x,.3
— (8 + 52)V3yn41
P?2— Q% =16(a’?+ 6a —3)? | P = (14a + 90)yni2 — (42 + 6@)Xy43
11. Q = (24 + 4a)V3x43
— (8a + 52)\/§yn+2
P%2 — Q2 = 4(a? + 6a — 3)? P = (14a +90)y,.3
12. — (156 + 24a)x,43
Q = (90 + 14a)V3x,43
— (8@ + 52)V3yp4s
3P%2 — Q%2 = 12(a? + 6a P =(2a+19)yns1 — 4Vn+2
13. — 3)2 Q=(6+20)y442— 24+ 4a)ypi1
3P2 — Q% = 192(a? + 6« P=(8a+52)Vni1— 4Vnt3
14, —3)2 Q = (6+20)yns3 — (14a + 90)yp4s
3P%? - Q? = 12(a? + 6a P = (8a+52)ypi2 — (14 + 2a)yn43
15. —3)2 Q = (24 + 4a)yns3 — (14a + 90)yp.»

Employing linear combinations among the solutions of (2.1), one may
generate integer solutions for other choices of parabola which are presented
in the Table: 2.3 below:

Table: 2.3 Parabola

S. No Parabola (R,Q)
R(a? + 6a — 3) — Q2 R=Qa+6)x,,3— 24+ 4a)xp4,
1 = 4(a? + 6a +2(a? + 6a —3)
—3)° Q = (14 + 2a)V3xy.1 — 4V3%n4s
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R(a? + 6a — 3) — 2Q?
2 = 8(a? + 6a
— 3)2

R = (a+ 3)xzp44 — (45 + 7a) X242
+ 4(a? + 6a — 3)
Q = (13 + 2a)V3xp1 — V3243

R(a? + 6a — 3) — Q2

R = Qa+6)Yn13 — 12x25,,

3 = 4(a? + 6a + 2(a? + 6a — 3)
-3 Q = (6 +20)V3xp41 = 4V3y, 1y
R(a? + 6a — 3) — Q* R = (a+3)Yonis — 21 + 3a)xp04-
4 = 4(a? + 6a + 2(a? + 6a — 3)
-3 Q = (12 + 20)V3xp41 = 2V3y,4y
7R(a® + 6a — 3) — Q2 R = (2a + 6)Yyes
5 = 196(a? — (156 + 24)X5p 42
+ 6a — 3)? + 14(a? + 6a — 3)

Q = (45 + 7a)2V3x,,.1 — 4V3x,,5

R(a? + 6a — 3) — Q?
6 = 4(a? + 6a
— 3)2

R =24 +4a)x344
— (14a +90)x,,,45
+ 2(a? + 6a — 3)
Q = (52 + 8a)V3x,,,
— Qa + 14)V3x,,3

2R(a? + 6a — 3) — Q?
7 = 16(a’ + 6a
— 3)2

R =[(24 + 4a)yrn+2 — 12(X2n43)]
+ 2(a? + 6a —3)

Q = (6+2a)xny, — Qa + 14)V3y, 44

R(a? + 6a — 3) — Q*?
8 = 4(a? + 6a
— 3)2

R =[(24 + 40)ysn+3
— (6a +42)x3,43]
+ 2(a? + 6a — 3)
Q = (24 + 4a)V3x,,,
— (14 + 2a)V3yns,

2R(a? + 6a — 3) — Q?
9 = 16(a’ + 6a
— 3)2

R = (24 + 4a)yon4a — (156
+ 24a) x5 + 4(a?
+ 6a — 3)

Q = (90 + 14a)V3x,,,
— 2a + 149)V3yy,s

7R(a’ + 6a — 3) — Q*
10 = 196(a?
+ 6a — 3)?

R = (90 + 14a)ysn42 — 12X2544

+ 2(a? + 6a — 3)
Q = (a + 6)V3x,43

— (8@ +52)V3yn4s

2R(a? + 6a —3) — Q?
11 = 16(a® + 6a
— 3)2

R =(90 +14a)y,n43
— (42 + 6a)X2n44
+4(a? + 6a — 3)
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Q = (24 4 4a)V3x, 42
— (8a +52)V3yy,,

R(a? + 6a — 3) — Q*?

R = (90 + 14a)y;n14

12 = 4(a® + 6a — (156 + 24a) X344
—3)? +2(a? + 6a — 3)
Q = (90 + 14a)V3x,,3
— (52 + 8a)V3yu43
3R(a® + 6a — 3) — Q* R = Q2a+14)yn12 — 4V2n+s
13 = 12(a? + 6a + 2(a? + 6a — 3)
- 3)2 Q= (6 + 2“)3’n+2 — (24 + 4‘('l')yn+1
12R(a? + 6a — 3) — Q? R = (52+8a)yn+2 — 4Van+a
14 = 192(a? +8(a? + 6a — 3)
+ 6a — 3)? Q = (6+2a)yn4s — (14a +90)yn4y
3R(a? +6a —3) — Q* R = (52+8a)yn+3 — (2 + 14)yyn44
15 = 12(a? + 6a + 2(a? + 6a — 3)
-3)° Q=(24+4a0)ynss — (14a +90)yn,,

2.8 Conclusion:

In this paper, we have presented infinitely many integer solutions for the
Diophantine equations represented by the positive pell equationsy? =
3x% + a? + 6a — 3. As the binary quadratic Diophantine equations are
rich in variety, one may search for the other choices of pell equations and
determine the solutions with the suitable properties.
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Abstract: A binary quadratic equation of the form y? = Dx? + 1, where D is non-square
positive integer has been study by various mathematicians for it non-trivial integral
solutions when D takes different integral values. The binary quadratic Diophantine

non-zero distinct solutions. A few interesting relations among the solutions are given.
Further,employing the solutions of the above hyperbola, the solutions of other choices of
hyperbolas and parabolas are obtained.
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3.1 Introduction

A binary quadratic equation of the form y? = Dx? + 1, where D is non-
square positive integer has been study by various mathematicians for it non-trivial
integral solutions when D takes different integral values (Carmichael., 1959;
Dickson., 1952; Mordell., 1969). For an extensive review of various problems,
one may refer (Gopalan et.al., 2015; Mahalakshmi, Shanthi .,2023; Shanthi,
Mahalakshmi .,2023; Shanthi, Gopalan.,2024). In this communication, yet another
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interesting hyperbola given by y? =3x2? + a? + 10a — 2 is considered and
infinitely many integer solutions are obtained. A few interesting properties among
the solutions are obtained. Further, employing the solutions of the above
hyperbola, we have obtained solutions of other choices of hyperbola and parabola.

3.1 Method of analysis:
The Positive Pell equation representing hyperbola under
consideration is

y? =3x%*+ a?+ 10a — 2 (3.1)
whose smallest positive integer solution is

Xo=3,Yo=a+5
To obtain the other solutions of (3.1), consider the Pell equation

y2=3x%2+1
whose general solution is given by

1 1
Xn = mgn; Yn = Efn

where

fa= Q@+ 2 -VI

gn = 2+V3)M1 — (2 - V3"
Applying Brahmagupta lemma between (x,, yo) & (%, 3, )the other integer
solution of (3.1) are given by

On (a + 5)V3gn

Xn+1 = ? 6

(a + S)fn 3\/§gn
Yn+1 = 2 + 2

The recurrence relations satisfied by x and y are given by
Xn+1 — 4Xni2 + X3 =0

Yn+1 — 4Vn42 T Yne3 =0
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A few numerical examples are given in the following table: 3.1

Table: 3.1 Numerical values

n Xn Yn

0 3 a+5

1 a+11 2a 4+ 19
2 4a + 41 7Ta+ 71
3 15a + 153 26a + 265
4 56a + 571 97a + 989

From the above table we observe some interesting properties among the
solutions which are presented below:

3.3 Relations between solutions

Xn+1 — 4Xn42 + Xp43 =0
2Xp41 —Xpp2 T Yne1 =0
Xn41 — 2Xn42 T Yni2 =0
2Xp41 = TXny2 + Yny3 =0
TXp41 — Xp43 +4Yp41 =0
Xn+1 — Xn43 T 2Yn42 =0
Xn+1 — 7Xn43 T 4Yne3 =0
3%ns1 + 2Vn41 = Yne2 =0
12%p41 + 7Yn41 = Yn43 =0
3Xn41 + 7Yns2 — 2Yn43 =0
Y1+ 7Xnyo — 2Xp43 =0
Yniz + 2Xp42 —Xp43 =0
Yne3 t Xni2 — 2Xp43 =0
Yns1+ 3Xn42 = 2Vp42 =0
Yn1 +6Xpi2 = Y4z =0
2Yn42 +3%p42 = Ynez =0
TYn+2 = 2Yn41 — 3%p43 =0
TYne3 = Yn+1 — 12%543 =0
2Yn43 = Yn+z — 3%p43 =0
Yn+3 —4Vns2 + Vn41 =0

https://deepscienceresearch.com
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3.4 Each of the following expressions represents a cubical integers

m [[2a + 10)x3n14 — (38 + 4@)x3543] + 3[(2a + 10)x,4, —

(38 + 4@)xp44]]

m [[(“ +5)x3p45 — (71 + 7a)x3n43] + 3[(a + 5) %543 —

(71 + 7)) 44]]
1
[[(Za + 10)Y3n43 — 18x3443] + 3[(2a + 10)yp4q — 18xn+1]]

(a2+10a-2)
1

[[(0( + 5)Y3n+a — (33 + 3a)x3p43] + 3[(@ + 5)ypiz —
(33 + 3a)xp44]]

(a?2+10a-2)
1
e —— [[(2a + 10)y3n45 — (246 + 24a)x3,45] + 3[(2a +

10)Yi3 — (246 + 240) Xy 41]]

1
3(a?t10a-2) [[(126( + 114)x35,45 — (426 + 42a)x3,45] + 3[(12a +

114)xp43 — (426 + 420) X4

1
1002} [[(4a + 38)Y3n13 — (18)x3p44] + 3[(4a + 38)yp4s —

(18)x45]]

1
(@?+10a-2) [[(4a + 38)Y3n+4 — (6@ + 66)x3544] + 3[(4r +38)ypy, —

(6 + 66)xys]]

1
T [[(4a + 38)Y3n15 — (246 + 24a)x3,44] + 3[(4a +

38)Ynes — (246 + 240) %y ]]
1
[[(14@ + 1423005 — (18)X3n4s] + 3[(14a + 142)Ypy —

7(a?2+10a-2)

(18)xp43]]
1
T [[(14a + 142)y3p14 — (6@ + 66)x3,45] + 3[(14a +

142)yp4z — (6@ + 66)X,43]]

Trrioay |[(14a + 142)y5,,5 — (246 + 240)x545] + 3[(14a +
142) Y43 — (246 + 24@) Xy 3]

Trrions [2a +22)y5015 = 6Y3n14] + 3[(2a + 22)Yps1 — 6¥nso]|
m [[(8a + 82)y3n13 — 6¥3n4s] + 3[(8a + 82)yps1 — 6¥nys]
Tiri0es (8@ +82)Y3n14 — (22 + 20)Yspss] + 3((8a + 82)ynsz —

(22 + 2a)yn+3l]
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3.5 Each of the following expressions represents a Bi-quadratic Integer

m [(2a + 10)x4n15 — (38 + 4@)x4n 44 + 4[(2a + 10)x5p43 —
(38 + 4a)xyn12]] + 6

m [(05 +5)X4n+6 — (71 + 7a)Xan4a + 4l + 5)xon44 —

(71 + 70)Xn42]] + 6

[(Za +10)Van+a — 18%ansa + 4[R2 + 10)y2n1p — 18x504,]] + 6

m [(@ + 5)Yan+s — (33 + 30)Xanss + 4[(@ + 5)Yon4s —
(33 + 3a)x2n42]] + 6

o (20 + 10)Yanse — (246 + 24@)Xansq + 4[(2a +
10)Yan+a — (246 + 24a)X5n4,]] + 6

m [(12a + 114)x4n 16 — (426 + 42a) X4nys + 4[(12a +
114) %5044 — (426 + 422)x5n13]] + 6

srions (40 + 38)Yanrs — 18%4n15 + 4[(4a + 38)Y2nss —
18x2n+3]] +6

m [(4a + 38)Yanss — (66 + 6@)x4nss + 4[(4a + 38) Y43 —
(66 + 6a)x2n43]] + 6

1
Ty [(4a + 38)Yunt6 — (246 + 24@) X415 + 4[(4a +
38)Y2n+a — (246 + 24@)xzn13]] + 6

1
7@ 10a-2) [(14a + 142)yansa — 18Xanss + 4[(14a + 142) Y504, —
18x2n+4]] + 6

1
2(a2+10a-2) [(14a + 142)yan4s — (66 + 6a)x4n46 + 4[(14a +

142)y2n+3 (66 + 6a)X5p44]] + 6
—(a2+10a > [(14a + 142) Y4046 — (246 + 24@) x40 46 + 4[(14a +

142)y2n+4 (2466 + 24a)x5544]] + 6
[(Za + 22)Yansa — 6Yanss + 4[(2a + 22)yon4p — 6Y2n+3]] +

(a2+10

(a2+10a 2)

6
1
@2 1100-2) [(8a + 82)yanss — 6Yanss + 4[(8a + 82)yzpsz —

6y2n+4]] +6
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(aZT [(8a + 82)Yanss — (22 + 2a)Y4nis + 4[(Ba + 82)yzne3 —
(22 4 2a)yan1al] + 6

3.6 Each of the following expressions represents a Quintic Integer

m [(20( + 1O)x5n+6 (38 + 4a)x5n+5 + 5[(2“ + 1O)x5n+6 -

(38 4 4a)xsp4s] + 10[(2a + 2)xp12 — (38 + 4a)xp44]]

1
NPT 100-D [(@ + 5)x5p47 — (71 + 7@)x5p45 + 5[(@ + 5) X342 —

(71 + 7@)X3n4+3] + 10[(@ + 5)xp43 — (71 + 7@)xp14]]
m [(Za + 10)¥sn+s — 18x5p45 + 5[(2a + 10)y3p45 —
18x3n+3] +10[(2a + 10) Y41 — 18%544]]

m [(a + 5)¥sn+6 — (33 + 3a)xsn45 + 5[(a + 5)yzn4a —
(33 4 3@)x3n43] + 10[(@ + 5)Yn4z2 — (33 + 30244
m [(2a + 10)ysp17 — (246 + 240)X5n45 + 5[(2a +
10)V3n45 — (246 + 24)x35,43] + 10[(2a + 10)y, 45 — (246 +
24“)xn+1]]

1
PTEreTy=) [(12a + 114)x5,47 — (426 + 42a) x5 46 + 5[(12a +

114) %3545 — (426 + 42a)X3p,45] + 10[(12a + 114)x,,,5 —
(42 + 4260)x,45]]

1
N 10a D [(4a +38)ysp4s — 18x5n46 + 5[(4a + 38) Y343 —

18%ynsa] + 10[(4t + 38)Ynss = 185012]]

m [(4a +38)yspi6 — (66 + 6@) X546 + 5[(4a + 38)y3n4s —
(66 + 6a)X3n14] + 10[(4a + 38)yp12 — (66 + 6a)xp.]]

1
Ty [(4a + 38)Ysn17 — (246 + 24a) X546 + 5[(4a +

38)Vanis — (246 + 24a)x3,,44] + 10[(4a + 38)y, .3 — (246 +
240)xn4]]

1
7(a2+10a—2) [(14‘6{ + 14‘2)y5n+5 - 18x5n+7 + 5[(14‘0.’ + 142)y3n+3 —

18x3n45] + 10[(14a + 142)yn 41 — 18xp,43]]
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1
2(a?+10a-2) [(14a + 142)ysp16 — (66 + 6Q)xs5p47 + 5[(14a +

142)y3n+4 - (66 + 6“)X3n+5] + 10[(14‘a + 14‘2)yn+2 - (66 +
6a)xn+3]]
m [(14a + 142)y5p17 — (246 + 24@)x5p47 + 5[(14a +

142)y3n4s — (246 + 24) x3545] + 10[(14a + 142) v, 45 —
(246 + 24a)xp.3]]
m [(2a + 22)Ysp45 = 6Ysnrs + 5120 + 22)Y3n43 — 6Y3n4a] +
10[(20( + 22)3’n+1 - 6yn+2]]
1
m [(86¥ + 82)y5n+5 - 6ySn+7 + 5[(8a + 82)y3n+3 - 63’3n+5] +
10[(8“ +82)Yns1 — 6Yns3l]
m [(8a +82)yspi6 — (22 + 2a) Y547 + 5[(8a + 82)y3n4s —

(22 + 2a)Y3p45] + 10[(8a + 82)yns, — (22 + 20) V43|

3.7 Remarkable Observations:

Employing linear combinations among the solutions of (3.1), one may
generate integer solutions for other choices of hyperbola which are
presented in table :3.2 below

Table:3.2 Hyperbola

S.No Hyperbola (P,Q)
1. 3P2 — Q% = 12(a? P=Qa+10)x,.,
+ 10a — (38 + 4a)xp4q
—2)* Q = (66 + 6a)xn41 — 18xp4,
2. 3P? — Q% = 48(a? P =(a+5)xy3
+ 10« — (71 4+ 7a)x41
—2)* Q = (123 + 12a)xp+1 — IXnas
3. 3P? — Q? = 12(a? P = (2a+10)yn41 — 18xp44
+ 10« Q =30+ 6a)x,41 — 18y,41
— 2)2
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4, 3P% — Q? = 12(a? P=(a+5)yn2
+ 10a — (33 +3a)x,41
—2)° Q=57+ 6a)xns1 — WYnsz
5. 3P? — Q? = 588(a? P=Qa+10)y,,3
+ 10« — (246
—2)? + 24a) %544
Q = (426 + 42a)x141
— 18yn43
6. 3PZ — Q2 = 108(a? P = (12a + 114)x,,5
+ 10« — (426
—2)? + 42a) %547
Q = (738 + 72Q) %45
— (18«
+198)x,,,5
7. 3P% — Q% = 48(a? P =(4a+ 38)y,41 — 18xp,45
+ 10« Q = (B0 + 6a)x,,2
—2)? — (6a + 66)yn+1
8. 3P%2 — Q% = 12(a? P =(4a+ 38)y,,, — (ba
+ 10« +66)%,45
—2)? Q=114+ 12a) x4
— (66 + 6a)yn+2
9. 3P% — Q? = 48(a? P = (4a+ 38)y,43
+10a — (246
—2)? + 24a) X742
Q = (426 + 42a)Xpy»
— (6a + 66)3’n+3
3P2 — 0% = 588(a? P = (14a + 142)yp.4
10. + 10a — 18x,,43
—2)? Q = (6a + 30)xp,43
— (24a
+ 246)Yn41
3p2 — 0% = 48(a? P = (14a + 142)yps
11. + 10« — (66 + 6a)x,43
—2)2 | Q=114+ 12a)x,5
— (24«a
+ 246) Y2
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3P2 — Q2 = 12(a?

P = (14a + 142)y,,5 — (24a

12. + 10« + 246)x,43
—2)? Q = (426 + 420) %15
— (24«a
+ 66)Yn+3
3P? — Q% =12(a? P=Q2a+22)yni1 — 6Yns2
13. + 10a Q = (10 + 2a)yYn42
—2)* — (38 + 4a)yns1
3P2 — Q? = 192(a? P =(8a+82)y,i1 — 6Vnts
14. + 10« Q =10+ 2a)yn43
—2)? — (14«
+ 142)yn1q
3P% — Q? = 12(a? P = (8a+82)y,,2
15. + 10a — (22 + 2a)Yn43
—2)? Q = (38 +4a)yn+3

- (14a
+142)yn4y

2.Employing linear combinations among the solutions of (3.1), one may
generate integer solutions for other choices of parabola which are presented
in the Table: 3.3 below:

Table: 3.3 Parabola

s.no | Parabola (R,Q)

1 3R(a? + 10a — 2) — Q2 R=Qa+10)xy,.3
= 12(a? — (4a + 38)x3142
+ 10a — 2)? +2(a? + 10a — 2)

Q = (66 + 6a)xn4+1 — 18Xp4p

2 | 6R(a®+ 10a — 2) — Q2

R = (a+ 5)x4n11 — (7Ta + 71)xzn42

= 48(a? +4(a? + 10a — 2)
+10a —2)? | Q = (123 + 12a)xp 41 — 9%py3

3 3R(a? + 10a — 2) — Q% R=Qa+10)y,,42 — 18xp,42
= 12(a? +2(a? + 10a — 2)
+10a—2)2 | Q =G0+ 6a)x,.1 — 18y,41
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4 3R(a? + 10a — 2) — Q? R = (a+5)Vyn+3 — Ba + 33)xpm42
=12(a? + 2(a? + 10a — 2)
+10a —2)? | Q = (57 + 6a)xp41 — Yntz

5 | 21R(a®+10a—2)— Q2 | R= Qa+ 10)y,.s
= 588(a? — (24a + 246)x,44
+ 10a — 2)? +2(a? + 10a — 2)

Q = (426 + 42a)xp41 — 18ynyy

6 | 9R(a®+ 10 —2)— Q% | R=[(114 + 12a)Xpnss
= 108(a? — (426 + 42a)x3p43]
+ 10a — 2)? +6(a? + 10a — 2)

0 = 6(738 + 72a) x4,
— (18a + 198)x,,43

7 6R(a* + 10a — 2) — Q? R = [(38 + 4a)yzn+2 — 18(x2n43)]
= 48(a? +2(a? + 10a — 2)
+10a —2)? | Q = (36 + 6a)x,4-

- (6CZ + 66)yn+1

8 | 3R(a?+ 10a —2) — Q2 R = [(38 + 4@) Y+
= 12(a? — (6a + 66)x3143]
+ 10a — 2)2 + 2(a? + 10a — 2)

0 = (114 + 12a) %,
— (66 + 6a)yn.z

9 6R(a? + 10a — 2) — Q? R = (38 + 4a)yyp4a — (246
= 48(a? + 24Q)xpp 43 + 2(a?
+10a — 2)? +10a — 2)

Q = (426 + 42Q) x4,
— (6a + 66)3’n+3

10 | 21R(a2 + 10a —2) — Q% | R = (142 + 14@)y,p10 — 18%p114
= 588(a? + 14(a? + 10a — 2)
+10a —2)? | Q = (6a + 30)x,43

— (24a + 246)y,41

11 | 6R(a? + 10a —2) — Q? R = (142 + 14a) V43

= 48(a?
+ 10a — 2)2

— (66 + 6a)x2n 44

+ 4(a? + 10a — 2)
Q = (114 + 12a)x,, 5

— (24a + 246)y,42
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12 | 3R(a? + 10a — 2) — Q2 R = (142 4+ 14a)yzn44
= 12(a? — (246 + 24a) X344
+ 10a — 2)2 + 2(a? + 10a — 2)
Q = (426 +42a)x,43

— (246 + 24a) yn43

13 | 3R(a?® + 10a — 2) — Q? R = Q2a+22)ymn42 — 6Yonss
= 12(a? +2(a? + 10a — 2)
+10a —2)* | Q= (10 +2a)Yn4>
_ (38 + 4‘Ol)yn+1
14 | 12R(a® + 10a — 2) — Q? R = (82 + 8a)yznt2 — 6Y2n44
= 192(a? + 8(a? + 10a — 2)

+10a—2)2 | Q=10+ 2a)yn43
— (14a + 142)y,41

15 | 3R(a? + 10a — 2) — Q2 R = (82 + 8)Yynss — (2a
= 12(a? + 22)Vonta + 2(a?
+ 10a — 2)2 + 10a — 2)

Q = (38 +4a)Yny3
— (14a + 142)ypss

3.8 Conclusion:

In this paper, we have presented infinitely many integer solutions for the
Diophantine equationsrepresentedby the positive pell equations y? =
3x2 + a? + 10a — 2.As the binary quadratic Diophantine equations are
rich in variety, one may search for the other choices of pell equations and
determine the solutions with the suitable properties.

References
Carmichael, R.D. (1959). The theory of numbers and Diophantine
Analysis, Dover publications, New York.

Dickson, L.E. (1952). History of Theory of Numbers, Vol.11, Chelsea
Publishing company, New York.
https://archive.org/details/historyoftheoryo0Oldick/page/n1l/mode/2up

35
https://deepscienceresearch.com




Goodstein, R. L. (1969). Diophantine Equations. By LJ Mordell. Pp. 312.
1969. 90s.(Academic Press, London & New York.). The Mathematical
Gazette, 54(389), 315-316.

Gopalan M.A. et.al. (2015). Observations on the cone z? = ax? + a(a —
1)y? , International Journal of Multidisciplinary Research and
Development, VVol.2 (9), Pp.304-305.
https://www.allsubjectjournal.com/assets/archives/2015/vol2issue9/164.pdf

Mahalakshmi, T., Shanthi, J.(2023). On the Negative pell equation y? =
80x2 — 31, International Journal of Research Publication and Reviews,
Volume 4, No 10, 2178-2187.
https://www.ijrpr.com/archive.php?volume=4&issue=10

Shanthi, J.,Gopalan.M.A.(2024). Formulation of special Pythagorean
triangles through Integer Solutions of the Hyperbola y? = (k% + 2k)x? +
1, Indian Journal of Science and Technology ,Volume 17,Issue 41 , 4307-
4312. https://indjst.org/archives?volume=17&issue=41

Shanthi, J.Mahalakshmi, T. (2023). On the Positive pell Equation y? =
87x? + 13, International Journal of Research Publication and Reviews,
Volume 4, No 10, 2512-2521.
https://www.ijrpr.com/archive.php?volume=4&issue=10

36
https://deepscienceresearch.com


https://www.allsubjectjournal.com/assets/archives/2015/vol2issue9/164.pdf
https://www.ijrpr.com/archive.php?volume=4&issue=10
https://indjst.org/archives?volume=17&issue=41
https://www.ijrpr.com/archive.php?volume=4&issue=10

Deep Science Publishing ® DeepScience
https://doi.org/10.70593/978-93-49307-97-1 ’ Open Access Books

Chapter 4
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Abstract:The non-homogeneous second degree equation with two unknowns represented
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solutions. A few interesting properties between the above solutions are presented.
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4.1 Introduction

The second degree equations of the form ax? — by? = N, (a, b, Z # 0) are rich in
variety (Carmichael., 1959; Dickson., 1952; Mordell., 1969).and have been
analyzed by many mathematicians for their respective integer solutions for
particular values of a, b and N. In this context, one may refer (Gopalan et.al.,
2021;  Mahalakshmi, Shalini  .,2023;  Shanthi, Parkavi .,2023
;Shanthi,Indhumuki.,2023).

This communication concerns with the problem of obtaining non-zero distinct
integer solutions to the second degree equation given by 6x? —5y? =6
representing hyperbola. A few interesting relations among its solutions are
presented. Knowing an integral solution of the given hyperbola, integer solutions
for other choices of hyperbola and parabolas are presented.
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4.2 Method of analysis:
The second degree equation under consideration is

6x> —5y> =6 (4.1)
It is to be noted that (4.1) represents a hyperbola
Taking x=X+5T, y=X+6T 4.2)
In (4.1), it reduced to the equation
X*=30T" +6 (4.3)
The smallest positive integer solution (T,, X,) of (4.3) is
T,=1 X,=6
To obtain the other solutions of (4.3), consider the pellian equation
X? =307" +1 (4.4)

whose smallest positive integer solution is

7,=2, X

0 5

=11

0

The general solution (T, X,) of (4.4) is given by

X, +4307, = (11+2430)"

,n=0,1,2,3..... (4.5)

Since irrational roots occur in pairs, we have

¥, -307, = (11-2v30)"

,n=0,123...... (4.6)

From (4.5) and (4.6), solving for X,,,T,, , we have
.. 1 n+1 1
%, =3[(11+2v30)"" + (11 - 2v30)"] = 3£,

1+2430)" = (11- 2J_Y} .

7 =

1
] —m[(l rgn

https://deepscienceresearch.com

38



Applying Brahmagupta lemma between the solutions (T, X,)and
(T,,, X,,), the general solution (Ty, Xp11) Of (4.3) is found to be

~ ~ /30 1
T.,=XT+TX =Yg 4_f
A+l 0% n 0“*n 10 gn 2jn

30

X, =X, X, +30T,7, =3f, LRt

n+l

Using (4.7) and (4.8) in (4.2) we have,
2x,, =111, +2.30g,

10y,,, =60, +11430g,

(4.7)

(4.8)

(4.9)

(4.10)

Thus (4.9) and (4.10) represent the integer solutions of the hyperbola (4.1).

A few numerical values are given in the following Table:4.1

Table :4.1 Numerical values

n p g, Xl Vit
—1 2 0 1 12
0 22 430 241 264
1 482 8830 5291 5796
2 10582 1932430 116161 127248
3 232322 42416430 2550251 2793660
4 5100502 931220+/30 55989361 61333272

Recurrence relation for x and y are:
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22x ., +x

43 n+2 n+l

=0 n=-10]1...

X

Yoz — 22yfz+2 t YV = 0 n= —1,0,1

4.3 A few interesting relations among the solutions are given below.

2Xp43 + 2Xp4q — 44X542 = 0
10yp4+1 = Xp42 + 11xp49 =0
10yp4+2 = 11xp42 + X410 =0
10y,43 — 241xp,, + 11x,,1 =0
220yp41 = Xpy3 + 241x541 =0
20Yn42 = Xn43 T X4 =0

220yy43 — 241xp43 + X511 =0
10Y2 — 12041 — 110y,; = 0
10yn+3 - 264‘0xn+1 - 2410y1’l+1 =0
110y,43 — 120x,,41 — 2410y,,, =0
10yn+1 - 11Xn+3 + 241xn+2 = 0
10¥n+2 — Xp43 + 11xp4, =0
10yn4+3 — 1lxp43 + 42 =0
110yp12 = 120xp42 — 10yp44 =0
110y,43 — 2640x,,,, — 110y,,1 =0
10yn43 — 120xp4, = 110yp4, =0
2410y,4, — 120x,,,3 — 110y,,,1 =0
2410y,,3 — 2640x,,3 — 10y,,1 =0
11043 — 120243 — 10ynyz = 0
60yn43 — 1320y54, + 60yp41 =0

4.4 Each of following expressions represents a cubic integer

44x3n13 — 2X3p44 + 3(44Xn11 — 2Xp42)

1
'Rl [(483x3743 — X3n+5) + 3(483xp41 — Xpy3)]
22%3n43 — 20Y3p43 + 3(22x511 — 20yp41)

1

'Rl [(482x374+3 — 20Y3544) + 3(482xp41 — 20Y542)]

10582x3p13 = 20Y3p45 + 3(10582xp41 — 20yp43)
966X3144 — 44X3n45 + 3(966Xp15 — 44X 43)

2x3n44 — 403043 + 3(2xp42 — 40yn41)
482x3544 — 440Y344 + 3(482x45 — 440Vn42)
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962x3n44 — 40Y3n45 + 3(962x15 — 40Yn43)

1
721 L (22X345 — 9660y3543) + 3(22Xp43 — 9660yp41)]

= [(482x3n45 — 96603n44) + 3(482%n43 — 9660Yr,45)]
10582x37,45 — 9660y3,45 + 3(10582x,,43 — 9660y,,43)
[(11Y3044 — 241Y345) + 3(11Ynez — 241yn0)]
—[I3nes — 481Y3n43) + 3(nes — 481¥p11)]
[(241Y3045 — 5291Y3n44) + 3(241Yn43 — 5291Yn45)]

4.5 Each of the following expressions represents a Biquadratic Integer

V V. V V VVVVYVY VY VYV VY

44X 4n4a — 2X4nys + 4(44X2n10 — 2Xon43) + 6
—[(483%4n44 — Xanss) + 4(483%2n42 — Xansa)] + 66
22%an4s — 20Van4a + 4(22x5045 — 20y5045) + 6
—[(482%4n44 — 20V4n4s) + 4(482%2042 — 20Y3n43) + 66]

1
241 [(10582x4544 — 20Y4n46) + 4(10582%55 42 — 20Y0n44) + 1446]
966X4n+5 — 44X4n46 T 4(966X2n+3 — 44x2n+4) +6

2X4n+5 — 40Vanta + 4(2xon43 — 40Y2p42) + 6
482x4n15 — 440Y4nys + 4(482x2,43 — 440Y5n43) + 6
962X4n+5 — 40Vante6 + 4(962X2n43 — 40Y2n44) + 6

1
721 [(22X4n46 = 9660y4n44) + 4(22X3n14 — 9660Y2542) + 1446]

1
77 [(482x40046 — 9660yany5) + 4(482x2544 — 9660Y2n13) + 66]

1
P [((11yan+s — 241Yan4a) + 4(11ypp43 — 241y504) + 36]

1
e [Van+e — 481Yansa) + 4(Vonia — 481ypn42) + 72]

1

g [(241yan+6 — 5291yanys) + 42412544 — 5291y, 43) + 36]

4.6 Each of the following expressions represents a Quintic Integer

44X5pn15 — 2Xsn4e T 5[(44x3n+3 - 2x3n+4) + 3(4'4'xn+1 - 2xn+2)] -
5(4'4‘xn+1 - 2xn+2)

1
E [(4'83x5n+5 - x5n+7) + 5[(483x3n+3 - x3n+5) + 3(4“83xn+1 - xn+3)] -
5(483%p41 — Xn+3)]

41
https://deepscienceresearch.com



A7

22%s5p45 — 20Ysp45 + 5[(22x3043 — 20y3p43) + 3(22xp41 — 20yp41)] —
5(22xn+1 - 20yn+1)

1
I [(482x5p4+5 — 20Ys5p46) + 5[(482X3p43 — 20y3p44) + 3(482xp41 —
20yn4+2)] — 5(482x,41 — 20y,,42)]

1
721 [(10582x55 45 — 20Y5n17) + 5[(10582x3543 — 20Y3n45) +

3(10582xn41 = 20yn43)] = 5(10582x741 — 20yn43)]

966x5n+6 — 44X5n+7 + 5[(966X37414 — 44X3015) + 3(966%x45 — 44243)] —
5(966x,42 — 44%Xn43)

2xsn46 — 40Vsn4s + 5[(2X3n44 — 40Y3n43) + 3(2xp42 — 40Yp41)] —
2(2xn+2 - 403/n+1)

482xs5n+6 — 440V5n+6 + 5[(482x3044 — 440y3014) + 3(482x4, —
440y;.42)] — 5(482xp42 — 440y742)

962x5n+6 — 40V5n+7 + 5[(962x3044 — 40y3n45) + 3(962x54, — 40yn43)] —
5(962xn+2 - 40yn+3)

1
241 [(22x5n+7 - 96603’5n+5) + 5[(22x3n+5 - 9660}’3n+3) + 3(22xn+3 -

9660yn+1)] — 5(22xn+3 = 9660yn.11)]

1
77 [(482x5017 — 9660y5546) + 5[(482X3015 — 9660y3544) + 3(482x45 —

9660y5,42)] — 5(482xp13 — 9660y5,45)]
10582547 — 9660Ysn47 + 5[(10582x3,45 — 9660Y3n15) + 3(10582%,,45 —
9660y543)] — 5(10582xy,43 — 9660y;,43)

1
g [((11ysn+3 — 241Ysn4s) + 5[(11y3n44 — 241y3543) + 3(11yy,, —
2413’n+1)] - 5(11Yn+2 - 2413’n+1)]

42
https://deepscienceresearch.com



1
E [(YSn+7 - 4'81}15n+5) + 5[(y3n+5 - 4'813"3n+3) + 3(Yn+3 - 4813’n+1)] -
S(yn+3 - 4'81yn+1)]

1
p [(241y5p47 — 5291ys5y46) + 5[(241y3n45 — 5291y3544) + 3(241y543 —
5291yp42)] — 5(241yp43 — 5291yp42)]

4.7 Remarkable Observations:

Employing linear combinations among the solutions of (4.1), one may
generate integer solutions for other choices of hyperbolas which are
presented in Table: 4.2 below.

Table:4.2 Hyperbolas

S.No Hyperbolas P,0)
1. 30P% — Q% = 120 P=44x,,1 — 2Xp1»
Q = 11xp42 — 241xp44
2. 120P% — 121Q?% = 58080 P =483x,41 — Xp43
Q = Xpi3 — 481xp 44
3. 30P2 — Q2% =120 P =22x,.1—20y,.1
Q = 110yp41 — 1202544
4. 30P2 — 121Q%? = 14520 P = 482x,,1 — 20,15
Q = 10yn4+2 — 240xp 44
5. 30P2 — Q2 = 6969720 P =10582x,,1 — 20y,.3
Q = 110y,,.3 — 57960x,,,
6. 30P% — Q% = 120 P =966x,,, — 44x,,3
Q = 241x,,3 — 5291x,,,
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7. 3630P2 — Q% = 14520 P =2x,,5— 40y, .1
Q == 24‘10yn+1 - 120xn+2

8. 30P2 — Q2 = 120 P = 482x,,, — 440y,.,
Q = 2410y,,, — 2640,

9, 3630P% — Q% = 14520 P =962x,,5 — 40y,
Q = 2410y,,5 — 57960x,,,

10. 30P2 — Q2 = 6969720 P = 22x,,5 — 9660y,,.4
Q =52910y,,,, — 120%,,45

11. 30P2 — Q% = 14520 P =482x,,5 — 9660V,.,,
Q = 52910y,,,, — 2640x,, 4

12. 30P2 — Q2 = 120 P = 1058235 — 9660y,,43
Q = 52910y,,5 — 5796045

13. 30P% —36Q% = 4320 P=11y,., — 241y,.4
Q = 220y,41 — 10yp4,

14. | 14520P% — 14402 = 8363520 | P = yn.3 — 481y,.4
Q =4830yp4+1 — 10yp43

15. 30P?% — 36Q2 = 4320 P =241y,.3 — 5291y, .,
Q = 4830y,4, — 220yp43

2. Employing linear combinations among the solutions of (4.1), one
may generate integer solutions for other choices of parabolas
which are presented in Table:4.3 below.
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Table: 4.3 Parabolas

S.No Parabolas (R,Q)
1. 30R — Q% =120 R =44x5,40 — 2Xyp43 + 2
Q =11x,,, — 241x,44
2. 120R — 11Q?% = 5280 R = 483x5,,42 — Xopaq + 22
Q = Xpy3 — 481x544
3. 30R — Q% =120 R = 22x3p42 — 20y5p40 + 2
Q = 110yp41 — 120244
4. 30R — 1102 = 1320 R = 482x5,42 — 20y5,43 + 22
Q = 10yp42 — 240xp44
5. R = 10582x2n+2 - 20y2n+4 + 482

7230R — Q? = 6969720

Q = 110y,,3 — 57960x,, 41

6. 30R — Q% = 120 R = 966Xpn15 — 44%pnsa + 2
Q = 241x,,5 — 5291%,,,
7. 363OR - QZ = 14‘520 R = 2x2n+3 - 40y2TL+2 + 2
Q = 2410yy4; — 120%,,4,
8. 30R - QZ = 120 R = 4'82x2n+3 - 440y2n+3 + 2
Q = 2410y,,, — 2640x,,,,
9. 3630R — Q% = 14520 R = 962%pn45 — 40Vonsa + 2
Q = 2410y,,5 — 57960x,,,,
10. | 7230R — Q% = 6969720 | R = 22xns4 — 9660y,,,, + 482
Q =52910y,,1 — 120x,,,3
11. | 3630R — Q% = 14520 | R = 482%y,,4 — 9660y5,,5 + 22

Q = 52910y,,, — 2640,
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12. 30R — Q% = 120 R = 10582%5p44 — 9660Y,,44 + 2
Q = 52910y,,,5 — 57960%,,4

13. 30R — 6Q2 =720 R=11y,,43 — 241y,,,, + 12
Q = 220yp41 — 10yp42

14. | 14520R — 12Q2% = 696960 | R = Vyp1q — 481yyney + 24
Q = 4830yp41 — 10¥n43

15. 30R — 6Q2 =720 R =241y,,,4 —5291y5,,3 + 12
Q = 4830y, — 220y,43

4.8 Conclusion

In this paper, we have presented infinitely many integer solutions for
the second degree equation, represented by hyperbola is given by 6x? —
5y? = 6. As the second degree equation are rich in variety, one may
search for the other choices of equations and determine their integer
solutions along with suitable properties.
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Chapter 5
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integer solutions. A few interesting properties between the above solutions are presented.
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5.1 Introduction

The non-homogenous binary quadratic equations of the form ax? — by? =
N,(a,b,N # 0) are rich in variety and have been analyzed by many
mathematicians for their respective integer solutions for particular values of
a,b and N. In this context, one may refer (Carmichael., 1959; Dickson.,
1952; Mordell., 1969; Gopalan et.al., 2024; Mahalakshmi, Sowmiya
.,2023; Mahalakshmi  et.al.,2023;Shanthi,Gopalan.,2021).  This
communication concerns with the problem of obtaining non-zero distinct
integer solutions to the binary quadratic equation given by5x? — 3y? = 18
representing hyperbola. A few interesting relations among its solutions are
presented. Knowing an integral solutions of the given hyperbola, integer
solution for other choices of hyperbolas and parabolas are presented.
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5.2Method of analysis:
The non-homogenous binary quadratic equation under consideration is

5x% — 3y% = 18 (5.1)
It is to be noted that (5.1) represents a hyperbola
Taking x=X+3T , y=X+5T (5.2)
in (5.1), it reduced to the equation
X?=15T%+9 (5.3)
The smallest positive integer solution(Ty, X,) of (5.3) is

To =3,Xo = 12
To obtain the other solutions of (5.3), consider the pellian equations
X2 =15T?+9 (5.4)
whose smallest positive integer solutions is

To=1X,=4
The general solution (T,,, X,,) of (5.4) is given by
X, + V15T, = 4+ V15" ,n=0,1,2,..... (5.5)
Since irrational roots occur in pairs, we have
X, — V15T, = (4 —V15)"",n=0,1,2,.... (5.6)

From (5.5) and (5.6), solving forX,,, T,,, we have

B =5 [(4 +VIB™ 1 4+ (4= VIS = - f,

2
7o 1 1
n = oVis I

Applying Brahmagupta lemma between the solutions (T, X,) and (T,,, X,,), the
general solution (T4, X,,41) of (5.3) is found to be

[(4 + \/E)n+1 _ (4 _ \/E)n+1] —

-~ ~ 6 3
Tn+1 = XOTn +Toxn :Egn + Efn (57)

Xpi1 = Xo X, + ToT,, = 6f,, + (5.8)

3
ﬁgn

49
https://deepscienceresearch.com



VVVVVVYVYVVYVYVYVYVVYVYYVYYVYY

Using (5.7) and (5.8) in (5.2) we have

10x,,1 = 105f, + 274159, (5.9)
2Yn41 = 27f + 7V 15g, (5.10)
Thus (5.9) and (5.10) represent the integer solution of the hyperbola (5.1).
A few numerical values are given in the following table:5.1
Table: 5.1 Numerical Examples
N Xn+1 Yn+1
-1 21 27
0 165 213
1 1299 1677
2 10227 13203
3 80517 103947
4 633909 818373
Recurrence relations for x and y are:
xn+3 - 8Xn+2 + xn+1 = 0, n= '1,0,1,...
Yn+3 = 8¥n+2 + Yn41 = 0,n=-1,0,1...
5.3 A few interesting relation among the solution are given below.
Xn+1 = 8Xn42 + X3 =0
4xn+1 — Xn42 +3Ynt1 =0
Xnt1 — 4Xni2 +3Yny2 =0
4xp11 = 31xp12 +3yp3 =0
31xp41 — Xn+3 + 24Yp41 =0
Xn+1 — Xn+3 + 6Yni2 =0
Xnt1 = 31xpi3 +24y,13 =0
Yn+2 = 4Yn+1 = 5Xn41 =0
Yn+3 = 31yp41 —40x,41 =0
4Yn+3 = Sxpt1 = 31ypi2 =0
3Yn+1 T 31xp4p —4xp43 =0
3Vns2 + 4xn42 —Xpy3 =0
3Yn+3 + Xniz2 — 4Xn43 =0
3Xn+3 = 4YVn+1 — 31xp42 =0
50
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Yn+3 = Yn+1 — 10x,4, =0
Yns1t 5%n42 —4Yns2 =0
Yn+3 — 4Yns2 — 5Xpqp =0
31Yn+3 = Yn+1 —40x543 =0
4Yn43 — S5Xpy3 — Yne2 =0
Yn+3 + Ynt1 = 8Yns2 =0

5.4 Each of following expressions represents a cubic integer

= (713043 — I3nea) + 3(7 1201 — 92)

22 (55%n42 = Oanys) + 355941 =~ Inys)

3 353143 = 27V5m43) + 3(35Xns1 — 272n43)

13 (@75%3043 = 27Y3n44) + 375X = 27¥na2)s

= (2165X333 — 27Y3345) + 3(2165Xp41 — 27¥p13)

3 (5592344 — 7123n45) + 3(55942 = 712n3)
—(35%3n+4 — 213Y3n43) + 3(35Xn42 — 213Yn41)

3 (275%3n44 = 213Y3044) + 3(275%n12 — 213n42)

15 (21652544 = 213Y3045) + 3(2165%n42 — 213Yns3)
= (35%3n45 — 1677Y3343) + 3(35%n43 — 1677¥p41)
15 (275%n45 = 1677Y3044) + 3(275%n13 = 1677Yn.2)
3 (2165%3015 = 1677Y345) + 3(21652n43 = 1677Yn43)
3 (TY3nss = 55V3n43) +3(7¥nrz = 55Yn41)

2 WV3n+s = 433Y3043) + 3(7ynas = 433Yn41)

3 (55Vsnss = 433Y3n14) + 3(55Yns3 — 433Yns2)

5.5 Each of the following expressions represents a Bi-quadratic Integer

[(71%4n44 = IxX4nss) + 4(T1xon12 — IX2n43)] + 6

72 L(559%an14 — Manio) + 4(559%2n12 — I¥onia)] + 6
%[(35x4n+4 = 27Yan+a) + 4(35X2n42 = 27Y2n42)] + 6
—[(275%4ns4 = 27Vanss) + 4(275%zm42 — 27Y2n43)] + 6

1
3
1
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1

53 [(2165%an44 = 27Yan16) + 4(2165%2n12 = 27Y2n4a)] + 6
1

3 [(559%4nss — 71xan16) + 4(559%2n43 — 71x2n4a)] + 6

1
R [(35x4n+5 — 213Y4n44) + 4(35x2n43 — 213Y2442)] + 6

1
3 [(275X4n45 — 213Y4n4s5) + 4(275X2043 — 213Y5043)] + 6

1
= [(2165X4n45 — 213Y4nts) + 4(2165%5n13 — 2135014)] + 6

1

53 [35Xant6 = 1677Yan14) + 4(35X2n44 — 1677Y2542)] + 6

1
= [(275%4n+6 = 1677y4n45) + 4(275%2n44 — 1677y2143)] + 6

(2165X4n+6 = 1677Yan+6) + 4(2165x2014 — 1677Y2044)] + 6
(7Yan+s = 55Yan+a) + 4(7¥an+3 — 55¥2n+2)] + 6

72 L(7Van+e = 433Yansa) + 4(7y2n+a — 433y2n42)] +6
~[(55Yan+6 = 433Yanes) + 4(55V2nra — 433Y2n43)] + 6

[uy
N

[
[

pWIRWiR

5.6 Each of the following expressions represents a Quintic Integer

~[(71%s 45 — ) + 5[(71xan43 — Wanea) + 3(71xna1 — Inaz)] —
5(71xp4+1 — 9xn42)]

1
24 [(559%5n+5 = 9Xs5p47) + 5[(559%3n43 = Ix3n45) + 3(559%041 — Ixn43)] —
5(559%n+1 — 9%n43)]

1
g [(35x5n+5 - 27y5n+5) + 5[(35x3n+3 - 27}’3n+3) + 3(35xn+1 - 27xn+3)] -
5(?’an+1 - 273’n+1)]

1
5 [(275%sn45 = 27Ysn46) + 5[(275%3n13 — 27Y3n44) + 3(275%n 41 —
273’n+2)] - 5(275xn+1 - 27}’n+2)]

1
— (21655045 — 27Ysn47) + 5[(2165X313 — 27Y3345) + 3(2165%41 —
27Yn+3)] - 5(2165xn+1 - 27yn+3)]
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1
5 [(559%5n46 = 71X5n17) + 5[(559X3n44 — 71X3n4s5) + 3(559%n42 —
71xp43)] = 5(559% 42 — 71xp43)]

1
5 [(35Xsn4+6 = 213Y5p45) + 5[(35X3n+4 — 213Y3n43) + 3(35%n42 —
213y341)] = 5(35%n42 — 213yn41)]

1
$1(275x5n+6 — 213ysn+6) + 5[(275X3n44 — 213Y3n44) + 3(275%p4, —
213yn4+2)] — 5(275x542 — 213yp42)]

1
Z [(2165%s 346 — 213Ysp47) + 5[(2165%344 — 213Y3p45) + 3(2165%y45 —
213y,45)] = 5(2165Xp4 — 213Yp43)]

1
93 [B5x5n+7 = 1677Y5p45) + 5[(35X3n+5 = 1677Y3143) + 3(35%p43 —
1677yn+1)] = 5(35%n+3 — 1677yp441)]

1
5 [(275%sp17 = 1677ys5n46) + 5[(275%3n45 — 1677y3n14) + 3(275%n43 —
1677Yn+2)] = 5(275xp43 — 1677 yn )]

1
L [(2165X5047 — 1677Ysp47) + 5[(2165%3n45 — 1677Y3n4s) + 3(2165%p45 —
1677Yn43)] — 5(2165%45 — 1677n43)]

1
3[(7Ysn+6 = 55¥sn+5) + 5[(7Y3n4a = 55¥3n+3) + 3(7¥n+2 = 55¥n+1)] —
5(7Yn+2 = 55¥n+1)]

1

24 [(7375n+7 —433y5n4s5) + 5[(7y3n+5 —433y3n43) + 3(7Tyn+3 — 4‘33yn+1)] -

5(73’n+3 - 4333’n+1)]

1
3 [(55Ysn+7 — 433Ys5n46) + 5[(55Y3n45 — 433Y3n+4) + 3(55Vn43 —
433yn+2)] = 5(55Yn+3 — 433yn42)]

5.7 Remarkable Observations:
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1. Employing linear combinations among the solutions of (5.1), one may
generate integer solutions for other choices of hyperbola which are presented

in Table: 5.2 below.

Table:5.2 Hyperbolas

S.No Hyperbolas (P,Q)
1. 30P% —2Q% = 1080 P = (71x,41 — 9%p42)
Q = (35xn+2 _ 275xn+1)
2. 1944000P? — 576Q? P = (559,41 — 9%,43)
= 4478976000 Q = (525x,,53 — 32475x,,,41)
3. 15P% — 9Q% = 540 P = (35x,41 — 27Yn41)
Q = (35Yn+1 — 45%y44)
4, 240P? — 144Q?% = 138240 P = (275x341 — 27Yn42)
Q = (35yn42 — 355xp,47)
5. 14415P? — 86490?% = 498701340 P = (2165x,41 — 27Yn43)
Q = (35yn43 — 2795x44)
6. 30P% —2Q% = 1080 P = (559x,,, — 71x,,3)
Q = (275xp43 — 2165%y4,)
7. 240P? — 144Q?% = 138240 P = (35x,4, — 213y,41)
Q = (275yp41 — 45x545)
8. 15P% — 9Q% = 540 P = (275xp45 — 213y,45)
Q = (275yYn45 — 355%445)
9. 240P? — 144Q% = 138240 P = (2165x,,5 — 213y,43)

Q = (275Yns3 = 2795%n,,)

10. 14415P? — 8649Q% = 498701340

P = (35%n13 = 1677yp41)
Q = (2165yy.1 — 45%y43)

11. 240P% — 144Q? = 138240 P = (275xp43 — 1677y,42)
Q = (2165Yy12 — 355%43)
12. 15P2 —9Q% = 540 P = (2165x,,,3 — 1677y,,3)
Q = (2165yp43 — 2795%43)
13. 15P2 —9Q% = 540 P = (7Yn42 — 55YVn41)
Q= (1Yn41 = Yn+2)
14, 960P% — 576Q% = 2211840 P =(7yYn43 —433Y541),
Q = (559Yn+1 = IYn+3)
15. 15P? — 9Q2 = 540 P = (55y,43 — 433yn42)

Q = (55%Yn42 — 71yn43)

2. Employing linear combinations among the solutions of (5.1), one may
generate integer solutions for other choices of parabolas which are presented

in Table: 5.3 below
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Table: 5.3 Parabolas

S.No Parabolas (RQ)
1. 135R — 3Q2 = 1620 R = (7T1x3p42 — Y%yp43 + 6)
Q= (35xn+2 — 275Xn+1)
2. 1944000R — 24Q2 R = (559%5542 — I%xyp44 + 48)
= 186624000 Q = (525x,43 — 32475x,44)
3. 5R - QZ = 60 R = (35X2n+2 - 27y2n+2 + 6)
Q = (35yn+1 — 4'5xn+1)
4, 20R — QZ =960 R = (275%3p42 — 27Yon43 + 24)
Q = (35Yp42 — 355%544)
5. 155R — Q2 = 57660 R = (2165x,,45 — 27Yon44 + 186)
Q = (35Y¥p43 — 2795%541)
6. 135R — 3Q2 = 1620 R = (559543 — 71x5544 + 6)
Q = (275xp43 — 2165%y47)
7. 20R — Q2 =960 R = (35x343 — 213y,,4, + 24)
Q = (275yp41 — 45%p42)
8. 5R — Q2 =60 R = (275%343 — 213y,,43 + 6)
Q = (275yn15 — 355%,45)
9. ZOR - QZ = 960 R = (2165x2n+3 - 213y2n+4 + 24)
Q = (275yn43 = 2795%p4,)
10. 155R — Qz = 57660 R = (35x3p44 — 1677y,,,, + 186)
Q = (2165Yp11 — 45%y43)
11. 20R — Q2 =960 R = (275%3p44 — 16775545 + 24)
Q = (2165yp4+, — 355xp43)
12. 5R — Q2 =60 R = (2165x3,44 — 16775544 + 6)
Q = (2165Y,33 — 2795%,,2)
13. 5R — Q% =60 R = (7y2n+3 = 55Y2n42 + 6)
Q=1yns1 — Yn412)
14. 40R — QZ = 3840 R = (7Y2n+4 — 433Y2n42 + 48)
Q = (559Yn+1 — 9Yn43)
15 SR - Q2 = 60 R = (55y2n+4_ - 433y27’l+3 + 6)
Q = (55942 — 71yn.3)

5.8 Conclusion

In this paper, we have presented infinitely many integer solutions for
the non-homogenous equation, represented by hyperbola is given 5x2 —
3y? = 18. As the non-homogeneous binary quadratic equations are rich in
variety, one may search for the other choices of equations and determine
their integer solutions along with suitable properties.
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6.1 Introduction

The non-homogenous binary quadratic equations of the form ax? — by? =
N,(a,b,N +#0) are rich in variety and have been analyzed by many
mathematicians for their respective integer solutions for particular values of a,b
and N. In this context, one may refer (Carmichael., 1959; Dickson., 1952; Mordell.,
1969; Mahalakshmi .,et.al .,2023; Shanthi.,et.al .,2023). This communication concerns
with the problem of obtaining non-zero distinct integer solutions to the binary
quadratic equation given by3x? — 2y? = 4 representing hyperbola. A few
interesting relations among its solutions are presented. Knowing an integral
solutions of the given hyperbola, integer solution for other choices of hyperbolas
and parabolas are presented.

6.2Method of analysis:

The non-homogenous binary quadratic equation under consideration is
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3x2; —2y* =4 (6.1)
It is to be noted that (6.1) represents a hyperbola
Taking x=X+2T,y=X+3T (6.2)
in (6.1), it reduced to the equation
X2 =6T%+4 (6.3)
The smallest positive integer solution(Ty, X,) of (6.3) is

Ty = 4,X, = 10
To obtain the other solutions of (6.3), consider the pellian equations
X?=6T%+1 (6.4)
whose smallest positive integer solutions is

To=2X,=5
The general solution (T,,, X,,) of (6.4) is given by
X, +V6T, = (5+2V6)"",n=0,1,2.. (6.5)
Since irrational roots occur in pairs, we have
X, — V6T, = (5-2V6)"",n=0,1,2.. (6.6)

From (6.5) and (6.6), solving forX,,, T,,, we have

X, = %[(5 +2V6)"1 4 (5 — 2v/6)"1] = %fn

~ 1 1
Ty =—= —

n 2\/6 2\/8gn
Applying Brahmagupta lemma between the solutions (T, X,) and (T,,, X,,), the
general solution (7,41, X,,4+1) of (6.3) is found to be

[(5+2V6)™*" — (5 - 2V6)n + 11:] =

T =XT,+T,X, =5
' 0 0 \/_ggn'l'zfn

(6.7)
= ~ 2
Xns1 = XoXn + ToT, = 2f + ngn (6.8)
Using (6.7) and (6.8) in (6.2) we have,

58
https://deepscienceresearch.com



3%ns1 = 27fn + 11V6 gy,

2Yns1 = 22fp + 96y,

Thus (6.9) and (6.10) represent the integer of the hyperbola (6.1).

A few numerical values are given in the following Table: 6.1

Table: 6.1 Numerical Examples

n Xn+1 Yn+1
-1 18 22
0 178 218
1 1762 2158
2 17442 21362

Recurrence relations for x and y are:
Xn+3 — 10xp40 + x4 = 0,n=-1,0,1.....

Yn+3 — 10yp42 + Yp41 = 0,n = —-1,0,1...

6.3 A few interesting relations among the solutions are given be
Xn+1 — 10Xp42 + X543 =0

SXn+1 = Xn42 T 4Yn41 =0

Xn+1 = DXntz + 4Vn42 =0

SXn+1 —49%n42 +4Yni3 =0

49xp41 — Xn43 +40yp41 =0

Xn+1 — Xn43 T 8Yn42 =0

Xn+1 — 49%n43 +40yp43 =0

V ¥V ¥V ¥V ¥V V V V

6Xn41 + 5:)/n+1 — Yn42 =10
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vV V ¥V VvV ¥V ¥V ¥V ¥V VY VY VYV VY

60xn+1 +49Vn+1 — Ynez =0
6Xn+1 + 49Vn42 — SYnez =0
4yn+1 +49%p42 = Sxpi3 =0
4Yn+2 + 5Xnyz — Xn43 =0
4Yn+3 + Xntz — SXpy3z =0
Yn+1 + 6Xpi2 = SYpi2 =0
Yn+1 +12%p42 = Yz =0
SYn+z2 + 6Xniz2 = Yn4z =0
49Yn+2 = SYn+1 — 6Xp43 =0
49Yn+3 = Yn+1 — 60xp43 =0
SYn+3 = Yn+2 — 6Xpi3 =0

Ynez — 10ypi2 + Y1 =0

6.4 Each of following expressions represents a cubic integer

1
5 (109x3543 — 11x3n14) + 3(109%541 — 11x45)

1

75 (1079x3543 — 11x3p45) + 3(1079%xp 41 — 11x543)

27%3n+43 = 22Y3n43 + 3(27Xn41 — 22Yn41)

1
5 (267X3p43 = 22Y3n44) + 3(267Xp41 — 22¥n45)

1

25 (2643%3043 = 22Y3n45) + 3(2643Xp41 — 22Yp43)
1

~(1079%344 — 109%3315) + 3(1079%42 — 109y5)

1
5 (27%3n4a = 218y3n43) + 3(27xn12 — 218yp44)

267x3p+4 — 218y3n44 + 3(267X42 — 218yy42)
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YV VYV YV V¥V VYV V

= (2643X3n44 — 218Y3p45) + 3(2643%n42 — 218Yp.43)
4—19 (27%3n4s — 2158Y3n43) + 3(27%ps3 — 2158Y,41)
= (2673045 — 2158Y3n44) + 3(267%p43 — 2158Yn42)
2643x3545 — 2158Y3n15 + 3(2643 1,43 — 2158y,,43)
%(18y3n+4 —178y3n43) + 3(18Yp12 — 178yn41)

% (18Y3n45 — 1762Y3143) + 3(18Ypn13 — 1762y,41)

1
2 (178ysn45 — 1762Y3044) + 3(178Yp13 — 1762Y345)

6.5 Each of following expressions represents a Bi-Quatratic integers
2 [109%444 = 114045 + 4(1092042 = 11%5145)] + 6
—[1079%4n44 = 1Xanss + 4(1079%5n5 = 1122044)] + 6

[27%4n+a — 22%4mpa + 4(27X5n42 — 22X5n42)] + 6

1
5 [267X4n4a — 2224n15 + 4(267X3n42 — 22X2043)] + 6

1
o [2643x4n14 — 222446 + 4(2643x5n12 — 22X5044)] + 6

[1079% 445 — 109% 4046 + 4(1079%2143 — 109x2544)] + 6

N |-

[27%4n+5 — 218Y4nia + 4(27x5n42 — 11xpn43)] + 6
[267%4n+5 — 218Yanss + 4(267x2p43 — 218Y5p42)] + 6
[2643x4n45 — 218y4n46 + 4(2643x2n43 — 218Y2,14)] + 6
[27%ans6 — 2158x4n44 + 4(27X2n 44 — 2158Y5p42)] + 6
[267X4n+6 — 2158Y4nt5 + 4(267X2544 — 2158Y2n43)] + 6

[2643x4n46 — 2158Yan46 + 4(2643x2014 — 2158Y3,44)] + 6
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[183’4n+5 - 178Y4n+4 + 4‘(183/2n+3 - 1783/2n+2)] +6

[18Y4n+6 — 1762Y4n4a + 4(18yon4a — 1762Y5,15)] + 6

[178Y4n+6 — 1762Yanss + 4(178Yzn14 — 1762Y2n13)] + 6

6.6 Each of following expressions represents a Quintic Integer

1
5 [(109%5545 — 11x5n46 + 5[(109%3743 — 11X3044) + 10(109%541 —
11xn+2)]]

1
% [(1079x$n+5 — 11x5n+7 + 5[(1079x3n+3 — 11X3n+5) + 10(1079xn+1 —
11xp43)]]

[(27x5n45 — 22Y5n45 + 5[(27X3n43 — 22Y3p43) + 10(27xp 41 — 22Yp41)]]

1
S [(267x5p45 = 22Y5n16 + 5[(267X3n43 = 22Y3n44) +10(267Xp41 —
22yn+2)]]

1
~[(2643X5n45 — 22Vsn47 + 5[(2643%X3743 — 22Ys45) + 10(2643%41 —
22yn43)1]

~[(1079%5046 — 109%5n47 + 5[(1079%3p1.4 — 109%3045) + 10(1079y, —
109x,43)]1]

[(267x5n+6 — 218Y5p46 + 5[(267X3n44 — 218Y3444) + 10(267xp45 —
218yn42)]]

1
L [(2643%sp46 — 218Ysps7 + 5[(2643X3044 — 218Y3045) + 10(26432y45 —
218Y,43)]]

1
29 [(27x5n+7 - 2158ySn+5 + 5[(27x3n+5 - 2158)’3n+5) + 10(27xn+3 -
2158yn41)]]

1
L [(267x5n47 — 2158Ysp46 + 5[(267X3005 — 21583044 + 10(26745 —
2158y,4,)]]
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[(2643%5,17 — 2158Ysns7 + 5[(2643x315 — 2158yanss) + 10(2643%,,5 —
2158yn43)]]

1

2 [(18Ysni6 = 178Y5n45 + 5[(18Y3n44 — 178Y3543) + 10(18yp4p —
178yn41)]]

1
—[(18ysp47 — 1762y5p45 + 5[(18Y3n45 — 1762y3543) + 10(18yp 43 —
40

1762yy41)]]

1
2 [(178Y5m47 = 1762Ysn46 + 5[(178Y3n45 — 17623n14) + 10(178Yy43 —
17621y,45)]]

1
s [(27%sn46 — 218Ysn4s + 5[(27X3n44 — 218Y3n43) +10(27xn42 —
218yn41)]]

6.7 Remarkable Observations:

1.Employing linear combinations among the solutions of (6.1), one may
generate integers solutions for other choices of hyperbolas which are presented

in table : 6.2 below.

Table: 6.2 Hyperbolas

S.No Hyperbolas (P-,0%)
1. 6P2 — Q2 = 96 Q = (109x,.1 — 11x,45)
P = (2745 — 267%y11)
2. 6P% — Q% = 9600 Q = (1079xp41 — 11x,43)
P =3(9xp43 —881xp,4)
3. 6P? —2Q% = 24 Q = (27xn+1 — 22yp+41)
P = (54yn41 — 66xp41)
4, 6P% — Q% =600 Q = (267xp41 — 22Yn42)
P = (54yn+p — 654x44)
5. 6P% — Q2 = 57624 Q = (2643%,11 — 22Yn43)
P = (54yn+z — 6474x541)
6. 6P? — Q2 =96 Q = (1079xy,45 — 109x,,,3)
P = (267x,.3 — 2643%,,.7)
7. 6P% — Q% = 600 Q = (27xp4+2 — 218Yn41)
P = (534yp41 — 66Xp47)
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8. 6P? — Q% =24 Q = (267xp42 — 218y,,42)
P = (534yp4p — 654x,4)
9. 6P? — Q? = 600 Q = (2643x,,5 — 218y,,43)
P = (534yn43 — 6474%p.5)
10. 6P? — Q% = 57624 Q = (27xp43 — 2158y,,41)
P = (5286yy,+1 — 66X43)
11. 6P? — Q% = 600 Q = (267xp43 — 2158yp42)
P = (5286yn4+p — 654%p.+3)
12. 6P? — Q% =24 Q = (2643x,,5 — 2158y,,43)
P = (5286V,,3 — 6474x,.3)
13. 6P% — Q% = 384 Q = (18y,42 — 178y41)
P = (436yn41 — 44Yn+7)
14. 6P% — Q? = 6400 Q = (18y,43 — 1762y,41)
P = (4316yy41 — 44Yn+3)
15. 6P? — Q? = 384 Q = (178yp43 — 1762yp42)

P = (4316yp1p — 436Yn+3)

2.Employing linear combination among the solutions of (6.1), one may
generate integer solutions for other choices of parabolas which are presented
in Table: 6.3 below:

Table: 6.3 Parabolas

S.No Parabolas (R,Q0+)
1. 24R + 2Q% = 192 R = (109%pp47 — 11xpn43 + 4)
Q= 27xp4p —267Xy44)
2, 120R + Q2 = 9600 R = (1079145 — 11%5n14 + 40)
Q = (3(9xp+3 — 881xy44)
3. 6R + Q2 = 24 R = (27%3n+2 — 22Y2n42 + 2)
Q = (54Yn+1 — 66Xp41)
4. 30R + Q2 = 600 R = (267Xyp17 — 22Y9ns3 + 10)
Q = (54Yn+1 — 654xp41)
5. 294R + Q2 = 57624 R = (2643%3p47 — 22Yonsa + 98)
Q = (54Yni3 — 6474%x,44)
6. 12R + QZ =96 R = (1079x2n+3 - 109x2n+4 + 4)
Q = (267xp43 — 2643xp,5)]
7. 30R + Q2 = 600 R = (27x3n43 — 218Y554, + 10)
Q = (534yn41 — 66Xp,7)
8. 6R + Q2 = 24 R = (267%yn43 — 218y5n43 + 2)

Q = (534yy4p — 654x,.7)
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9. 30R + Q% = 600 R = (2643x,,43 — 218y,,,4 + 10)
Q = (534yn13 — 6474%x47)
10. 294R + Q% = 57624 R = (27x3p4+4 — 2158y,p42 + 98)
Q = (5286yy11 — 66xy43)
11. 30R + Q% = 600 R = (267X3p44 — 2158y,,,5 + 10)
Q = (5286yp12 — 654%y43)
12. 6R + Q% = 24 R = (2643x5p44 — 2158Y,544 + 2)
Q = (5286yy13 — 6474xy43)

13. 24R + Q% = 384 R = (18Y3n43 — 178Y5n42 + 8)
Q = (436Yp41 — 44YVn+2)

14. | 240R + Q% = 38400 (18y9n1a — 1762Y5142 + 80)

4316Yn1q — 44Yny3)

R
Q=

15. 24R + Q% = 384 R = (178Yyneq — 1762y5,,5 + 8)
Q=(

4316y,45 — 436Y,43)

6.8 Conclusion

In this Paper, we have presented infinitely many integer solutions for the
Non-homogeneous equations represented by hyperbola given by 5x2 —
3y? = 18. Non-homogeneous binary quadratic equations are rich in
variety, one may search for the choices of equations and determine their
integer solutions along with suitable properties.
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7.1 Introduction

The Quadratic Diophantine equation with three unknowns offers an unlimited
field for research because of their variety (Carmichael., 1959; Dickson., 2005;
Mordell., 1970). In particular, one may refer (Gopalan et.al .,2022;Vidhyalakshmi
etal,. 2021; Shanthi,Parkavi.,2023; Shanthi,Gopalan.,2024) for quadratic
equations with three unknowns. This communication concerns with yet another
interesting equation x? + y? = 125z% representing homogeneous Diophantine
equation with three unknowns for determining its infinitely many non-zero
integral solutions. A few interesting properties among its solutions are given.
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7.2Method of analysis:
The ternary quadratic Diophantine equation to solved for its non-zero
distinct integral ~ solution is

x? + y* = 1257* 1)

Different patterns of solution of (7.1) are presented below.

PATTERN -1
Equation (7.1) can be written as
x? +y? = 10022 + 2522
(x +10z)(x —10z) = (5z+ y)(5z — y) (7.2)
The process of solving (7.2) is illustrated as below:
Choice 1: Equation (7.2) can be written in ratio form as

x+10z _ 5z-y _ « ,3 +0
5z+y T x-10z B )

This equation is equal to the following two equations:

xf —ya+ (10 —5a)z=0
—xa—yB+ (58 +10a)z=0

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x = 10a? — 1082 + 10ap
y = =5a? + 58% + 20ap
z=a’+ p?
Choice 2: Equation (7.2) can be written in ratio form as

x+10z _ 5z+y _ «
5z-y T x-10z B

B %0

This equation is equal to the following two equations:

xf +ya+ (10 —5a)z=0
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—xa+yf+ (58 +10a)z=0

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x = 10a? — 1082 + 10ap
y = 5a? — 582 — 20ap
z=a%+ p?

Choice 3: Equation (7.2) can be written in ratio form as
x—10z _ 5z-y a

=ZY -2 pzo

5z+y x+10z B

This equation is equal to the following two equations:

xf —ya— (108 +5a)z=0
—xa —yf + (56 —10a)z=10

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x = 10a? — 108% — 10ap
y = 5a? — 582 + 20ap
7 = —CZZ _ 32

Choice 4: Equation (7.2) can be written in ratio form as

x—10z 5z+ a
=2 =2 B0
5z-y x+10z B

This equation is equal to the following two equations:

xf +ya— (108 +5a)z=0
—xa+yf+ (56 —10a)z=10

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x = —10a? + 1042 + 10af
y = 5a? — 582 + 20af
z = a’+ p?
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PATTERN-2
Equation (7.1) can be written as
x% 4+ y? =121z% + 4z°
x+112)(x —112) = 2z+ y)(2z — y) (7.3)
The process of solving (7.3) is illustrated as below:

Choice 5: Equation (7.3) can be written in ratio form as

x+11z _ 2z-y _«
2z+y  x-11z B

B %0

This equation is equal to the following two equations:
xf —ya+ (118 - 2a)z=0
—xa—yB+ 2+ 11la)z=0

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x = 11a? — 1182 + 4af
y = —2a? + 2p% + 22ap
z=a?+ p?
Choice 6: Equation (7.3) can be written in ratio form as

x+11z 2z+ a
Xz _ezvy _ 2 ﬁ-'/:o

2z-y x-11z B '
This equation is equal to the following two equations:

xf+ya+ (118 —2a)z =0
—xa+yf+ (2B +11la)z=0

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x =11a? — 118% + 4ap
y = 2a% —2B% — 22ap
z=a?+ p?

Choice 7: Equation (7.3) can be written in ratio form as
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x—-11z _ 2z-y _a 1 ﬁiO

2z+y  x+11z B

This equation is equal to the following two equations:

xf—ya— (11 + 2a)z=0
—xa—yf+ (2 —11a)z=0

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x =11a? — 1182 — 4ap
y = 2a% = 2B% + 22ap
7 = _az _’32

Choice 8: Equation (7.3) can be written in ratio form as

x—11z 2Z+ a
_—_y—_ ﬁiO

2z-y  x+11z B '
This equation is equal to the following two equations:

xf+ya— (118 + 2a)z=0
—xa+yf+ (2B —-11la)z=0

By the method of cross multiplication, we get the integral
solutions of (7.1) to be

x =—11a? + 1182 + 4af
y = 2a? —2B% + 22af

z=a%+p?
PATTERN-3
Assume
z =z(a,b) = a® + b? (7.4)
where a,b # 0,
Write
125 =112 + 22 = (11 + 2i)(11 — 20) (7.5)
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Substituting (7.4) and (7.5) in (7.1) and employing factorization.
Consider

x + iy = (11 + 2i)(a + ib)?

Equating the real and imaginary parts in the above equation, we
acquire the integer solution to (7.1) as

x = 11a? — 11b% — 4ab
y = 2a® — 2b% + 22ab
z = a?+ b?

Also, we can write
125 =22 + 112 = (2 + 11i)(2 — 110) (7.6)
Substituting  (7.4) and (7.6) in (7.1) and employing the
development of factorization. Write
x +iy = (2 + 11i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 2a? — 2b%? — 22ab
y = 11a? — 11b% + 4ab

z=a?+ b?
PATTERN-4
Assume
z = z(a,b) = a® + b?
wherea,b # 0,
Write
125 = 10% + 52 = (10 + 5{)(10 — 51) )

Substituting (7.4) and (7.7) in (7.1) and employing the
development of factorization. Write
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x + iy = (10 + 5i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 10a? — 10b? — 10ab
y = 5a? — 5b% + 20ab
z=a’+b?

We can also write
125 = 52 + 102 = (5 + 10i)(5 — 10i) (7.8)
Substituting  (7.4) and (7.8) in (7.1) and employing the
development of factorization. Write
x + iy = (5+ 10i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 5a% — 5b% — 20ab
y = 10a? — 10b% + 10ab
z=a?+ b?

PATTERN-5

Equation (7.1) can be written as

x? = 12522 —y% = (V125z + y)(V125z — y) (7.9)
Assume
x2 = 1250,2 —_ b2 (710)

wherea,b # 0,

Using (7.10) in (7.9) and applying method, we have
ViZ5z+y = (ViZba + b)’

= 125a? + b?% 4+ 2V125ab
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Equating the rational and irrational factors, we get the integer solution to
(7.1) as

x = 125a® — b?
y = 125a? + b?
z = 2ab

PATTERN-6
Consider (7.1) as

2 2 _ 2
x“+y* =125z %1 (7.12)

(x +iy)(x —iy) = (10 + 5i)(10 — 5i)(a + ib)?*(a — ib)? * 1
Now, x2 + y? = z2

o GAGely) _ g (7.12)

ZZ
Let us take

X =2mn

y =m? —n?

z =m? + n?
Equation (7.12) can be written as

(2mn+i(m2 _nz)) (Zmn—i(mz _nZ))

m2+n2

=1 (7.13)

Substituting (7.13) in (7.11) and employing the technique of
factorization,

write

(2mn+i(m2—n2))

x+iy = (10 +50)(a+ ib)* ——— (7.14)
We have that
(a +ib)? = a®? — b? + i2ab (7.15)

Consider

(a +ib)? = f(a,b) +ig(a,b)
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We have

f(a,b) = a? — b?
g(a,b) =2ab

Also, but

F(m,n) =2mn
G(m,n) = m? —n?

Substituting (7.15) in (7.14), we have

1
x+iy= mz—_l_nz[(lo + 5i)(f(a,b) +ig(a,b))(F(m,n) + i(G(m,n))]

x+iy= mz;_l_nz[lO(fF —gG) +i10(gF + fG) + 5i(fF — gG)
—5(gF + fG)]

For integer solutions replace a by(m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts , we get the integer solution to
(7.1) as

x =m? +n*[10(f(P,Q)F — g(P,Q)G) — 5(g(P,Q)F + f(P,Q)G)]
y =m?+n?[10(g(P,Q)F — f(P,Q)G) + 5(f(P,Q)F — g(P,Q)G)]
z = (m? +n?®?2(P? + Q?

PATTERN-8
Equation (7.11) can also be written as

(x+iy)(x —iy) = (5+ 10i)(5 — 10i)(a + ib)*(a — ib)? * 1 (7.16)

Consider

(2mn+i(m2—n2))

m2+n?

x + iy = (5 + 10i)(a + ib)? (7.17)

By using (7.15)
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1
=>x+iy= ) [(5 + 10i)(f(a, b) +ig(a, b)) (F(m, n)
+i(G(m, n)))]
mz—-l—nz[s(fF —gG) +i5(gF + fG) + 10i(fF — gG)
—10(gF + fG)]

>x+iy=

For integer solutions replace a by (m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(1) as

x =m? +n?[5(f(P,Q)F — g(P,Q)G) — 10(g(P,Q)F + f(P,Q)G)]
y=m?*+n?[5(g(P,Q)F — f(P,Q)G) + 10(f(P,Q)F — g(P,Q)G)]
z = (m? +n??%(P? + Q%

PATTERN-9

Equation (7.11) can also be written as

(x+iy)(x —iy) = 2+ 11)(2 — 11i)(a + ib)?*(a — ib)? + 1 (7.18)
consider

(2mn+i(m2—n2))

m2+n?

x+iy =2+ 11i)(a + ib)? (7.19)

>x+iy= mz;-l-nz [(2+ 11)(f(a,b) +ig(a,b))(F(m,n)
+ i(G(m,n))]

>x+iy= - [2(fF — gG) + i2(gF + fG) + 11i(fF — gG)
— 11(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q

Then, Equating the real and imaginary parts , we get
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x =m? +n?[2(f(P,Q)F — g(P,Q)G) — 11(g(P,Q)F + f (P, Q)G)]
y=m?+n?[2(g(P,Q)F — f(P,Q)G) + 11(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)%(P? + Q?)

PATTERN-10
Equation (7.11) can also be written as

(x+iy)(x —iy) = (11 + 2))(11 — 2i)(a + ib)*(a — ib)? + 1 (7.20)

consider

(2mn+i(m2—n2))

m2+n?2

x +iy = (11 + 2i)(a + ib)? (7.21)

>x+iy= ) [(11 + 2i)(f(a,b) +ig(a, b))(F(m,n)

+i(G(m,n))]

. 1 . .
>x+iy= mz—-l-nz[ll(fF —gG) +i11(gF + fG) + 2i(fF — gG)
— 2(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q
Then, Equating the real and imaginary parts , we get
x =m? +n?[11(f(P,Q)F — g(P,Q)G) — 2(g(P,Q)F + f(P,Q)G)]

y=m?+n*[11(g(P,Q)F — f(P,Q)G) + 2(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

7.3 Conclusion:

The ternary quadratic Diophantine equations are prosperous in
diversity. One possibly will search for further choices of Diophantine
equations to discover their consequent integer solutions.
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Chapter 8

Designs of integer solutions to
homogeneous ternary quadratic
equation x? + y? = 185z>

J. Shanthi !, R. Dhana durga ?
! Department of Mathematics, Bharathidasan University Trichy, Tamil Nadu, India.
2 Department of Mathematics, Bharathidasan University Trichy, Tamil Nadu, India.

Abstract:The Quadratic Diophantine equation with three unknowns represented by x? +
y% = 1852%is analyzed for finding its non-zero distinct integral solutions. Different
patterns of solutions of the equation under consideration are obtained through factorization
technique.

Keywords: Ternary quadratic equation, homogenous quadratic equation,
integral solutions, factorization method, ratio form.

8.1 Introduction

The Quadratic Diophantine equation with three unknowns offers an unlimited
field for research because of their variety (Carmichael., 1959; Dickson., 2005;
Mordell., 1970). In particular, one may refer (Gopalan et.al .,2015;Vidhyalakshmi
et.al,. 2014; ; Shanthi et.al .,2014) for quadratic equations with three unknowns.
This communication concerns with yet another interesting equation x? + y? =
18522 representing homogeneous Diophantine equation with three unknowns for
determining its infinitely many non-zero integral solutions. A few interesting
properties among its solutions are given.
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8.2Method of analysis

The ternary quadratic Diophantine equation to solved for its non-zero
distinct integral ~ solution is

2 2 _ 2

Different patterns of solution of (8.1) are presented below.

PATTERN -1
Equation (8.1) can be written as
x% +y? =169z2% + 1622
(x+132)(x —132z) = (4z+ y)(4z—y) (8.2
The process of solving (8.2) is illustrated as below:

Choice 1: Equation (8.2) can be written in ratio form as

x+13z 4z— a
=—=2=2 B#0

4z+y T x-13z B

This equation is equal to the following two equations:
fx —ay+ (138 —4a)z=10
—ax— By + (@B +13a)z=0

By the method of cross multiplication, we get the integral solutions of
(8.1) to be

x = 13a? — 1382 + 8af
y = —4a? + 4B% + 26ap
z=a?+ p?

Choice 2: Equation (8.2) can be written in ratio form as

x+13z 4z+ a
=—=2=2 B#0

4z—y x-13z B

This equation is equal to the following two equations:

Bx +ay+ (138 —4a)z =0

80
https://deepscienceresearch.com



—ax+ By +(Ap+13a)z=0

By the method of cross multiplication, we get the integral solutions of
(8.1) to be

x = 13a? + 1382 — 8apf
y = —4a® + 4B% + 26ap
7 = —6‘(2 _ ,82

Choice 3: Equation (8.2) can be written in ratio as

x—13z _ 4z-y =g ,,3 =0

4z+y  x+13z B

This equation is equal to the following two equations:
Bx —ay — (138 +4a)z =0
—ax— By —(13a—4B)z=0

By the method of cross multiplication, we get the integral
solutions of (8.1) to be

x = —13a% + 13p% + 8ap
y = —4a* + 4p* — 26ap
z=a?+ p?

Choice 4: Equation (8.2) can be written in ratio form as

x—13z 4z+ a
ey 2 B #0
4z—y x+13z B

This equation is equal to the following two equations:
Bx+ay — (138 +4a)z =0
—ax+ Ly —(13a—4p)z=0

By the method of cross multiplication, we get the integral
solutions of (8.1) to be

x = 13a? — 1382 — 8ap
y = —4a? + 4p% — 26ap
7 = —OIZ _ ﬁZ
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PATTERN-2
Equation (8.1) can be written as
x% + y? = 64z% + 12122
(x+82)(x—82) =(11z+ y)(11z —y) (8.3)
The process of solving (8.3) is illustrated as below:

Choice 5: Equation (8.3) can be written in ratio form as

x+8z  11z-y «a B +0
11z+y T x-8z B

This equation is equal to the following two equations:
fx —ay+ (B —11la)z=10
—ax — By + (118 +8a)z=10

By the method of cross multiplication, we get the integral
solutions of (8.1) to be

x = 8a? — 882 + 22ap
y = —11a? + 1152 + 16ap
z=a?+fp?

Choice 6: Equation (8.3) can be written in ratio form as

x+8z  11z+y «
11z—y x—8z B’

p+0

This equation is equal to the following two equations:
Bx +ay+ (B —1la)z=0
—ax+ Ly + (118 +8a)z=0

By the method of cross multiplication, we get the integral
solutions of (8.1) to be
x = —8a? + 862 — 22ap
y = —11a? + 118% + 16ap
7 = —(IZ _ BZ

Choice 7: Equation (8.3) can be written in ratio form as
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x-8z _ 1lz-y «
11z+y  x+8z B '

p+0

This equation is equal to the following two equations:
fx—ay— (B +11la)z=0
—ax — By + (118 —-8a)z=0

By the method of cross multiplication, we get the integral
solutions of (8.1) to be

x = —8a? + 862 + 22ap
y = —11a? + 11p% — 16ap
z=a?+ p?

Choice 8: Equation (8.3) can be written in ratio form as

x—8z 11z+ a
=—2=2 B #0

11z-y  x+8z B '

This equation is equal to the following two equations:
fx—ay+ (B +11la)z=0
—ax— Ly + (118 —-8a)z=10

By the method of cross multiplication, we get the integral
solutions of (8.1) to be

x = 8a? — 882 — 22ap
y = —11a? + 11p% — 16ap

z=—a?—-p?
PATTERN-3
Assume
z=2z(a,b) = a® + b? (8.4)
where a,b # 0,
Write
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185 = 132 + 4% = (13 + 4i)(13 — 40) (8.5)

Substituting  (8.4) and (8.5) in (8.1) and employing factorization.
Consider

x + iy = (13 + 4i)(a + ib)?

Equating the real and imaginary parts in the above equation, we
acquire the integer solution to (8.1) as

x = 13a* — 13b* — 8ab
y = 4a* — 4b% + 26ab
z=a?+ b?
Also, we can write
185 = 4% + 132 = (4 + 13i)(4 — 13i) (8.6)

Substituting  (8.4) and (8.6) in (8.1) and employing the
development of factorization. Write

x +iy = (4 + 13i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 4a® — 4b? — 26ab
y = 13a%? — 13b% + 8ab

z=a?+ b?
PATTERN-4
Assume
z =z(a,b) = a® + b?
wherea,b # 0,
Write
185 = 117 + 8% = (11 + 8i)(11 — 8i) (8.7)

Substituting (8.4) and (8.7) in (8.1) and employing the
development of factorization. Write
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x + iy = (11 + 8i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 11a®? — 11b? — 16ab
y = 8a? — 8b% + 22ab
z=a’+b?

We can also write
185 = 8% + 112 = (8 + 11i)(8 — 11i) (8.9)
Substituting  (8.4) and (8.8) in (8.1) and employing the
development of factorization. Write
x + iy = (8 + 11i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 8a? — 8b% — 22ab
y = 11a? — 11b% + 16ab
z=a?+ b?

PATTERN-5

Equation (8.1) can be written as

x? = 185z% — y? = (V185z + y)(V185z — y) (8.9)
Assume
x? = 185a? — b? (8.10)

wherea,b # 0,

Using (8.10) in (8.9) and applying method, we have
Vi85z+y = (Vi85a + b)’

= 185a? + b? + 2V185ab

85
https://deepscienceresearch.com



Equating the rational and irrational factors, we get the integer solution to
(8.1) as

x = 185a? — b?
y = 185a? + b?
z = 2ab

PATTERN-6
Consider (8.1) as
2 2 2
x“+y* =185z %1 (8.11)

(x+iy)(x —iy) = (13 + 4i)(13 — 4i)(a + ib)?*(a — ib)? * 1
Now, x? + y? = z2

o GHna-ly) g (8.12)

ZZ
Let us take

X =2mn

y =m? —n?

z =m? + n?
Equation (8.12) can be written as

(2mn+i(m2 _nz)) (Zmn—i(mz _nZ))

m2+n2

=1 (8.13)

Substituting (8.13) in (8.11) and employing the technique of
factorization,
write

(2mn+i(m2—n2))
m2+4n?

x + iy = (13 + 4i)(a + ib)? (8.14)
We have that

(a +ib)? = a? — b? + i2ab (8.15)
Consider

(a +ib)? = f(a,b) +ig(a,b)
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We have

f(a,b) = a? — b?
g(a,b) =2ab

Also, but

F(m,n) =2mn
G(m,n) = m? —n?

Substituting (8.15) in (8.14), we have

1
x+iy= mz—+nz[(13 + 4i)(f(a,b) +ig(a,b))(F(m,n) + i(G(m,n))]
x+iy= mz—_l_nz[13(fF —gG) +i13(gF + fG) + 4i(fF — gG)

—4(gF — fG)]

For integer solutions replace a by(m? + n?)Pand b by (m? + n?)Q

Then, equating the real and imaginary parts , we get the integer solution to
(1) as

x =m? +n?[13(f(P,Q)F — g(P,Q)G) — 4(g(P,Q)F + f(P,Q)G)]
y =m?+n?[13(g(P,Q)F — f(P,Q)G) + 4(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

PATTERN-8
Equation (8.11) can also be written as

(x+iy)(x —iy) = (4 + 13i)(4 — 13i)(a + ib)?*(a — ib)? * 1 (8.16)

Consider

(2mn+i(m2—n2))

m2+n?

x +iy = (4 + 13i)(a + ib)? (8.17)

By using (15)
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1
=>x+iy= ) [(4 + 13i)(f(a, b) +ig(a, b)) (F(m, n)
+ i(G(m, n)))]

mz—-l-nz[4(fF — gG) + i4(gF + fG) + 131(fF - gG)
— 13(gF + fG)]

>x+iy=

For integer solutions replace a by (m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(1) as

x =m? +n?[4(f(P,Q)F — g(P,Q)G) — 13(g(P,Q)F + f(P,Q)G)]
y=m?+n?[4(g(P,Q)F — f(P,Q)G) + 13(f(P,Q)F — g(P,Q)G)]
z = (m? +n??%(P? + Q%

PATTERN-9
Equation (8.11) can also be written as

(x+iy)(x —iy) = (11 + 8i)(11 — 8i)(a + ib)?*(a — ib)? + 1 (8.18)

consider

(2mn+i(m2—n2))

m2+n?

x +iy = (11 + 8i)(a + ib)? (8.19)

=>x+iy= mz;-l-nz [(11 + 8i)(f(a,b) +ig(a,b))(F(m,n)
+i(G(m,n))]

1
>x+iy= mz—-l-nz[ll(fF —gG) +il1(gf + fg) + 8i(fF — gG)
—8(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +

n?)Q
Then, Equating the real and imaginary parts , we get

x =m? +n*[11(f (P, Q)F — g(P,Q)G) — 8(g(P,Q)F + f(P,Q)G)]

y =m?+n*[11(g(P,Q)F — f(P,Q)G) + 8(f(P,Q)F — g(P,Q)G)]
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z = (m?+n??%(P? + Q?)
PATTERN-10
Equation (8.11) can also be written as

(x+iy)(x —iy) = (8+ 11)(8 — 11i)(a + ib)*(a — ib)? + 1 (8.20)

consider

(2mn+i(m2—n2))

m2+n?

x+iy = (8+ 11i)(a + ib)? (8.21)

1
S>x+iy= S [((8+ 11i)(f(a,b) + ig(a,b))(F(m,n)
+i(G(m,n))]

>x+iy= mz—-l-nZ[S(fF —gG) +i8(gF + fG) + 11i(fF — gG)

— 11i(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q
Then, Equating the real and imaginary parts , we get
x =m? +n?[8(f(P,Q)F — g(P,Q)G) — 11(g(P, Q)F + f(P,Q)G)]

y =m?+n?[8(g(P,Q)F — f(P,Q)G) + 11(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

8.3 Conclusion:

The ternary quadratic Diophantine equations are prosperous in
diversity. One possibly will search for further choices of Diophantine
equations to discover their consequent integer solutions.
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9.1 Introduction

The Quadratic Diophantine equation with three unknowns offers an unlimited
field for research because of their variety (Carmichael., 1959; Dickson., 2005;
Mordell., 1970). In particular, one may refer (Gopalan et.al
.,2015,2016;Vidhyalakshmi et.al,. 2014; ; Shanthi et.al .,2014) for quadratic
equations with three unknowns. This communication concerns with yet another
interesting equation x? + y? = 85z% representing homogeneous Diophantine
equation with three unknowns for determining its infinitely many non-zero
integral solutions. A few interesting properties among its solutions are given.
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9.2 Method of analysis
The ternary quadratic Diophantine equation to solved for its non-zero
distinct integral solution is

XZ +y2 = 85Z2 (91)

Different patterns of solution of (9.1) are presented below.
PATTERN -1
Equation (9.1) can be written as
x% 4+ y%? =81z% + 422
(x+92)(x—92) = 2z+y)(2z—y) (9.2)
The process of solving (9.2) is illustrated as below:

Choice 1: Equation (9.2) can be written in ratio form as

x+9z _ 2z-y a
Zz+y_x—9z_ﬁ ,’8¢O
This equation is equal to the following two equations:

xf—ya+ (9B —2a)z=0
—xa—yB+ (2 +9%)z=0

By the method of cross multiplication, we get the integral

solutions of (9.1) to be

x =9a? — 9% + 4af
y = —2a*+ 2% + 18ap
z=a?+ p?
Choice 2: Equation (9.2) can be written in ratio form as

x+9z _ 2z+y _«
2z-y x-9z B,

B %0

This equation is equal to the following two equations:

xf+ya+ (9 —2a)z=0
—xa+yB+ (98 +2a)z=0

https://deepscienceresearch.com
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By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x = —9a* +9B% — 4af
y = —2a®* + 2p% + 18ap
7 = _az _ﬁz

Choice 3: Equation (9.2) can be written in ratio as

x—9z_Zz—y=g 137&0

2z+y T x+9z B

This equation is equal to the following two equations:
xp—ya— (96 +2a)z=0
—xa—yB+ (2 —-9%)z=0

By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x = —9a? +96% + 4af
y = —2a? + 2% — 18ap
z=a?+ p?

Choice 4: Equation (9.2) can be written in ratio form as

x-9z _ 2z+y «

22—y x+9z
This equation is equal to the following two equations:
Bx+ay— (9B +2a)z=0
—ax+ Ly —(Oa—-2L)z=0

By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x =9a? — 9% — 4af
y = —2a?+ 2% — 18ap
7 = _a2 _ﬁZ

PATTERN-2
Equation (9.1) can be written as
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x? +y% =49z2 + 3622
(x +72)(x — 72) = (62 + y)(6z — y) (9.3)

The process of solving (9.3) is illustrated as below:

Choice 5: Equation (9.3) can be written in ratio form as

x+7z_6z—y=g Bth

6z+y T x-7z B

This equation is equal to the following two equations:
Bx —ay+ (7 —6a)z =10
—ax—By+ (6 +7a)z=0

By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x =7a?—78%+ 12ap
y = —6a® + 6% + 14ap
z=a?+ p?
Choice 6: Equation (9.3) can be written in ratio form as

x+7z 6z+ a
=222 B#0

6z—y x-7z B '
This equation is equal to the following two equations:
Bx+ay+ (78 —6a)z=0
—ax+ Ly + (68 +7a)z=0

By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x =—7a*+7B% — 12ap
y = —6a? + 68% + 14ap
7 = _a2 _ ﬁZ

Choice 7: Equation (9.3) can be written in ratio form as

x—7z_6z—y=a 1 ,Bth

6z+y T x+7z B
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This equation is equal to the following two equations:
Bx —ay— (78 +6a)z =10
—ax — By + (68 —7a)z=0

By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x =—7a?+7B% + 12ap
y = —6a’ + 68% — 14ap
z=a?+f?
The process of solving (9.6) is illustrated as below:

Choice 8: Equation (9.3) can be written in ratio form as

x—7z_6z+y_g IB¢O

6z-y x+7z B’

This equation is equal to the following two equations:
fx—ay— (7 +6a)z=0
—ax —By+ (68 —7a)z=0

By the method of cross multiplication, we get the integral
solutions of (9.1) to be

x =7a?—7B%+ 12ap
y = —6a? + 6% — 14ap

z=—a?— p?
PATTERN-3
Assume
z=z(a,b) = a® + b? (9.4)
where a,b # 0,
Write
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85 =92 + 22 = (9 + 2i)(9 — 2i) (9.5)
Substituting  (9.4) and (9.5) in (9.1) and employing factorization.
Consider
x + iy = (9 + 2i)(a + ib)?

Equating the real and imaginary parts in the above equation, we
acquire the integer solution to (9.1) as

x = 9a® — 9b? — 4ab
y = 2a® — 2b% + 18ab
z=a%+b?
Also, we can write
85 =122+92 = (24 9)(2—9) (9.6)

Substituting  (9.4) and (9.6) in (9.1) and employing the
development of factorization. Write

x +iy = (2+9i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 2a%® — 2b%? — 18ab
y =9a? — 9b% + 4ab

z=a?+b?
PATTERN-4
Assume
z = z(a,b) = a® + b?
wherea,b # 0,
Write
85 =72+ 6% = (7 + 6i)(7 — 6i) (9.7)

Substituting (9.4) and (9.7) in (9.1) and employing the
development of factorization. Write
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x + iy = (7 + 6i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x =7a% —7b% — 12ab
y = 6a% — 6b% + 14ab
z=a%+b?

We can also write
85 = 6% + 72 = (6 + 7i)(6 — 7i) (9.8)
Substituting  (9.4) and (9.8) in (9.1) and employing the
development of factorization. Write
x +iy = (6+ 7i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 6a* — 6b% — 14ab
y = 7a*> —7b%* + 12ab
z=a%+b?

PATTERN-5

Equation (9.1) can be written as

x? = 8572 — y? = (V85z + y)(V85z — y) (9.9)
Assume
xz = 85a2 — b2 (910)

wherea,b # 0,

Using (9.10) in (9.9) and applying method, we have
\/@Z+y= (\/@a+b)2

= 85a? + b2 + 2V/85ab
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Equating the rational and irrational factors, we get the integer solution to
(9.1) as

x = 185a? — b?
y = 185a? + b?
z = 2ab

PATTERN-6
Consider (9.1) as
2 2 2
x“+y*=85z°x1 (9.12)

(x+iy)(x —iy) = (9 +20)(9 — 2i)(a + ib)?*(a — ib)? * 1
Now, x2 + y? = z2

o GHna-ly) g (9.12)

ZZ
Let us take

X =2mn

y =m? —n?

z =m? + n?
Equation (9.12) can be written as

(2mn+i(m2 _nz)) (Zmn—i(mz _nZ))

m2+n2

=1 (9.13)

Substituting (9.13) in (9.11) and employing the technique of
factorization,

write

(2mn+i(m2 —nz))

x+iy =9+ 2i)(a+ ib)? — (9.14)
We have that
(a +ib)? = a®? — b? + i2ab (9.15)
Consider
(a +ib)? = f(a,b) +ig(a,b)
98
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We have

f(a,b) = a? — b?
g(a,b) =2ab

Also, but

F(m,n) = 2mn
G(m,n) = m? —n?

Substituting (9.15) in (9.14), we have

1
x+iy= S [(9+ 2i)(f(a,b) +ig(a,b))(F(m,n) + i(G(m,n))]
x+iy= mz—-l-nz[g(fF —gG) +i9(gF + fG) + 2i(fF — gG)

—2(gF - fG)]

For integer solutions replace a by(m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts , we get the integer solution to
(9.1) as

x =m?+n?[9(f(P,QF — g(P,Q)G) — 2(g(P,Q)F + f(P,Q)G)]
y=m?+n*[9(g(P,Q)F — f(P,Q)G) + 2(f(P,Q)F — g(P,Q)G)]
z = (m? + n?)%(P? + Q?)

PATTERN-8

Equation (9.11) can also be written as

(x+iy)(x—iy) =(2+9)(2-9)(a+ib)*(a—ib)**1 (9.16)
Consider

(2mn+i(m2 —nz))

m2+n?

x+ iy =(2+9i)(a+ib)? (9.17)

By using (9.15)
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=>x+iy= ) [(2 + 9i)(f(a, b) +ig(a, b)) (F(m,n)
+ i(G(m,n)))]
—9(gF + fG)]

For integer solutions replace a by (m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(9.1) as

x =m? +n?[2(f(P,Q)F — g(P,Q)G) — 9(g(P,Q)F + f(P,Q)B)]
y =m?+n?[2(g(P,Q)F — f(P,Q)G) + 9(f(P,Q)F — g(P,Q)G)]
z = (m? + n?)%(P? + Q?)

PATTERN-9

Equation (9.11) can also be written as

(x+iy)(x —iy) = (7 +6i)(7 —6i)(a+ib)*(a—ib)? + 1 (9.18)
consider

(2mn+i(m2 —nz))

m2+n?

x +iy = (7 +6i)(a + ib)?

(9.19)

>x+iy= ) [(7 + 6i)(f(a,b) +ig(a, b))(F(m,n)
+ i(G(m,n))]
Sxtly=—5— [7(fF —gG) +i7(gf + fg) + 6i(fF — gG)

—6(gF + fG)]

For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q

Then, Equating the real and imaginary parts , we get
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x =m? +n?[7(f(P,QF — g(P,Q)G) — 6(g(P,Q)F + f(P,Q)G)]
y=m?+n?[7(g(P,Q)F — f(P,Q)G) + 6(f(P,Q)F — g(P,Q)G)]
z = (m? + n?)%(P% + Q?)

PATTERN-10
Equation (9.11) can also be written as

(x+iy)(x —iy) = (6 +7i)(6 — 7i)(a + ib)*(a — ib)* + 1 (9.20)

consider

(2mn+i(m2 —nz))

m2+n2

x+iy =(6+7i)(a+ib)? (9.21)
1
>x+iy= T [(6 + 7i)(f(a,b) +ig(a,b))(F(m,n)
+i(G(m,n))]

>x+iy= > [6(fF — gG) +i6(gF + fG) + 7i(fF — gG)

m?+n
— 7i(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q
Then, Equating the real and imaginary parts , we get

x =m? +n?[6(f(P,Q)F — g(P,Q)G) — 7(g(P,Q)F + f(P,Q)G)]
y =m?+n?[6(g(P,Q)F — f(P,Q)G) + 7(f(P,Q)F — g(P,Q)&)]
z = (m? + n?)%(P? + Q?)

9.3 Conclusion:

The ternary quadratic Diophantine equations are prosperous in
diversity. One possibly will search for further choices of Diophantine
equations to discover their consequent integer solutions.
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10.1 Introduction

The Quadratic Diophantine equation with three unknowns offers an
unlimited field for research because of their variety (Carmichael., 1959;
Dickson., 2005; Mordell., 1970). In particular, one may refer
(Vidhyalakshmi et.al,. 2021;Maheswari.et.al.,2020 ; Shanthi et.al
,2020,2023) for quadratic equations with three unknowns. This
communication concerns with yet another interesting equation x? + y? =
250z% representing homogeneous Diophantine equation with three
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unknowns for determining its infinitely many non-zero integral solutions.
A few interesting properties among its solutions are given.

10.2 Method of analysis

The ternary quadratic Diophantine equation to solved for its non-zero
distinct integral ~ solution is

x? +y? = 25022 (10.1)

Different patterns of solution of (10.1) are presented below.

PATTERN -1
Equation (10.1) can be written as
x% + y? = 2252% + 2522
(x+152)(x —15z) = (5z+ y)(5z — y) (10.2)
The process of solving (10.2) is illustrated as below:
Choice 1. Equation (10.2) can be written in ratio form as

x+15z _ 5z-y _ « ,3 +0
5z+y T x-15z B )

This equation is equal to the following two equations:
xf —ya+ (156 —5a)z=0
—xa—yB+ (56 +15a)z =0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x = 15a? — 1582 + 10ap
y = —5a? + 58% + 30ap
z=a? + p?
Choice 2: Equation (10.2) can be written in ratio form as

x+15z _ 5z+y _ «
5z-y " x-15z B

pg#0
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This equation is equal to the following two equations:

xfp +ya+ (156 —5a)z=0
—xa+yf + (56 +15a)z=0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x = 15a? — 1582 + 10ap
y = 5a? — 582 — 30ap
z=a’+ p?

Choice 3: Equation (10.2) can be written in ratio form as
x—15z _ 5z-y a

5z+y  x+15z - E B #0

This equation is equal to the following two equations:
xf —ya— (15 +5a)z=0
—xa—yB+ (568 —15a)z =0
By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x = 15a% — 158? — 10ap
y = 5a? — 582 + 30af
7 = _az _ BZ

Choice 4: Equation (10.2) can be written in ratio form as

x—15z 5z+ a
=2 =2 B0
5z-y x+15z B

This equation is equal to the following two equations:

xf +ya— (156 +5a)z=0
—xa+yf + (56 —15a)z=0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x = —15a? + 1542 + 10af
y = 5a% — 582 + 30ap
z = a’+ p?
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PATTERN-2

Equation (10.1) can be written as

x% + y? = 81z% + 16922
(x+92)(x —92) = (13z+ y)(13z — y) (10.3)
The process of solving (10.3) is illustrated as below:

Choice 5: Equation (10.3) can be written in ratio form as
x+9z  13z-y a
13z+y  x-9z B

B %0

This equation is equal to the following two equations:

xf—ya+ (96 —13a)z=0
—xa—yB+ (13 +9a)z=0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x = 9a? — 9% + 26ap
y = —13a? + 138% + 18af
z = a?+ p?

Choice 6: Equation (10.3) can be written in ratio form as
x+9z _ 13z+y _ «

13z-y  x-9z _E ' p#0

This equation is equal to the following two equations:

xf +ya+ (96 —13a)z=0
—xa+yf+ (138 +9a)z=0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be
x =9a? — 98% + 26ap
y = 13a? — 138? — 18ap
z=a’+ p?

Choice 7: Equation (10.3) can be written in ratio form as
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x-9z _ 13z-y «a
13z+y  x+9z B '

p+0

This equation is equal to the following two equations:

xf—ya— (9 +13a)z=0
—xa—yf+ (13 —-9a)z=0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x =9a? —9p% — 26ap
y = 13a? — 1382 + 18ap
7 = _az _ '32

Choice 8: Equation (10.3) can be written in ratio form as

x—=9z 13z+ a
=—=2=Z B #0

13z-y  x+49z B '

This equation is equal to the following two equations:

xf +ya— (9 +13a)z=0
—xa+yBf+ (13 —-9%)z=0

By the method of cross multiplication, we get the integral
solutions of (10.1) to be

x = —9a? + 9B? + 26ap
y = 13a? — 138? + 18ap

z=a’+ 2
PATTERN-3
Assume
z =z(a,b) = a® + b? (10.4)
where a,b # 0,
Write
250 = 152 + 52 = (15 + 5i)(15 — 5i) (10.5)
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Substituting (10.4) and (10.5) in (10.1) and employing
factorization. Consider

x + iy = (15 + 5i)(a + ib)?

Equating the real and imaginary parts in the above equation, we
acquire the integer solution to (10.1) as

x = 15a® — 15b% — 10ab
y = 5a? — 5b% + 30ab
z =a?* + b?

Also, we can write
250 = 5% + 152 = (5 + 15i)(5 — 15i) (10.6)
Substituting (10.4) and (10.6) in (10.1) and employing the
development of factorization. Write
x + iy = (5 + 15i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 5a? — 5b% — 30ab
y = 15a% — 15b% + 10ab

z=a?+b?
PATTERN-4
Assume
z =z(a,b) = a® + b?
wherea,b # 0,
Write
250 = 9% +13% = (9 + 13i)(9 — 130) (10.7)

Substituting (10.4) and (10.7) in (10.1) and employing the
development of factorization. Write

x +iy = (9 + 13i)(a + ib)?
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Equating the real and imaginary parts in the top of the equation, we
acquire

x = 9a? — 9b? — 26ab
y = 13a%? — 13b% + 18ab
z = a® + b?

We can also write
250 = 132 4+ 9% = (13 + 9i)(13 — 9) (10.8)
Substituting (10.4) and (10.8) in (10.1) and employing the
development of factorization. Write
x + iy = (13 + 9i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 13a? — 13b% — 18ab
y = 9a? — 9b? + 26ab
z=a%+b?

PATTERN-5

Equation (10.1) can be written as

x? = 25022 — y2 = (V250z + y) (V2502 — y) (10.9)
Assume
x% = 250a? — b? (10.10)

wherea,b # 0,

Using (10.10) in (10.9) and applying method, we have
V250z +y = (V250a + b)’

= 250a? + b? + 2V250ab
Equating the rational and irrational factors, we get the integer solution to
(10.1) as
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x = 250a® — b?
y = 250a% + b?
z = 2ab

PATTERN-6
Consider (10.1) as

2 2 — 2
x“+y* =250z 1 (10.11)

(x +iy)(x —iy) = (15 + i5)(15 — i5)(a + ib)*(a — ib)? = 1
Now, x? + y? = z2

o GGy g (10.12)

ZZ
Let us take

X =2mn
y =m? —n?
z = m? + n?

Equation (10.12) can be written as

(2mn+i(m2 —nz)) (Zmn—i(m2 —”2)) _

=1 (10.13)

m2+n?

Substituting (10.13) in (10.11) and employing the technique of
factorization,

write

(2mn+i(m2—n2))

x + iy = (15 + 5i)(a + ib)? — (10.14)
We have that
(a + ib)? = a® — b? + i2ab (10.15)
Consider
(a + ib)? = f(a,b) +ig(a,b)
We have
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f(a,b) = a® — b?
g(a,b) = 2ab

Also, but

F(m,n) =2mn
G(m,n) = m? —n?

Substituting (10.15) in (10.14), we have

1
x+iy= m[(lS + 5i)(f(a,b) + ig(a,b))(F(m,n) + i(G(m,n))]
x+iy= mz—+nz[15(fF —gG) +i15(gF + fG) + 5i(fF — gG)

— 5(gF + fG)]

For integer solutions replace a by (m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(10.1) as

x =m? +n?[15(f(P,Q)F — g(P,Q)G) — 5(g(P, Q)F + f (P, Q)G)]
y =m?+n?[15(g(P,Q)F — f(P,Q)G) + 5(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

PATTERN-8
Equation (11) can also be written as

(x + iy)(x —iy) = (5 + 15i)(5 — 15i)(a + ib)?*(a — ib)? * 1 (10.16)

Consider

(2mn+i(m2—n2))

m2+n?

x +iy = (5+ 15i)(a + ib)?

(10.17)

By using (10.15)
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1
=>x+iy= ) [(5 + 15i)(f(a, b) +ig(a, b)) (F(m, n)
+i(G(m, n)))]
mz—-l—nz[s(fF —gG) +i5(gF + fG) + 15i(fF — gG)
— 15(gF + fG)]

>x+iy=

For integer solutions replace a by (m? + n?)Pand b by (m? +
n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(1) as

x =m? +n?[5(f(P,Q)F — g(P,Q)G) — 15(g(P,Q)F + f(P,Q)G)]
y=m?*+n?[5(g(P,Q)F — f(P,Q)G) + 15(f (P,Q)F — g(P,Q)G)]
z = (m? +n??%(P? + Q%

PATTERN-9

Equation (10.11) can also be written as

(x+iy)(x —iy) = (9 + 13i)(9 — 13i)(a + ib)?*(a — ib)? + 1 (10.18)
consider

(2mn+i(m2—n2))

m2+n?

x+ iy = (9 + 130)(a + ib)? (10.19)

>x+iy= mz;-l-nz [(9+ 13)(f(a,b) +ig(a,b))(F(m,n)
+ i(G(m,n))]

>x+iy= - [9(fF — gG) + i9(gF + fG) + 13i(fF — gG)
— 13(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q

Then, Equating the real and imaginary parts , we get
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x =m? +n?[9(f(P,Q)F — g(P,Q)G) — 13(g(P,Q)F + f (P, Q)G)]
y=m?+n?[9(g(P,Q)F — f(P,Q)G) + 13(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)%(P? + Q?)

PATTERN-10
Equation (10.11) can also be written as

(x+iy)(x —iy) = (13 4+ 9i)(13 = 9i)(a + ib)*(a — ib)* + 1 (10.20)

consider

(2mn+i(m2—n2))

m2+n?2

x +iy = (13 +9i)(a + ib)? (10.21)

>x+iy= ) [(13 +9i)(f(a,b) +ig(a,b))(F(m,n)

+i(G(m,n))]

. 1 . .
>x+iy= mz—_l_nz[13(fF —gG) +i13(gF + fG) + 9i(fF — gG)
—9(gF + fG)]
For integer solution replace a by (m? +n?)Pand b by (m? +
n?)Q
Then, Equating the real and imaginary parts, we get
x =m? +n?[13(f(P,Q)F — g(P,Q)G) — 9(g(P,Q)F + f(P,Q)G)]

y =m?+n?*[13(g(P,Q)F — f(P,Q)G) + 9(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

10.3 Conclusion:

The ternary quadratic Diophantine equations are prosperous in
diversity. One possibly will search for further choices of Diophantine
equations to discover their consequent integer solutions.
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Chapter 11
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11.1 Introduction

The Quadratic Diophantine equation with three unknowns offers an
unlimited field for research because of their variety (Carmichael., 1959;
Dickson., 2005; Mordell., 1970). In particular, one may refer
(Vidhyalakshmi et.al,. 2020 ; Shanthi et.al .,2020,2021)for quadratic
equations with three unknowns. This communication concerns with yet
another interesting equation x? + y? = 13022 representing homogeneous
Diophantine equation with three unknowns for determining its infinitely
many non-zero integral solutions. A few interesting properties among its
solutions are given.
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11.2 Method of analysis

The ternary quadratic Diophantine equation to solved for its non-zero
distinct integral ~ solution is

x? +y? =13022 (11.1)

Different patterns of solution of (11.1) are presented below.

PATTERN -1
Equation (11.1) can be written as
x? +y? =1212% + 922
(x + 112)(x — 112) = Bz + ¥)(3z — y) (11.2)
The process of solving (11.2) is illustrated as below:

Choice 1: Equation (11.2) can be written in ratio form as

x+11z 3z— a
==2=2 B#0

3z+y T x-11z B

This equation is equal to the following two equations:
fx —ay+ (118 —3a)z=10
—ax—By+ @B+ 11la)z=0

By the method of cross multiplication, we get the integral solutions of
(11.1) to be

x =11a? — 118% + 6ap
y = —3a? + 3% + 22ap
z=a?+ p?

Choice 2: Equation (11.2) can be written in ratio form as

x+11z 3z+ a
=22 =2 B=x0

3z-y x-11z B

This equation is equal to the following two equations:

Bx+ay+ (118 —3a)z =0
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—ax+By+ @B+ 11la)z=0

By the method of cross multiplication, we get the integral solutions of
(11.1) to be

x = 11a? — 1182 + 6ap
y = 3a? —3B% — 22ap
z=a?+ p?
Choice 3: Equation (11.2) can be written in ratio as

x—11z — 3z-y :g ,,8 =+ 0

3z+y x+11z B

This equation is equal to the following two equations:
Bx —ay — (118 +3a)z =0
—ax—Ly+ BB —-11a)z=0

By the method of cross multiplication, we get the integral solutions of
(11.1) to be

x =11a? — 1182 — 6ap
y = 3a? —3B% + 22ap
7 = _a2 _ ,82
Choice 4: Equation (11.2) can be written in ratio form as

x—11z 3z+y a
——=——=- [f#0
5 P

3z—y  x+11z
This equation is equal to the following two equations:
Bx+ay— (11 +3a)z=0
—ax+ Ly+ BB —-11a)z=0

By the method of cross multiplication, we get the integral
solutions of (11.1) to be

x =—11a? + 118% + 6ap
y = 3a? —3B% + 22ap
z=a?+ f?
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PATTERN-2
Equation (11.1) can be written as
x% 4+ y% =49z2 + 8122
(x+72)(x—=72z) = (92 +y)(9z—y) (11.3)
The process of solving (11.3) is illustrated as below:

Choice 5: Equation (11.3) can be written in ratio form as

x+7z_9z—y=g ﬁth

9z+y T x-7z B

This equation is equal to the following two equations:
fx—ay+ (78 —9a)z =0
—ax—By+ OB +7a)z=0

By the method of cross multiplication, we get the integral
solutions of (11.1) to be

x =7a?—78%+ 18ap
y = —9a? + 9% + 14ap
z=a?+ p?

Choice 6: Equation (11.3) can be written in ratio form as

x+7z 9z+y a
=——==2, B#0

9z-y T x-7z B

This equation is equal to the following two equations:
Bx+ay+ (78 —9a)z =0
—ax+Ly+ OB +7a)z=0

By the method of cross multiplication, we get the integral
solutions of (11.1) to be

x=7a%—7B%+ 18ap
y =9a? — 98? — 14ap
z=a’+ f?

Choice 7: Equation (11.3) can be written in ratio form as
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x—7z_9z—y_g1 ﬁiO

9z+y T x+7z B

This equation is equal to the following two equations:
Bx —ay— (78 +9a)z =0
—ax—By+ OB —-7a)z=0

By the method of cross multiplication, we get the integral
solutions of (11.1) to be

x =7a?—7B%—18ap
y = 9a? — 982 + 14af
z=a’+ p?

Choice 8: Equation (11.3) can be written in ratio form as

x—7z_9z+y=g ,3¢0

9z-y  x+7z B’

This equation is equal to the following two equations:
Bx+ay— (78 +9a)z=0
—ax+By+ OB —-7a)z=0

By the method of cross multiplication, we get the integral
solutions of (11.1) to be

x =—7a’+ 7% + 18ap
y =9a? —9B% + 14ap

z=a? + p?
PATTERN-3
Assume
z=2z(a,b) = a® + b? (11.4)
where a,b # 0,
Write
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130 = 11% 4+ 3% = (11 + 3i)(11 - 3i) (11.5)

Substituting (11.4) and (11.5) in (11.1) and employing
factorization. Consider

x + iy = (11 + 3i)(a + ib)?

Equating the real and imaginary parts in the above equation, we
acquire the integer solution to (11.1) as

x = 11a? — 11b? — 6ab
y = 3a? — 3b% + 22ab
z=a?+ b?

Also, we can write
130 = 32 + 112 = (3 + 11i)(3 — 11i) (11.6)
Substituting (11.4) and (11.6) in (11.1) and employing the
development of factorization. Write
x +iy = (3 + 11i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 3a? — 3b% — 22ab
y = 11a? — 11b% + 6ab

z=a?+ b?
PATTERN-4
Assume
z =z(a,b) = a® + b?
wherea,b # 0,
Write
130 =72+ 92 = (7 + 90)(7 — 9i) (11.7)

Substituting (11.4) and (11.7) in (11.1) and employing the
development of factorization. Write
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x + iy = (7 + 9i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 7a® — 7b% — 18ab
y = 9a? — 9b% + 14ab
z=a%+b?

We can also write
130 = 92 4+ 72 = (9 4 7i)(9 — 7i) (11.8)
Substituting (11.4) and (11.8) in (11.1) and employing the
development of factorization.
write
x +iy = (9+ 7i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x = 9a® — 9b? — 14ab
y = 7a* — b? + 18ab
z=a?+b?

PATTERN-5

Equation (11.1) can be written as

x2 = 1302% — y? = (V130z + y)(V130z — y) (11.9)
Assume

2 2 2
x? = 1302 — b (11.10)

wherea,b # 0,

Using (11.10) in (11.9) and applying method, we have
V130z +y = (V130a + b)2 = 130a? + b* + 21/130ab
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Equating the rational and irrational factors, we get the integer solution to
(11.1) as

x = 130a? — b?
y = 130a? + b?
z = 2ab

PATTERN-6
Consider (11.1) as

2 2 2

(x+iy)(x —iy) = (11 + 3i))(11 = 3i)(a + ib)?*(a — ib)? * 1
Now, x2 + y? = z2

o, GGy _ (11.12)

ZZ
Let us take
X =2mn
y = m2 —n2
z=m?+n?

Equation (11.12) can be written as

(2mn+i(m2—nz))(Zmn—i(mz—nz))
m2+n2
Substituting (11.13) in (11.11) and employing the technique of

factorization

=1 (11.13)

write

(2mn+i(m2—n2))

x+iy=(11+3)(a+ ib)* ——— (11.14)
We have that
(a +ib)? = a®? — b? + i2ab (11.15)

Consider

(a +ib)? = f(a,b) +ig(a,b)
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We have

f(a,b) = a? — b?
g(a,b) =2ab

Also, but

F(m,n) =2mn
G(m,n) = m? —n?

Substituting (11.15) in (11.14), we have

1
x+iy= mz—+nz[(13 + 4i)(f(a,b) +ig(a,b))(F(m,n) + i(G(m,n))]

x+ iy =———[13(fF — gG) + i13(gF + fG) + 4i(fF — gG)

m? + n?
— 4(gF — fG)]

For integer solutions replace a by(m? + n?)Pand b by (m? + n?)Q

Then, equating the real and imaginary parts , we get the integer solution to
(11.1) as

x =m? +n?[11(f(P,Q)F — g(P,Q)G) — 3(g(P, Q)F + f(P,Q)G)]
y=m?+n*[11(g(P,Q)F — f(P,Q)G) + 3(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

PATTERN-8
Equation (11.11) can also be written as

(x+iy)(x —iy) = B+ 113 — 11i)(a + ib)?*(a — ib)? * 1 (11.16)

Consider

(2mn+i(m2—n2))

m2+n?

x +iy = (3+ 11i)(a + ib)?

(11.17)

By using (11.15)
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=>x+iy= ) [(3 + 11i)(f(a, b) +ig(a, b)) (F(m, n)
+ i(G(m, n)))]

mz—_l_nz[S(fF —gG) +i3(gF + fG) + 11i(fF — gG)
—11(gF + fG)]

>x+iy=

For integer solutions replace a by (m? + n?)Pand b by (m? + n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(11.1) as

x =m? +n?[3(f(P,Q)F — g(P,Q)G) — 11(g(P,Q)F + f(P,Q)G)]
y =m?+n*[11(g(P,Q)F — f(P,Q)G) + 3(f(P,Q)F — g(P,Q)G)]
z = (m? +n??%(P? + Q%

PATTERN-9
Equation (11.11) can also be written as

(x+iy)(x —iy) = (7+9)(7—9i)(a+ib)*(a—ib)? +1 (11.18)

consider

(2mn+i(m2 —nz))

m2+n?

x+iy=(7+9i)(a+ ib)?

(11.19)

>x+iy= [(7 +9i)(f(a,b) +ig(a,b))(F(m,n)

m2 + n?
+i(G(m,n))]
Sxtily=——s [7(fF —gG) +i7(gf + fg) + 9i(fF — gG)

—9(gF + fG)]
For integer solution replace a by (m? + n?)Pand b by (m? + n?)Q

Then, Equating the real and imaginary parts , we get

x =m?+n?*[7(f(P,Q)F — g(P,Q)G) — 9(g(P,Q)F + f(P,Q)G)]
y =m?+n*[9(g(P,Q)F — f(P,Q)G) + 7(f(P,Q)F — g(P,Q)&)]
z = (m? + n?)%(P? + Q?)
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PATTERN-10

Equation (11.11) can also be written as

(x+iy)x—iy) =9+ 71)(9—7i)(a+ib)*(a—ib)?+1 (11.20)
consider

(2mn+i(m2 —nz))

m2+n?

x+iy=(9+7i)(a+ ib)? (11.21)

1
>x+iy= ) [(9+ 7)(f(a,b) +ig(a,b))(F(m,n)
+ i(G(m,n))]

=>x+iy= T [9(fF — gG) + i9(gF + fG) + 7i(fF — gG)

—7i(gF + fG)]
For integer solution replace a by (m? + n?)Pand b by (m? + n?)Q

Then, Equating the real and imaginary parts , we get

x =m? +n?[9(f(P,QF — g(P,Q)G) — 7(g(P,Q)F + f(P,Q)G)]
y =m?+n?[7(g(P,Q)F — f(P,Q)G) + 9(f(P,Q)F — g(P,Q)G)]
z = (m? + n?)%(P? + Q?)

11.3 Conclusion:

The ternary quadratic Diophantine equations are prosperous in
diversity. One possibly will search for further choices of Diophantine
equations to discover their consequent integer solutions.
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12.1 Introduction

The Quadratic Diophantine equation with three unknowns offers an
unlimited field for research because of their variety (Carmichael., 1959;
Dickson., 2005; Mordell., 1970). In particular, one may refer (Gopalan
et.al., 2015;Vidhyalakshmi et.al,. 2021 ; Shanthi et.al .,2014,2023) for
quadratic equations with three unknowns. This communication concerns
with yet another interesting equation x2 + y? = 370z? representing
homogeneous Diophantine equation with three unknowns for determining
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its infinitely many non-zero integral solutions. A few interesting properties
among its solutions are given.

12.2Method of analysis

The ternary quadratic Diophantine equation to solved for its non-
zero distinct integral ~ solution is

2 2 _ 2

Different patterns of solution of (12.1) are presented below.

PATTERN -1
Equation (12.1) can be written as
x% +y? =361z% + 922
(x+192)(x—192) = 3z+y)(3z—y) (12.2)
The process of solving (12.2) is illustrated as below:

Choice 1: Equation (12.2) can be written in ratio form as

x+19z _ 3z-y __ «a
3z+y T x-19z B

B#0

This equation is equal to the following two equations:
Bx —ay+ (198 —3a)z=10
—ax—Ly+ BB +19%)z=0

By the method of cross multiplication, we get the integral solutions of
(12.1) to be

x = 19a? — 1982 + 6af
y = —3a? + 3% + 38ap
z=a’+ f?
Choice 2: Equation (12.2) can be written in ratio form as

x+19z _ 3z+y _ «
3z—y  x—19z B

B %0
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This equation is equal to the following two equations:
Bx+ay+ (198 —3a)z =0
—ax+ Ly + (19a+3L)z=0

By the method of cross multiplication, we get the integral solutions of
(12.1) to be

x = 19a? — 1982 + 6af
y = 3a? — 3% — 38ap
z=a?+ p?

Choice 3: Equation (12.2) can be written in ratio as

x—19z — 3z-y :g ,ﬁ =0

3z+y x+19z B

This equation is equal to the following two equations:
fx —ay— (198 +3a)z=0
—ax— Ly + BB —19%)z=0

By the method of cross multiplication, we get the integral
solutions of (12.1) to be

x = 19a? — 1982 — 6ap
y = 3a? — 382 + 38af
7 = —GIZ _ﬁZ

Choice 4: Equation (12.2) can be written in ratio form as

x—19z _ 3z+y a

3z-y x+19z

This equation is equal to the following two equations:
Bx+ay— (198 +3a)z=0
—ax+By+ B —192)z=0

By the method of cross multiplication, we get the integral
solutions of (12.1) to be

x = —19a? + 1942 + 6ap
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y = 3a? — 34% + 38ap
z = a’+ p?

PATTERN-2
Equation (12.1) can be written as
x% + y? = 289z% + 8122
(x+172)(x —172) = (9z+ y)(9z — y) (12.3)
The process of solving (12.3) is illustrated as below:

Choice 5: Equation (12.3) can be written in ratio form as

x+17z _ 9z-y _ «
9z+y x-17z B

B#0

This equation is equal to the following two equations:
pfx —ay+ (178 —9a)z =0
—ax—By+ 9B +17a)z=0

By the method of cross multiplication, we get the integral
solutions of (12.1) to be

x =—17a% + 17p% — 18af
y = 9a? — 96? — 34ap
7 = _aZ _ BZ

Choice 6: Equation (12.3) can be written in ratio form as

x+17z 9z+ a
==2=2_ B0

92—y  x-17z B '

This equation is equal to the following two equations:
Bx+ay+ (178 —9a)z =0
—ax+By+ (17a+9B)z=0

By the method of cross multiplication, we get the integral
solutions of (12.1) to be

x =17a? —17B% + 18ap
y =9a? — 982 — 34ap
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z=a’+ p?
Choice 7: Equation (12.3) can be written in ratio form as

x=17z _ 9z-y :g ’ ,89&0

9z+y T x+17z B

This equation is equal to the following two equations:
Bx —ay — (178 +9a)z =0
—ax—By+ 9B —17a)z=0

By the method of cross multiplication, we get the integral solutions of
(12.1) to be

x =17a% - 17B? — 18af
y =9a? — 9B? + 34ap
7 = _a2 _ BZ

Choice 8: Equation (12.3) can be written in ratio form as

x—=17z 9z+ a
x-l7z _ oPz4y _ & 'B¢0

9z-y  x+17z B '
This equation is equal to the following two equations:
Bx+a—-(178+9a)z=10
—ax+By—9B—-17a)z=0

By the method of cross multiplication, we get the integral
solutions of (12.1) to be

x =—17a% + 174% + 18af
y =9a? — 96? + 34ap

z=a?+ p?
PATTERN-3
Assume
z = z(a,b) = a® + b? (12.4)

where a,b # 0,
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Write
370 = 192 + 32 = (19 + 3i)(19 — 3i) (12.5)
Substituting (12.4) and (12.5) in (12.1) and employing
factorization. Consider
x + iy = (19 + 3i)(a + ib)?

Equating the real and imaginary parts in the above equation, we
acquire the integer solution to (12.1) as

x = 19a® — 19b% — 6ab
y = 3a? — 3b? + 38ab
z = a® + b?

Also, we can write
370 = 32 + 192 = (3 4 19i)(3 — 19i) (12.6)
Substituting (12.4) and (12.6) in (12.1) and employing the development of
factorization.
write
x +iy = (3+ 19i)(a + ib)?
Equating the real and imaginary parts in the top of the equation, we acquire

x = 3a? — 3b% — 38ab
y = 19a% — 19b% + 6ab

z = a? + b?
PATTERN-4
Assume
z =z(a,b) = a® + b?
wherea, b # 0,
Write
370 = 172 + 92 = (17 + 9{)(17 — 9i) (12.7)
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Substituting (12.4) and (12.7) in (12.1) and employing the development
of factorization.

write
x + iy = (17 + 9i)(a + ib)?

Equating the real and imaginary parts in the top of the equation, we
acquire

x =17a? — 17b% — 18ab
y = 9a? — 9b? + 34ab
z=a*+b?

We can also write
370 =92 + 172 = (9 + 17i)(9 — 17i) (12.8)
Substituting  (12.4) and (12.8) in (12.1) and employing the development
of factorization.
Write

x + iy = (9+ 17i)(a + ib)?
Equating the real and imaginary parts in the top of the equation, we acquire

x = 9a® — 9b? — 34ab
y = 17a%* — 17b% + 18ab
z = a? + b?

PATTERN-5

Equation (12.1) can be written as

x? = 3702% — y? = (V3702 + y)(V370z — y) (12.9)
Assume

2 2 2
x? =370a% — b (12.10)

wherea,b # 0,
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Using (12.10) in (12.9) and applying method, we have
V370z +y = (V370a + b)~

Equating the rational and irrational factors, we get the integer solution to
(12.1) as

x = 370a? — b?
y = 370a? + b?
z = 2ab

PATTERN-6
Consider (12.1) as

2 2 2

(x + iy)(x —iy) = (19 + 3i))(19 — 3i)(a + ib)?(a — ib)? * 1
Now, x2 + y? = z?2

o GGy _ g (12.12)

ZZ
Let us take

X =2mn
y=m2—n2
z=m?+n?

Equation (12.12) can be written as

(2mn+i(m2 —nz)) (2mn—i(m2 _nz)) _

=1 (12.13)

m2+n?

Substituting (12.13) in (12.11) and employing the technique of
factorization,

write

(2mn+i(m2—n2))

m2+n?

x + iy = (19 + 3i)(a + ib)? (12.14)

We have that
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(a +ib)? = a? — b? + i2ab (12.15)

Consider
(a + ib)? = f(a,b) +ig(a,b)
We have
f(a,b) = a? — b?
g(a,b) = 2ab
Also, but

F(m,n) = 2mn
G(m,n) = m? —n?

Substituting (12.15) in (12.14), we have
1
x+ iy = ———[(19 + 3D)(f(a, b) + ig(a, b)) (F(m,n) + i(G(m,n))]

— 2 [19(fF = g6) + 119(gF + fG) + 3i(fF — gG)

— 3(gF — fG)]

For integer solutions replace a by(m? + n?)Pand b by (m? + n?)Q

x+iy=

Then, equating the real and imaginary parts , we get the integer solution to
(12.1) as

x =m? +n?[19(f(P,Q)F — g(P,Q)G) — 3(g(P, Q)F + f(P,Q)G)]
y=m?+n?[19(g(P,Q)F — f(P,Q)G) + 3(f(P,Q)F — g(P,Q)G)]
z = (m? +n?®?2(P? + Q?

PATTERN-8
Equation (12.11) can also be written as

(x+iy)(x —iy) = 3+ 19i)(3 —19i)(a + ib)?*(a — ib)? * 1 (12.16)

Consider

(2mn+i(m2—n2))

m2+n?

x +iy = (3+19))(a + ib)? (12.17)
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By using (12.15)

= x+iy = —— |3 +19)(f(@b) + ig(a,b)) (Fm,n)
+ i(G(m, n)))]

— 19(gF + fG)]
For integer solutions replace a by (m? + n?)Pand b by (m? + n?)Q

Then, equating the real and imaginary parts, we get the integer solution to
(12.1) as

x =m? +n?[3(f(P,Q)F — g(P,Q)G) — 19(g(P, Q)F + f (P, Q)G)]
y =m?+n*[19(g(P,Q)F — f(P,Q)G) + 3(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)?%(P? + Q?)

PATTERN-9
Equation (12.11) can also be written as

(x+iy)(x—iy) = (17 +9)(17 — 9)(a + ib)*(a — ib)* + 1 (12.18)

consider

(2mn+i(m2—n2))

m2+n?2

x +iy = (17 + 9i)(a + ib)? (12.19)

>x+iy= T [(17 +9i)(f(a,b) + ig(a, b))(F(m,n)
+ i(G(m,n))]
:x+iy=mz—+nz[17(fF—gG)+i17(gf+fg)+9i(fF—gG)

—9(gF + fG)]
For integer solution replace a by (m? + n?)Pand b by (m? + n?)Q

Then, Equating the real and imaginary parts , we get
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x =m? +n?[17(f(P,Q)F — g(P,Q)G) — 9(g(P,Q)F + f (P, Q)G)]
y=m?+n?[9(g(P,Q)F — f(P,Q)G) + 17(f(P,Q)F — g(P,Q)G)]
z = (m? +n?)%(P? + Q?)

PATTERN-10

Equation (12.11) can also be written as

(x+iy)(x —iy) = (9+170)(9 — 17i)(a + ib)?*(a — ib)? + 1 (12.20)
consider

(2mn+i(m2—n2))

m24+n?

x+iy =9+ 17i)(a + ib)? (12.21)

1
S>x+iy= S [(9+170)(f(a,b) + ig(a,b))(F(m,n)
+i(G(m,n))]

$X+ly =Tn2—+7’lz[9(fF_gG) +19(gF+fG) + 17l(fF—gG)
—17i(gF + fG)]
For integer solution replace a by (m? + n?)Pand b by (m? + n?)Q

Then, Equating the real and imaginary parts , we get

x =m? +n?[9(f(P,Q)F — g(P,Q)G) — 17(g(P,Q)F + f(P,Q)G)]
y=m?*+n?[9(g(P,Q)F — f(P,Q)G) + 17(f(P,Q)F — g(P,Q)G)]
z = (m? +n??%(P? + Q?

12.3 Conclusion:

The ternary quadratic Diophantine equations are prosperous in
diversity. One possibly will search for further choices of Diophantine
equations to discover their consequent integer solutions.
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