

Sustainable Physics

Harnessing Energy, Materials, and Green Technologies for a Better Future

Sanket Ratnaprabha Ramchandra Ghule

Sustainable Physics: Harnessing Energy, Materials, and Green Technologies for a Better Future

Sanket Ratnaprabha Ramchandra Ghule

Ascent college Solapur, Kandalgaon

Published, marketed, and distributed by:

Deep Science Publishing, 2025 USA | UK | India | Turkey Reg. No. MH-33-0523625 www.deepscienceresearch.com editor@deepscienceresearch.com WhatsApp: +91 7977171947

ISBN: 978-93-7185-071-1

E-ISBN: 978-93-7185-235-7

https://doi.org/10.70593/978-93-7185-235-7

Copyright © Sanket Ratnaprabha Ramchandra Ghule, 2025.

Citation: Ghule S. R. R. G. (2025). *Sustainable Physics: Harnessing Energy, Materials, and Green Technologies for a Better Future*. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-235-7

This book is published online under a fully open access program and is licensed under a Creative Commons Attribution-Non-Commercial 4.0 International License (CC BY-NC 4.0). This open access license allows third parties to copy and redistribute the material in any medium or format, provided that proper attribution is given to the author(s) and the published source. The publishers, authors, and editors are not responsible for errors or omissions, or for any consequences arising from the application of the information presented in this book, and make no warranty, express or implied, regarding the content of this publication. Although the publisher, authors, and editors have made every effort to ensure that the content is not misleading or false, they do not represent or warrant that the information-particularly regarding verification by third parties-has been verified. The publisher is neutral with regard to jurisdictional claims in published maps and institutional affiliations. The authors and publishers have made every effort to contact all copyright holders of the material reproduced in this publication and apologize to anyone we may have been unable to reach. If any copyright material has not been acknowledged, please write to us so we can correct it in a future reprint.

Preface

Sustainability is now one of the biggest challenges for science and society in the 21st century. Sustainable Physics: Harnessing Energy, Materials, and Green Technologies for a Better Future propose a new integrated model for a wider understanding of how physical principles can drive the design of green energy, which, on its part, will give support to new technologies. Interdisciplinary studies are fundamental. For this reason, we are presenting here now the interrelationships between the old and new physics and the way ahead for the world, as far as our environment is changing and we are thinking of the future. The story we are telling now through the chapters we are presenting now is somehow consolidating all walks of the sustainable physics applications, from the renewable energy generation to the advanced material applications, from the management of wastes to the environment protection. The starting point towards these three cruxes for sustainable physics is covering now the basic concepts of physics that can be used for grading energy in thermodynamics way, and energy efficient systems including solar and wind energy, and new energy harvesting technologies like thermoelectric devices, piezoelectric devices and so on. Nanostructures, green materials in technologies, superconductors and quantum materials which are used for nanostructures design in atomic or molecular scales are much more discussed in this book, especially in terms of their applications. As far as physics is now contributing to energy systems, we also put emphasis on science-based modeling of climate, sustainable waste management, water purification as a part of physics path which is converging onto now is considered for environment protection and global circulating economy. The chapters presented are divided now into those of being served as guidelines for undergraduate and graduate in physics and environment fields and those of presenting tools to be used. At the end of the day, Sustainable Physics is calling now for a generation of scientists and innovators, and practitioners who will be responsible for this fields to guide one another on the way forward. Where sustainability and sustainability consciousness should be driven, as we have presented their progress now, both should be on the behalf of making of the scientific discovery and technical progress at the very latest endpoints book imagines a world in which physics can not only describe the universe but preserve it for generations to come.

Sanket Ratnaprabha Ramchandra Ghule

Table of Contents

Chapter 1: Sustainable Physics: Concepts, Principles, and Prospects
Chapter 2: Energy, Entropy and Efficiency: Thermodynamics for a Green World
Chapter 3: Physics of Renewable Energy: A Theoretical and Applied Overview27
Chapter 4: Light-Matter Interaction for Solar Energy Conversion: Photovoltaics and Photonics
Chapter 5: Physics and Ecology of Wind and Water Power Systems54
Chapter 6: Fusion and Advanced Nuclear Physics: Prospects for Clean Energy 67
Chapter 7: Digital Rights And Data Privacy In Today's Library Ecosystem81
Chapter 8: Importance of Green Materials: Nanostructures, Composites, And Smart Materials In Physics94
Chapter 9: Superconductors, Semiconductors and Sustainable Electronics107
Chapter 10: Materials for Energy Storage: Principles and Applications for Supercapacitors and Batteries114
Chapter 11: Low-Dimensional and Quantum Materials: Sustainable Innovations at the Nanoscale127
Chapter 12: Physics of Climate Change: Modeling, Measurement, and Mitigation Approaches
Chapter 13: Sustainable Waste Management: Exploring Recycling, Magnetics, and Plasma Applications

Chapter 14: Applications of Physics in Water Purification, Desalination, and Environmental Remediation	
Chapter 15: Future Pathways in Sustainable Physics: Interdisciplinary Innovations and Policy Integration	.175
Chapter 16: Computational and Artificial Intelligence Methods for Sustainabl Physics Applications	