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Chapter 11: AI-Driven Maintenance and Failure 
Prediction in Smart Connected Systems             

11.1. Introduction 

The typical introduction opens by placing AI-driven maintenance and failure prediction 
within smart connected systems (SCSs) in a broad context. It then offers a focused 
background on definitions, characteristics, and applications of SCSs. For further context, 
see Enterprise Applications of Smart Connected Systems and Enterprise Applications of 
Smart Connected Systems, which explore SCSs in greater detail. 

Smart connected systems represent a new wave of innovation combining smart machines 
with advanced data analytics and cloud capabilities, enabled by sensor technology and 
enhanced computing resources. Consequently, modern smart machines are highly 
intelligent and capable of communication and task execution in dynamic settings. 
Beyond sensing and networking, SCSs feature connectivity—encompassing people, 
processes, data, and things—and the use of big-data analytics and cloud computing for 
machine monitoring, improved decision-making, increased intelligence, and context-
aware behavior. These features collectively constitute a foundational building block of 
the Fourth Industrial Revolution by enabling the digitization and networking of 
advanced smart machines with people and business processes. 

11.1.1. Overview of Smart Connected Systems 

Smart connected systems are characterized by three attributes: the integration of smart 
components capable of sensing, control, and communication; seamless connection 
through softwarized networks (e.g., broadband, mobile, satellite); and the ability to 
advance user experience by providing connected users with access to remote smart 
resources or by enabling autonomous operation. These features allow smart connected 
systems to support novel industrial scenarios that utilize automation and data exchange 
throughout the value chain. In recent years, trends in new production networking have 

Deep Science Publishing, 2025  
https://doi.org/10.70593/978-93-7185-625-6_11 



  

180 
 

extended the concepts of interconnected enterprises to industrial manufacturing 
equipment and units, enabling flexible and intelligent business-process control and 
manufacturing-operation control. 

To realize smart connected systems, real-time monitoring and control functions require 
the support of efficient communication networks, while smart data analytic functions 
need to be implemented by artificial intelligence (AI) technologies. A dedicated AI 
research area in this field is AI-for-maintenance, which focuses on the use of AI in 
maintenance applications in both traditional and smart connected systems. Techniques 
for AI-for-maintenance promise to meet new challenges created by recently developed 
smart maintenance strategies and schemes (e.g., data mining, advanced prognostics and 
health management, smart sensor networks, scanning technologies). Research and 
development in this area, therefore, integrates AI techniques with applications in real-
world industry and maintenance management. 

11.2. Overview of Smart Connected Systems 

The recent advancements in industrial manufacturing have led to the development of 
smart components capable of injecting data into the production chain. These novel 
features can predict breakdowns and suggest preventive maintenance, thus enabling a 
shift from the traditional reactive maintenance approach to a condition-based 
maintenance approach [1-3]. This emerging paradigm is known as smart connected 
systems, or a system-of-systems. Examples of such systems include the Industry 4.0 
production line, a power grid, a cascade of hydroelectric power stations, a connected 
fleet of trucks, and an ecosystem of connected cities. 

Failure prediction in smart-connected systems and smart systems is a challenging task. 
In a smart system, all components practically evolve according to a defined lifetime 
profile. This property of components is known as degrading states. Degrading states can 
be explained with an example. In a bag filter system, whenever the differential pressure 
across the cascade of bag filters goes above the threshold limit, maintenance activity is 
undertaken. Failure prediction in a smart-connected system encompasses the prediction 
of the degrading component dynamics. The failure prediction method that considers the 
degrading states for pinpointing the next or upcoming failing component is referred to 
as component-level failure prediction. 

11.2.1. Definition and Characteristics 

The Smart Connected Products concept is still quite novel. However, over the last few 
years, several aspects have been analyzed that have contributed to the solidification of 
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the features and functionalities that smart connected products are expected to 
demonstrate. According to Michael Porter [1], Smart Connected Products enable 
businesses to view, navigate, and create value along every step of the value chain and 
every phase of the value delivery process, including design, sourcing, manufacturing, 
logistics, marketing, sales, and service. In transportation, Smart Product Services have a 
great influence on transportation safety, economic efficiency, and users' convenience. 
Nowadays, the cargo and fleet operate with progressive control systems that include 
different smart devices (with fail detection capabilities) that can communicate with 
external sources. 

According to Michael Porter and James Heppelmann [2], a Smart Connected Product 
must present three important capabilities: Sense, communicate, and control. The Smart 
Connected Product senses by gathering information about its internal state and the 
external environment; it typically includes sensors and actuators, which convert physical 
phenomena into data and electronic signals and vice versa. Smart Connected Products 
communicate by linking that gathered information to the broader world; they contain 
embedded processing capability, software, and wireless connections that feed real-time 
data into enterprise systems and connect them with other products and with people. 
Smart Connected Products are controlled by directing the product’s operation or altering 

its physical environment; they integrate processors with software and actuators that 
increase flexibility and enable products to respond to control signals from external 
sources. 

 

Fig 11 . 1 : Smart Connected Products: Capabilities and Value Chain Influence 
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11.2.2. Applications in Industry 

Industry leaders in various areas promptly recognized the vast potential of deep learning 
methods. Amazon’s extensive use of convolutional neural networks for image pattern 

recognition and their predictive capabilities for failure rates in Amazon Web Services 
are key examples. However, the paradigm of being “data rich” but “information poor” 

is most obvious in the manufacturing industry: data generated by sensors is stored but 
never leveraged to its full potential. Although never before has so much data been 
produced and collected, less than 1% of the information is used for analysis, and only 
19% is ever inspected microscopically. Still, a handful of manufacturing companies have 
pioneered the use of sensors, which enable them to collect data related to production 
quality, equipment status, and worker safety [3-5]. Such data are either processed at the 
device level or sent to the cloud for further analysis and monitoring of removable hard 
disk failure using recurrent neural networks and long short-term memory. 

The integration of cyber-physical systems and the Internet of Things gives rise to smart 
connected systems able to monitor each other’s state in real time. This capability is 

critical to the development of advanced, integrated, closed-loop smart manufacturing 
systems. By implementing integrated monitoring and control functions throughout a 
plant, smart connected systems can bring risks within the plant under control and make 
it possible to design and optimize production schedules that are dynamically updated 
according to each machine’s capacity. The intelligence provided by smart connected 

machinery enables the creation of new business models based on remanufacturing 
equipment and paying per unit of production, not just the sale of equipment. New 
intelligence can also help machinery companies improve maintenance activities by 
performing equipment health monitoring analytics and taking appropriate maintenance 
actions accordingly. 

11.3. Importance of Maintenance in Smart Systems 

The field of artificial intelligence holds a profound interest in smart connected systems, 
which find application in crucial industrial domains such as wind farms, refineries, and 
warehouses. In these areas, scheduled and unscheduled maintenance play a vital role in 
minimizing failures. Through the detection, preparation, and prediction of maintenance, 
it becomes possible to prevent numerous failures and reduce costs. 

As automobiles evolve, companies aggressively develop preventive and predictive 
maintenance programs, made possible by constant updates from wireless technology 
onboard the vehicles. Long-term predictive statistics establish the reliability of a system 
and produce alerts within the maintenance schedule. These recommendations enhance 
safety and operational reliability, ensuring proper maintenance, reducing unplanned 
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outages, and lowering costs. Predictive maintenance enables efficient monitoring of 
manufacturing equipment conditions, thereby preventing failures caused by neglect and 
mechanical wear. It offers numerous benefits, including improved equipment usage, 
reduced overall risk, increased product quality, enhanced safety, decreased operating 
costs, accelerated maintenance operations, and greater flexibility in maintenance 
management. 

11.3.1. Traditional Maintenance Strategies 

Maintenance strategies played a significant role in the evolution of technology and the 
context in which preventive maintenance activities were performed. Preventive activities 
were originally carried out daily until the 1950s. Then, during the 1960s, the experts 
pointed out the deficiencies of this approach and recommended that preventive 
maintenance tasks be performed periodically. The next major step was the introduction 
of predictive maintenance strategies, which focused on the prediction and correction of 
failures. Predictive maintenance is regarded as one of the most effective approaches in 
the maintenance process. Since failures often represent an unexpected cost for 
companies, prediction is crucial to prevent the failure of smart connected systems on 
time. 

The effectiveness of predictive maintenance depends on methods of data analysis and 
intelligence. Data collected from monitoring processes can be classified into two 
categories according to the state that they represent or reveal: information about what is 
going on, or information about what will happen. The data that reveal the current state 
show the health of the systems at the time of checking, and it enables the system failure 
probability to be evaluated for the immediate future. Historical data and information over 
a long period are the basis for prediction [2,4,5]. They make it possible to forecast when 
the systems will fail and to determine the percentage of reliability, maintenance, and 
remaining useful life for the systems in various operating conditions. 

11.3.2. Challenges in Current Approaches 

The prediction of failure in complex systems that have been designed in a way that 
allows them to communicate information about their real‑time status to a Health and 
Usage Monitoring System (HUMS) forms a major area of application within the 
implementation of Artificial Intelligence (AI) technologies in smart connected systems. 
These systems can be thought of as within the Internet of Things (IoT) environment. 
Failure prediction is primarily used to identify when an asset needs maintenance, thus 
allowing for maintenance to be planned in the most economical way possible. When this 
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is combined with condition monitoring information, it ultimately enables predictive 
maintenance, which forms a major enabler for the wider concept of Smart Maintenance. 

Several approaches to failure prediction have been proposed for use with smart 
connected systems, with those currently adopted Linked Health Models being a form of 
hybrid model, combining physics‑based models and data‑driven models. While these 
models combine the strengths of each approach, they also combine many of their 
weaknesses, such as the requirement for extensive data comprising both measurements 
and action records, as well as an understanding of the underlying physics. To overcome 
many of these issues, there has recently been a move toward the use of fully data‑driven 
models for failure prediction. However, due to the rare nature of failures, there is often 
a lack of failure data available, which presents the well‑known issue of imbalance within 
the training dataset. 

 

Fig 11 . 2 : Failure Prediction in Smart Connected Systems and Predictive 
Maintenance 
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11.4. AI Technologies for Predictive Maintenance 

Predictive maintenance (PdM) anticipates failures and diminishes downtime with AI and 
operational data. It finds faults and gauges the condition of devices, assemblies, and 
production lines. Maintenance begins precisely when necessary—avoiding futile or late 
interventions. PdM offers a mindful remedy: instead of maintaining every machine on a 
schedule, it repairs only in response to equipment condition. 

PdM tends to be secondary to condition-based maintenance (CBM), a management 
method in which asset-condition measurements guide maintenance decisions. CBM 
relies on AI and Rule-Based systems or on predictive models. In Rule-Based CBM, 
humans enumerate the signals and declare enumeration criteria that warn about trouble. 
These explicit commonsense rules minimize false alarms. PdM demands more advanced 
AI tools, combining operational data and expert opinions to glean continuous insight. 
Semiconductor, aerospace, rail, and manufacturing outfits are already gathering crucial 
information from sensors on their equipment. They feed the data to AI, which enunciates 
rules and models of deteriorating assets, pinpointing the trouble at an early stage. 

11.4.1. Machine Learning Algorithms 

Today’s smart, connected systems and products integrate sophisticated sensors and 

CPUs to continually stream data to the cloud. By harnessing the ever-increasing volumes 
of data generated by these systems, machine-learning algorithms can identify parameters 
influencing system operation and predict system failure. This analysis enables 
significant advancements in maintenance optimization through predictive maintenance, 
condition-based maintenance, and prescriptive maintenance. 

Numerous types of machine-learning algorithms—supervised regression and 
classification algorithms such as Logistic Regression, Support Vector Machines 
(SVMs), and random forests; and unsupervised algorithms like K-means clustering—

have proven effective in the failure-prediction domain. These algorithms generate 
nuanced insights into system health and remaining life [6-8]. Although deep-learning 
techniques are currently gaining popularity, deeper networks are not always better; 
indeed, depending on the use case, traditional supervised algorithms can continue to 
offer excellent performance. 

11.4.2. Data Analytics Techniques 

Data Analytics Techniques in AI-Driven Maintenance and Failure Prediction Systems 
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The heart of the Smart Connected Maintenance and Repair System is the analytics 
engine. Data is extracted from the components most vulnerable to failure—for example, 
gas turbines. Specialized AI techniques help determine the likelihood of failure shortly. 
Scheduling is then performed in an efficient way to satisfy traffic demand and reduce 
delay, using fuzzy logic and timing-driven genetic algorithms. If the decision is to 
schedule a maintenance event, suggested tasks and associated logistics are generated and 
provided to the user. Filtering techniques reduce false alarms, and visualization methods 
help to communicate alerts and maintenance work—thus reducing costs through more 
efficient task management and enhanced operational decision support. 

Several key building blocks are essential elements for supporting the increasingly 
important smart maintenance concept. In particular, the quality of the information for 
predictions and remaining lifetime assessments directly affects the quality of 
maintenance decisions. Maintenance services today employ a number of fault-detecting 
techniques: fault detection, fault isolation, fault identification, prognosis, preventive 
maintenance, and failure mode analysis. For each of these techniques, a different 
derivation of the fault information is generated based on operational data. The main 
advantages and disadvantages of some commonly used methods are listed. Those 
methods that play underpinning roles for actual fault-detecting techniques and are 
supported by a wide number of publications include classification, similarities, 
classification and comparison, statistics, regression analysis, pattern recognition, 
association rules, sequence generation, and clustering. These support methods are 
particularly useful for establishing an effective maintenance strategy (e.g., predictive 
maintenance). 

11.4.3. Sensor Technologies 

Smart Connected Systems, particularly those targeting smart manufacturing, require 
sensing capabilities to gather information about the environment and status of assets at 
the edge levels. Although human operators perform the maintenance process, the entire 
production line maintenance needs to be systematized, automated, and, indeed, 
expedited. Systems alert personnel on the status of individual machines during the 
operation and provide them with the required data to perform effective predictive 
maintenance and failure prediction assessment. 

An effective Human–Machine Interface applies diverse acoustic and vibration sensor 
technologies together with advanced AI applications running deeply trained algorithms 
at the edge, ready to answer queries at different levels of the maintenance process. 
Acoustic and vibration technologies, supported by modern sensors and signal 
processing, reveal aspects of asset operation and condition maintenance analysis that 
were formerly difficult to identify with the traditional assistance of the human ear. 



  

187 
 

11.5. Failure Prediction Models 

The two main sets of models based on the presented data are models of component 
failure prediction and models of maintenance impact assessment. The purpose of 
component failure prediction models is to forecast the health state of particular 
components at a system level, in order to schedule their replacement, rather than perform 
an unplanned and potentially costly repair. 

Maintenance impact models aim to optimize the sequence of maintenance actions by 
inspecting components in a chain or circuit and focusing attention on the components 
with the highest failure impact. These models are needed to reduce energy consumption 
in component maintenance and repair activities. Maintenance impact models highlight 
the need to consider the impact of failure on other components, and not just the failure 
itself. 

Both failure dependency and maintenance impact models require open fault data from 
the test bed and detailed component interconnectivity [5,7,9]. Present analyses consider 
only automated fault injection analyses of components connected to the main board of 
the test bed, as these provide useful air links for model training. A semi-Markov fault 
injection process with adjustable sojourn times and run sequences simulates a dynamic 
fault environment and generates the necessary information on component failure 
dependencies and maintenance impact. 

 

         Fig 11 . 3 : Component Failure Prediction and Maintenance Impact Assessment 
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11.5.1. Statistical Models 

Statistical models used as a function of time for the analysis of maintenance and failure 
prediction in Smart Connected Products (SCP) are introduced in the following. The 
preference is for parametric models based on probability functions whose shape is 
determined by various parameters. Nonparametric models also exist and serve to 
determine trends in the failure rate as a function of time without assuming any 
probability distribution. 

Among the parametric models, the model based on the exponential function assumes 
that the reliability evolves exponentially as a function of the time until failure. This 
implies that the subsequent failure rate is constant over time. This assumption appears 
to be a fairly imprecise model of reality, where one usually expects either an increasing 
failure rate or a decreasing failure rate; hence, the Weibull model makes it possible to 
represent these situations through a change in the shape parameter. 

11.5.2. Machine Learning Models 

A failure prediction in smart connected microgrids demands domain knowledge for 
feature engineering, labels for sample data, and a baseline predictive model. No standard 
dataset exists for microgrid failure at present. To overcome this absence, a hybrid 
simulation approach can be used. One option involves managing failure events randomly 
generated by controllable Mittag–Leffler clocks applied to loads and feeders of the 
microgrid simulator, then sending the failure messages and the operational conditions to 
the cloud, where storage and prediction processes are defined. Another possibility 
consists of designing a failure model with random failure and repair rates for each device 
based on either a Markovian or a semi-Markovian model. The failure model and the 
operational data are then fed into the microgrid simulator, and the failures are recorded 
as events and sent to the cloud for prediction and storage. In both cases, it is important 
to select relevant operational features for prediction and to keep in mind the real causes 
of failures in the considered domain. 

The application of AI methods in distribution networks allows efficient service for 
customers. The smart distribution network simulator generates both operational features 
and failures over time. The information is passed by the virtual environment to a database 
in the cloud, imitating the maintenance domain and fulfilling all the prerequisites of a 
failure prediction. The database mimics a certificate of execution of the failures by 
maintenance managers. The suppliers of distributors, agencies, and the maintenance 
managers who make the decisions about the execution priority deserve dedicated 
software tools. Agents driven by learning models, along with a ranking system, are 
included to provide a prioritized order for the execution of corrective maintenance, 
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considering the severity level of the failures and the level of risk of the network in the 
failure zone. Monitoring the status and evolution of failures and the operational 
conditions of feeders supports the detection of dependencies between failures. 
Knowledge discovery provided by ML models indicates which failure types produce 
further failures and what is needed to prevent them. 

11.5.3. Hybrid Approaches 

Hybrid approaches constitute a major category of machine learning (ML) techniques that 
combine models of diverse analysis types and input data modalities, usually 
incorporating some form of physical models. Domain-knowledge-guided data 
generation is an example, where large quantities of labeled data required to train 
supervised-modeling prognostics and health management (PHM) applications can be 
synthesized using physics-based models [1]. Here, the physical modeling workflow is 
illustrated using a model that simulates the dynamics of an aircraft, whose sensor data 
are employed to train an ML-based autopilot capable of flying an aircraft model. 
Transfer learning is then applied to retrain the model using real flight data, yielding a 
real-time classifier of stability in flight. Domain knowledge can also be integrated into 
ML-based anomaly detection directly through constraint optimization; for instance, in 
known-operation-conditioned anomaly solicitation (NOSA), known contexts help define 
the range of anticipated operational quantities [2]. ML models are trained on labeled data 
generated by a physical-modeling workflow and subsequently applied to data collected 
from attaching inertial measurement unit (IMU) sensors to a bicycle's frame. Anomalous 
events identified by the models are isolated, while non-anomalous events—bounded by 
contextually defined acceptance functions—are discarded as overly sensitive, thereby 
increasing confidence that identified anomalies reflect true malfunctions. 

3D heat-conduction analyses can provide thermal damage maps for nowcasting and 
predicting turbine-blade fatigue service life [3]. Scans of an actively cooled blade, 
acquired through infrared thermography at various blade-tip conditions, are fed into a 
3D-heat-conduction simulation, the results of which estimate the thermal loading 
endured by the material at specific points in time. Combining these thermal-damage 
estimates with the time of occurrence supports a fatigue-service-life prediction model. 
Then, record heat loads can be detected and used to estimate blade service life, 
characterize when damage occurred, and flag blades requiring additional inspections or 
special attention before or during operations. 
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11.6. Data Collection and Management 

Central to the execution of an AI-driven predictive maintenance strategy is the repeated 
failure of components with similar root causes. Data on these failures can be collected 
from proper maintenance procedures and stored in a failure knowledge base/database. 
Additional information about the system is needed, such as its operational states and 
updating mechanism. Typically, the failure knowledge base includes data on the failure 
list and classification, failure description, number of trials or performed tests before the 
failure occurrence, failure frequency, failure probability, the shortest period between 
failures, failure effects and consequences, suggested actions for error detection and 
recovery, and source of failure data. Collecting, processing, and analyzing this 
information expediently can assist in forecasting future failures. 

Executing an AI-driven predictive maintenance policy comprises four steps: failure 
classification, data collection, takeover, and data updating. The failure classification 
stage involves grouping collected failure data into main and subcategories based on the 
root cause. Fault types may vary from system to system, but the main categories 
generally include external, systemic, and internal risks. External failures are usually 
linked to environmental risks and factors such as temperature, humidity, vibration, and 
dust. Systemic failures also relate to external factors and frequently predict the 
occurrence of another failure. Internal failures pertain to inherent system problems, such 
as damaged components or poor design. Failure classification in such a manner allows 
evaluation of the most affected sources. Though all conditions are important and suitable 
for predictive maintenance, each has varying applicability and relevance for different 
systems [8-10]. 

11.6.1. Data Sources 

Before designing a data analytics AI system for failure prediction, the data sources used 
need to be understood. Internet systems generate massive amounts of data every minute, 
including Social Media Data, Weather Data, Sensor Data, Video Monitoring Data, 
Documents Data, Emails Data, Stock Data, Surveillance Data, etc. For failure prediction, 
maintenance data or integrated datasets, including maintenance data and other datasets, 
are used. 

For short-term maintenance predictions, recent operational data is used. However, for 
long-term predictions, only component health data is used. The latter type is more robust 
in real-life situations, since current operations can be random while actual health changes 
take longer and provide a better picture of the condition of the system. Therefore, sensor 
data for component health monitoring is used. Conditions must be defined for each 
component, categorizing their status as Very Bad, Bad, Medium, Good, or Excellent. 
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Various types of weather, sensor, temperature, and other relevant data can be integrated 
to create a feature-rich dataset. 

11.6.2. Data Quality and Preprocessing 

Connected systems subject to analysis generate increasing amounts of data and are 
usually instrumented with sensors. These sensors identify present conditions and 
achieved performances. Specific configurations of sensors permit feature extraction that 
can feed dynamics models. Such models ideally cruise at high performance for long 
periods before showing signs of degradation,  which eventually, in the last phases, 
deteriorate rapidly until system failure. Startup of a system is typically said to not be in 
the “normal” operating regime because of the type and indeed the magnitude of the 

transients related to the start-up of the system. There are different types of failures, and 
their prediction takes into account their distinctive traits, not all being of sudden onset. 
Machine learning’s ability to detect patterns cannot be questioned when, in its 

complement with physical models, it is the key element to fully exploit the potential in 
big data and big computing power over vast periods of their life cycles. Models of 
different natures, DM for the normal regime, and ML for the irregular periods, are 
worked out for the failure prediction of a ground vibration test rig, with emphasis on the 
loss of resilience of the system. 

Data quality is one of the most important issues for effective analysis with ML. Although 
more data is often considered better in ML, the quality of the data should be the focus 
when performing ML. Many assumptions are applied to data, especially for data-driven 
models such as ML. Poor data quality can lead to violations of these assumptions, 
resulting in inapplicable model predictions and interpretations. Ensuring data quality 
before implementing ML can reduce the risk of violating assumptions. Model 
predictions depend heavily on the data, and the “garbage in, garbage out” principle 

applies. Poor data quality used for model development can have serious impacts on 
prediction quality and subsequent decisions. Proper preprocessing is essential to 
transform data into useful model inputs or meaningful frameworks for analysis. Data 
preprocessing involves transforming raw data into data of acceptable quality through 
data cleansing, normalization, feature extraction, data transformation, and other 
necessary steps. It is a preliminary step in data mining processes to achieve good quality 
data for effective and quality mining results. 

11.6.3. Data Storage Solutions 

Having identified, transferred, and transformed data, the final step of the data pipeline is 
data storage. Sources for storage include conventional data centres, data lakes in the 



  

192 
 

cloud, and modern distributed database systems. Data lakes store data, enabling mining 
for knowledge extraction and decision-making. However, these data lakes typically lack 
ongoing intelligence services and may not be designed to support declining performance 
trends or early warning indicators, as required in a PHM system. Beyond storage, the 
pipeline must also provide computational resources to execute intelligent algorithms that 
create the desired intelligence. 

Furthermore, the intelligent algorithms locating destructive trends or incipient activities 
often require additional data attributes to give confidence in their outcome. These 
attributes may be manually or automatically entered as software updates and can include 
operator key performance indicators, additional environmental or energy data, and 
model-based asset profiles. The software updates are then used to append the storage 
structures to maintain the integrity of the data as it evolves. 

Currently, no existing, publicly available, end-to-end cybersecurity asset management 
framework that incorporates smart, cyber-physical intrusion detection of ICS and 
SCADA systems exists. Modern connected systems incorporate a variety of domain 
specializations, including operational technology (OT), quality assurance (QA), natural 
language processing (NLP), business intelligence, and machine learning. These 
applications involve unique data sources with different levels of sensitivity, each of 
which requires executive attention. Because of the heterogeneity of these environments, 
layering the OT with QA, NLP, and other applications can expose these asset 
management systems to novel attack vectors, including supply chain risk, social 
engineering, asymmetric attack surfaces, and insider threat. 

11.7. Conclusion 

Estimation systems for assets such as machines and equipment, as well as for car 
operation status and remaining mileage, have been conventionally explained mainly 
using models that analyze operational state data. Recent developments integrating 
information from social networking services (SNSs) enable associations with event 
information gathered from social big data. Failure estimation systems that link the 
operation status of various cars with failure case information from SNSs allow for more 
convenient estimation of warning and failure time information based on changes in 
operation status data, such as abnormal or noticeable changes. 

A person’s life involves dreams and desires that motivate their behavior, but also 

insecurities and anxieties about the future that are influenced by social circumstances. 
Nevertheless, individuals can take control and proactively shape their behavior, often 
unconsciously influencing the future and the world around them. Social events are the 
cumulative result of such individual behaviors. Therefore, social events are factors that 
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make the future uncertain; it is necessary to actively strive for the future to become 
predictable. Social prediction attempts to forecast aspects of the future in a way that 
reduces uncertainties about social events. 

 

Fig 11 . 4 : Fundamental Drivers of Future Uncertainty 

11.7.1. Final Thoughts and Future Directions 

Data-driven failure prediction has garnered significant interest in the literature due to its 
ability to intelligently direct maintenance activities and enhance derivative services. 
While traditional condition-based maintenance relies on continuously collecting system 
condition data and conducting complex analyses or using model-based and physics-
based approaches, these methods require an intimate understanding of component 
degradation and the underlying physics. They also demand accurate models that reflect 
the operating degradation process. Supervised machine learning techniques, such as 
classification and regression models, depend on labeled failure data to extract 
degradation signatures. 

However, supervised methods inherently overlook data not associated with failures, and 
the scarcity of labeled failure data severely limits the performance of these approaches. 
In response, recent efforts have shifted toward using only normal operation data to model 
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system degradation. Accurately identifying and classifying anomalous states within the 
incoming stream of sensor data from products in operation remains a complex challenge. 
The myriad of possible failure modes, their influence on operational behavior, and how 
these relationships are affected by current operating conditions and product variant 
characteristics present significant difficulties that open exciting research avenues. 
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