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Chapter 11: Al-Driven Maintenance and Failure
Prediction in Smart Connected Systems

11.1. Introduction

Thetypical introduction opens by placing Al-driven maintenance and failure prediction
within smart connected systems (SCSs) in a broad context. It then offers a focused
background on definitions, characteristics, and applications of SCSs. For further context,
see Enterprise Applications of Smart Connected Systems and Enterprise Applications of
Smart Connected Systems, which explore SCSsin greater detail.

Smart connected systems represent anew wave of innovation combining smart machines
with advanced data analytics and cloud capabilities, enabled by sensor technology and
enhanced computing resources. Consequently, modern smart machines are highly
intelligent and capable of communication and task execution in dynamic settings.
Beyond sensing and networking, SCSs feature connectivity—encompassing people,
processes, data, and things—and the use of big-data analytics and cloud computing for
machine monitoring, improved decision-making, increased intelligence, and context-
aware behavior. These features collectively constitute a foundational building block of
the Fourth Industrial Revolution by enabling the digitization and networking of
advanced smart machines with people and business processes.

11.1.1. Overview of Smart Connected Systems

Smart connected systems are characterized by three attributes: the integration of smart
components capable of sensing, control, and communication; seamless connection
through softwarized networks (e.g., broadband, mobile, satellite); and the ability to
advance user experience by providing connected users with access to remote smart
resources or by enabling autonomous operation. These features allow smart connected
systems to support novel industrial scenarios that utilize automation and data exchange
throughout the value chain. In recent years, trends in new production networking have
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extended the concepts of interconnected enterprises to industrial manufacturing
equipment and units, enabling flexible and intelligent business-process control and
manufacturing-operation control.

To realize smart connected systems, real-time monitoring and control functions require
the support of efficient communication networks, while smart data anaytic functions
need to be implemented by artificial intelligence (Al) technologies. A dedicated Al
research area in this field is Al-for-maintenance, which focuses on the use of Al in
maintenance applications in both traditional and smart connected systems. Techniques
for Al-for-maintenance promise to meet new challenges created by recently developed
smart maintenance strategies and schemes (e.g., data mining, advanced prognostics and
health management, smart sensor networks, scanning technologies). Research and
development in this area, therefore, integrates Al techniques with applications in real -
world industry and maintenance management.

11.2. Overview of Smart Connected Systems

The recent advancements in industrial manufacturing have led to the development of
smart components capable of injecting data into the production chain. These novel
features can predict breakdowns and suggest preventive maintenance, thus enabling a
shift from the traditional reactive maintenance approach to a condition-based
maintenance approach [1-3]. This emerging paradigm is known as smart connected
systems, or a system-of-systems. Examples of such systems include the Industry 4.0
production line, a power grid, a cascade of hydroelectric power stations, a connected
fleet of trucks, and an ecosystem of connected cities.

Failure prediction in smart-connected systems and smart systems is a challenging task.
In a smart system, al components practically evolve according to a defined lifetime
profile. This property of components is known as degrading states. Degrading states can
be explained with an example. In a bag filter system, whenever the differential pressure
across the cascade of bag filters goes above the threshold limit, maintenance activity is
undertaken. Failure prediction in a smart-connected system encompasses the prediction
of the degrading component dynamics. The failure prediction method that considers the
degrading states for pinpointing the next or upcoming failing component is referred to
as component-level failure prediction.

11.2.1. Definition and Char acteristics

The Smart Connected Products concept is still quite novel. However, over the last few
years, several aspects have been analyzed that have contributed to the solidification of
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the features and functiondlities that smart connected products are expected to
demonstrate. According to Michael Porter [1], Smart Connected Products enable
businesses to view, navigate, and create value along every step of the value chain and
every phase of the value delivery process, including design, sourcing, manufacturing,
logistics, marketing, sales, and service. In transportation, Smart Product Services have a
great influence on transportation safety, economic efficiency, and users convenience.
Nowadays, the cargo and fleet operate with progressive control systems that include
different smart devices (with fail detection capabilities) that can communicate with
external sources.

According to Michael Porter and James Heppelmann [2], a Smart Connected Product
must present three important capabilities: Sense, communicate, and control. The Smart
Connected Product senses by gathering information about its internal state and the
external environment; it typically includes sensors and actuators, which convert physical
phenomena into data and electronic signals and vice versa. Smart Connected Products
communicate by linking that gathered information to the broader world; they contain
embedded processing capability, software, and wireless connections that feed real-time
data into enterprise systems and connect them with other products and with people.
Smart Connected Products are controlled by directing the product’s operation or altering
its physical environment; they integrate processors with software and actuators that
increase flexibility and enable products to respond to control signals from external
Sources.
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11.2.2. Applicationsin Industry

Industry leadersin various areas promptly recognized the vast potential of deep learning
methods. Amazon’s extensive use of convolutional neural networks for image pattern
recognition and their predictive capabilities for failure rates in Amazon Web Services
are key examples. However, the paradigm of being “data rich” but “information poor”
is most obvious in the manufacturing industry: data generated by sensors is stored but
never leveraged to its full potential. Although never before has so much data been
produced and collected, less than 1% of the information is used for analysis, and only
19% isever inspected microscopically. Still, ahandful of manufacturing companies have
pioneered the use of sensors, which enable them to collect data related to production
quality, equipment status, and worker safety [3-5]. Such data are either processed at the
device level or sent to the cloud for further analysis and monitoring of removable hard
disk failure using recurrent neural networks and long short-term memory.

The integration of cyber-physical systems and the Internet of Things gives rise to smart
connected systems able to monitor each other’s state in real time. This capability is
critical to the development of advanced, integrated, closed-loop smart manufacturing
systems. By implementing integrated monitoring and control functions throughout a
plant, smart connected systems can bring risks within the plant under control and make
it possible to design and optimize production schedules that are dynamically updated
according to each machine’s capacity. The intelligence provided by smart connected
machinery enables the creation of new business models based on remanufacturing
equipment and paying per unit of production, not just the sale of equipment. New
intelligence can also help machinery companies improve maintenance activities by
performing equipment health monitoring analytics and taking appropriate maintenance
actions accordingly.

11.3. Importance of Maintenancein Smart Systems

Thefield of artificial intelligence holds a profound interest in smart connected systems,
which find application in crucial industrial domains such as wind farms, refineries, and
warehouses. In these areas, scheduled and unscheduled maintenance play avita rolein
minimizing failures. Through the detection, preparation, and prediction of maintenance,
it becomes possible to prevent numerous failures and reduce costs.

As automobiles evolve, companies aggressively develop preventive and predictive
maintenance programs, made possible by constant updates from wireless technology
onboard the vehicles. Long-term predictive statistics establish the reliability of asystem
and produce aerts within the maintenance schedule. These recommendations enhance
safety and operationa reliability, ensuring proper maintenance, reducing unplanned
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outages, and lowering costs. Predictive maintenance enables efficient monitoring of
manufacturing equipment conditions, thereby preventing failures caused by neglect and
mechanical wear. It offers numerous benefits, including improved equipment usage,
reduced overall risk, increased product quality, enhanced safety, decreased operating
costs, accelerated maintenance operations, and greater flexibility in maintenance
management.

11.3.1. Traditional Maintenance Strategies

Maintenance strategies played a significant role in the evolution of technology and the
context in which preventive maintenance activities were performed. Preventive activities
were originally carried out daily until the 1950s. Then, during the 1960s, the experts
pointed out the deficiencies of this approach and recommended that preventive
maintenance tasks be performed periodically. The next major step was the introduction
of predictive maintenance strategies, which focused on the prediction and correction of
failures. Predictive maintenance is regarded as one of the most effective approachesin
the maintenance process. Since failures often represent an unexpected cost for
companies, prediction is crucia to prevent the failure of smart connected systems on
time.

The effectiveness of predictive maintenance depends on methods of data analysis and
intelligence. Data collected from monitoring processes can be classified into two
categories according to the state that they represent or reveal: information about what is
going on, or information about what will happen. The data that reveal the current state
show the health of the systems at the time of checking, and it enables the system failure
probahility to be evaluated for theimmediate future. Historical dataand information over
along period are the basis for prediction [2,4,5]. They make it possible to forecast when
the systems will fail and to determine the percentage of reliability, maintenance, and
remaining useful life for the systems in various operating conditions.

11.3.2. Challengesin Current Approaches

The prediction of failure in complex systems that have been designed in a way that
allows them to communicate information about their real-time status to a Health and
Usage Monitoring System (HUMS) forms a maor area of application within the
implementation of Artificial Intelligence (Al) technologiesin smart connected systems.
These systems can be thought of as within the Internet of Things (IoT) environment.
Failure prediction is primarily used to identify when an asset needs maintenance, thus
allowing for maintenance to be planned in the most economical way possible. When this

183



is combined with condition monitoring information, it ultimately enables predictive
maintenance, which forms amajor enabler for the wider concept of Smart Maintenance.

Several approaches to failure prediction have been proposed for use with smart
connected systems, with those currently adopted Linked Health Models being aform of
hybrid model, combining physics-based models and data-driven models. While these
models combine the strengths of each approach, they also combine many of their
weaknesses, such as the requirement for extensive data comprising both measurements
and action records, as well as an understanding of the underlying physics. To overcome
many of theseissues, there has recently been a move toward the use of fully data-driven
models for failure prediction. However, due to the rare nature of failures, thereis often
alack of failure data available, which presentsthe well-known issue of imbalance within
the training dataset.
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11.4. Al Technologiesfor Predictive Maintenance

Predi ctive maintenance (PdM) anticipates failures and diminishes downtime with Al and
operational data. It finds faults and gauges the condition of devices, assemblies, and
production lines. Maintenance begins precisely when necessary—avoiding futile or late
interventions. PdM offers a mindful remedy: instead of maintaining every machine on a
schedule, it repairs only in response to equipment condition.

PdM tends to be secondary to condition-based maintenance (CBM), a management
method in which asset-condition measurements guide maintenance decisions. CBM
relies on Al and Rule-Based systems or on predictive models. In Rule-Based CBM,
humans enumerate the signals and declare enumeration criteria that warn about trouble.
These explicit commonsense rules minimize false alarms. PdM demands more advanced
Al tools, combining operational data and expert opinions to glean continuous insight.
Semiconductor, aerospace, rail, and manufacturing outfits are aready gathering crucial
information from sensors on their equipment. They feed the datato Al, which enunciates
rules and models of deteriorating assets, pinpointing the trouble at an early stage.

11.4.1. Machine Learning Algorithms

Today’s smart, connected systems and products integrate sophisticated sensors and
CPUsto continually stream datato the cloud. By harnessing the ever-increasing volumes
of datagenerated by these systems, machine-learning algorithms can identify parameters
influencing system operation and predict system failure. This analysis enables
significant advancements in maintenance optimization through predictive maintenance,
condition-based maintenance, and prescriptive maintenance.

Numerous types of machine-learning agorithms—supervised regression and
classification algorithms such as Logistic Regression, Support Vector Machines
(SVMs), and random forests; and unsupervised algorithms like K-means clustering—
have proven effective in the falure-prediction domain. These agorithms generate
nuanced insights into system health and remaining life [6-8]. Although deep-learning
techniques are currently gaining popularity, deeper networks are not always better;
indeed, depending on the use case, traditional supervised algorithms can continue to
offer excellent performance.

11.4.2. Data Analytics Techniques

Data Analytics Techniques in Al-Driven Maintenance and Failure Prediction Systems
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The heart of the Smart Connected Maintenance and Repair System is the analytics
engine. Datais extracted from the components most vulnerable to failure—for example,
gas turbines. Specialized Al techniques help determine the likelihood of failure shortly.
Scheduling is then performed in an efficient way to satisfy traffic demand and reduce
delay, using fuzzy logic and timing-driven genetic algorithms. If the decision is to
schedule a maintenance event, suggested tasks and associated logistics are generated and
provided to the user. Filtering technigues reduce false alarms, and visualization methods
help to communicate aerts and maintenance work—thus reducing costs through more
efficient task management and enhanced operational decision support.

Several key building blocks are essential elements for supporting the increasingly
important smart maintenance concept. In particular, the quality of the information for
predictions and remaining lifetime assessments directly affects the quality of
mai ntenance decisions. Maintenance services today employ a number of fault-detecting
techniques: fault detection, fault isolation, fault identification, prognosis, preventive
maintenance, and failure mode analysis. For each of these techniques, a different
derivation of the fault information is generated based on operational data. The main
advantages and disadvantages of some commonly used methods are listed. Those
methods that play underpinning roles for actual fault-detecting techniques and are
supported by a wide number of publications include classification, similarities,
classification and comparison, statistics, regression analysis, pattern recognition,
association rules, sequence generation, and clustering. These support methods are
particularly useful for establishing an effective maintenance strategy (e.g., predictive
maintenance).

11.4.3. Sensor Technologies

Smart Connected Systems, particularly those targeting smart manufacturing, require
sensing capabilities to gather information about the environment and status of assets at
the edge levels. Although human operators perform the maintenance process, the entire
production line maintenance needs to be systematized, automated, and, indeed,
expedited. Systems aert personnel on the status of individual machines during the
operation and provide them with the required data to perform effective predictive
maintenance and failure prediction assessment.

An effective Human-Machine Interface applies diverse acoustic and vibration sensor
technologies together with advanced Al applications running deeply trained algorithms
a the edge, ready to answer queries at different levels of the maintenance process.
Acoustic and vibration technologies, supported by modern sensors and signa
processing, reveal aspects of asset operation and condition maintenance analysis that
were formerly difficult to identify with the traditional assistance of the human ear.
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11.5. Failure Prediction Models

The two main sets of models based on the presented data are models of component
failure prediction and models of maintenance impact assessment. The purpose of
component failure prediction models is to forecast the health state of particular
components at asystem level, in order to schedule their replacement, rather than perform
an unplanned and potentially costly repair.

Maintenance impact models aim to optimize the sequence of maintenance actions by
inspecting components in a chain or circuit and focusing attention on the components
with the highest failure impact. These models are needed to reduce energy consumption
in component maintenance and repair activities. Maintenance impact models highlight
the need to consider the impact of failure on other components, and not just the failure
itself.

Both failure dependency and maintenance impact models require open fault data from
the test bed and detailed component interconnectivity [5,7,9]. Present analyses consider
only automated fault injection analyses of components connected to the main board of
the test bed, as these provide useful air links for model training. A semi-Markov fault
injection process with adjustable sojourn times and run sequences simulates a dynamic
fault environment and generates the necessary information on component failure
dependencies and maintenance impact.
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11.5.1. Statistical Models

Statistical models used as a function of time for the analysis of maintenance and failure
prediction in Smart Connected Products (SCP) are introduced in the following. The
preference is for parametric models based on probability functions whose shape is
determined by various parameters. Nonparametric models also exist and serve to
determine trends in the failure rate as a function of time without assuming any
probahility distribution.

Among the parametric models, the model based on the exponential function assumes
that the reliability evolves exponentialy as a function of the time until failure. This
implies that the subsequent failure rate is constant over time. This assumption appears
to be afairly imprecise model of reality, where one usually expects either an increasing
failure rate or a decreasing failure rate; hence, the Weibull model makes it possible to
represent these situations through a change in the shape parameter.

11.5.2. Machine Learning Models

A failure prediction in smart connected microgrids demands domain knowledge for
feature engineering, labelsfor sample data, and a baseline predictive model. No standard
dataset exists for microgrid failure at present. To overcome this absence, a hybrid
simulation approach can be used. One option involves managing failure events randomly
generated by controllable Mittag-Leffler clocks applied to loads and feeders of the
microgrid simulator, then sending the failure messages and the operational conditionsto
the cloud, where storage and prediction processes are defined. Another possibility
consists of designing afailure model with random failure and repair ratesfor each device
based on either a Markovian or a semi-Markovian model. The failure model and the
operational data are then fed into the microgrid simulator, and the failures are recorded
as events and sent to the cloud for prediction and storage. In both cases, it isimportant
to select relevant operational features for prediction and to keep in mind the real causes
of failuresin the considered domain.

The application of Al methods in distribution networks allows efficient service for
customers. The smart distribution network simulator generates both operational features
and failuresover time. Theinformation is passed by the virtual environment to adatabase
in the cloud, imitating the maintenance domain and fulfilling all the prerequisites of a
failure prediction. The database mimics a certificate of execution of the failures by
maintenance managers. The suppliers of distributors, agencies, and the maintenance
managers who make the decisions about the execution priority deserve dedicated
software tools. Agents driven by learning models, along with a ranking system, are
included to provide a prioritized order for the execution of corrective maintenance,
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considering the severity level of the failures and the level of risk of the network in the
failure zone. Monitoring the status and evolution of failures and the operational
conditions of feeders supports the detection of dependencies between failures.
Knowledge discovery provided by ML models indicates which failure types produce
further failures and what is needed to prevent them.

11.5.3. Hybrid Approaches

Hybrid approaches constitute amajor category of machinelearning (ML) techniquesthat
combine models of diverse analysis types and input data modalities, usualy
incorporating some form of physical models. Domain-knowledge-guided data
generation is an example, where large quantities of labeled data required to train
supervised-modeling prognostics and health management (PHM) applications can be
synthesized using physics-based models [1]. Here, the physical modeling workflow is
illustrated using a model that simulates the dynamics of an aircraft, whose sensor data
are employed to train an ML-based autopilot capable of flying an aircraft model.
Transfer learning is then applied to retrain the model using real flight data, yielding a
real-time classifier of stability in flight. Domain knowledge can also be integrated into
ML-based anomaly detection directly through constraint optimization; for instance, in
known-operation-conditioned anomaly solicitation (NOSA), known contexts help define
therange of anticipated operational quantities[2]. ML modelsaretrained on |abeled data
generated by a physical-modeling workflow and subsequently applied to data collected
from attaching inertial measurement unit (IMU) sensorsto abicycle'sframe. Anomalous
eventsidentified by the models are isolated, while hon-anomal ous events—bounded by
contextually defined acceptance functions—are discarded as overly sensitive, thereby
increasing confidence that identified anomalies reflect true malfunctions.

3D heat-conduction analyses can provide therma damage maps for nowcasting and
predicting turbine-blade fatigue service life [3]. Scans of an actively cooled blade,
acquired through infrared thermography at various blade-tip conditions, are fed into a
3D-hesat-conduction simulation, the results of which estimate the thermal loading
endured by the material at specific points in time. Combining these thermal -damage
estimates with the time of occurrence supports a fatigue-service-life prediction mode.
Then, record heat loads can be detected and used to estimate blade service life,
characterize when damage occurred, and flag blades requiring additional inspections or
specia attention before or during operations.
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11.6. Data Collection and M anagement

Central to the execution of an Al-driven predictive maintenance strategy is the repeated
failure of components with similar root causes. Data on these failures can be collected
from proper maintenance procedures and stored in a failure knowledge base/database.
Additional information about the system is needed, such as its operationa states and
updating mechanism. Typically, the failure knowledge base includes data on the failure
list and classification, failure description, number of trials or performed tests before the
failure occurrence, failure frequency, failure probability, the shortest period between
failures, failure effects and consequences, suggested actions for error detection and
recovery, and source of failure data. Collecting, processing, and analyzing this
information expediently can assist in forecasting future failures.

Executing an Al-driven predictive maintenance policy comprises four steps. failure
classification, data collection, takeover, and data updating. The failure classification
stage involves grouping collected failure data into main and subcategories based on the
root cause. Fault types may vary from system to system, but the main categories
generdly include external, systemic, and internal risks. External failures are usually
linked to environmental risks and factors such as temperature, humidity, vibration, and
dust. Systemic failures also relate to external factors and frequently predict the
occurrence of another failure. Internal failures pertain to inherent system problems, such
as damaged components or poor design. Failure classification in such a manner allows
evaluation of the most affected sources. Though all conditions are important and suitable
for predictive maintenance, each has varying applicability and relevance for different
systems [8-10].

11.6.1. Data Sour ces

Before designing adata analytics Al system for failure prediction, the data sources used
need to be understood. I nternet systems generate massive amounts of data every minute,
including Social Media Data, Weather Data, Sensor Data, Video Monitoring Data,
Documents Data, Emails Data, Stock Data, Surveillance Data, etc. For failure prediction,
maintenance data or integrated datasets, including maintenance data and other datasets,
are used.

For short-term maintenance predictions, recent operational data is used. However, for
long-term predictions, only component health datais used. Thelatter typeis more robust
inreal-life situations, since current operations can be random while actual health changes
take longer and provide a better picture of the condition of the system. Therefore, sensor
data for component health monitoring is used. Conditions must be defined for each
component, categorizing their status as Very Bad, Bad, Medium, Good, or Excellent.
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Various types of weather, sensor, temperature, and other relevant data can be integrated
to create a feature-rich dataset.

11.6.2. Data Quality and Preprocessing

Connected systems subject to analysis generate increasing amounts of data and are
usualy instrumented with sensors. These sensors identify present conditions and
achieved performances. Specific configurations of sensors permit feature extraction that
can feed dynamics models. Such models idedlly cruise a high performance for long
periods before showing signs of degradation, which eventualy, in the last phases,
deteriorate rapidly until system failure. Startup of a systemistypically said to not bein
the “normal” operating regime because of the type and indeed the magnitude of the
transients related to the start-up of the system. There are different types of failures, and
their prediction takes into account their distinctive traits, not all being of sudden onset.
Machine learning’s ability to detect patterns cannot be questioned when, in its
complement with physical models, it is the key element to fully exploit the potential in
big data and big computing power over vast periods of their life cycles. Models of
different natures, DM for the norma regime, and ML for the irregular periods, are
worked out for the failure prediction of aground vibration test rig, with emphasis on the
loss of resilience of the system.

Dataquality isone of the most important issuesfor effective analysiswith ML. Although
more data is often considered better in ML, the quality of the data should be the focus
when performing ML. Many assumptions are applied to data, especially for data-driven
models such as ML. Poor data quality can lead to violations of these assumptions,
resulting in inapplicable model predictions and interpretations. Ensuring data quality
before implementing ML can reduce the risk of violating assumptions. Model
predictions depend heavily on the data, and the “garbage in, garbage out” principle
applies. Poor data quality used for model development can have serious impacts on
prediction quality and subsequent decisions. Proper preprocessing is essential to
transform data into useful model inputs or meaningful frameworks for anaysis. Data
preprocessing involves transforming raw data into data of acceptable quality through
data cleansing, normalization, feature extraction, data transformation, and other
necessary steps. It isapreliminary step in data mining processes to achieve good quality
datafor effective and quality mining results.

11.6.3. Data Stor age Solutions

Having identified, transferred, and transformed data, the final step of the data pipelineis
data storage. Sources for storage include conventional data centres, data lakes in the
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cloud, and modern distributed database systems. Data lakes store data, enabling mining
for knowledge extraction and decision-making. However, these data lakes typically lack
ongoing intelligence services and may not be designed to support declining performance
trends or early warning indicators, as required in a PHM system. Beyond storage, the
pipeline must also provide computational resourcesto execute intelligent algorithmsthat
create the desired intelligence.

Furthermore, the intelligent a gorithms locating destructive trends or incipient activities
often require additional data attributes to give confidence in their outcome. These
attributes may be manually or automatically entered as software updates and can include
operator key performance indicators, additional environmental or energy data, and
model-based asset profiles. The software updates are then used to append the storage
structures to maintain the integrity of the data asit evolves.

Currently, no existing, publicly available, end-to-end cybersecurity asset management
framework that incorporates smart, cyber-physical intrusion detection of ICS and
SCADA systems exists. Modern connected systems incorporate a variety of domain
specializations, including operational technology (OT), quality assurance (QA), natural
language processing (NLP), business intelligence, and machine learning. These
applications involve unique data sources with different levels of sensitivity, each of
which requires executive attention. Because of the heterogeneity of these environments,
layering the OT with QA, NLP, and other applications can expose these asset
management systems to novel attack vectors, including supply chain risk, social
engineering, asymmetric attack surfaces, and insider threat.

11.7. Conclusion

Estimation systems for assets such as machines and equipment, as well as for car
operation status and remaining mileage, have been conventionally explained mainly
using models that analyze operational state data. Recent developments integrating
information from social networking services (SNSs) enable associations with event
information gathered from social big data. Failure estimation systems that link the
operation status of various cars with failure case information from SNSs allow for more
convenient estimation of warning and failure time information based on changes in
operation status data, such as abnormal or noticeable changes.

A person’s life involves dreams and desires that motivate their behavior, but also
insecurities and anxieties about the future that are influenced by socia circumstances.
Nevertheless, individuals can take control and proactively shape their behavior, often
unconscioudly influencing the future and the world around them. Social events are the
cumulative result of such individual behaviors. Therefore, socia events are factors that
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make the future uncertain; it is necessary to actively strive for the future to become
predictable. Social prediction attempts to forecast aspects of the future in a way that
reduces uncertainties about social events.
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11.7.1. Final Thoughts and Future Directions

Data-driven failure prediction has garnered significant interest in the literature due to its
ability to intelligently direct maintenance activities and enhance derivative services.
While traditional condition-based maintenance relies on continuously collecting system
condition data and conducting complex analyses or using model-based and physics-
based approaches, these methods require an intimate understanding of component
degradation and the underlying physics. They also demand accurate models that reflect
the operating degradation process. Supervised machine learning techniques, such as
classification and regression models, depend on labeled failure data to extract
degradation signatures.

However, supervised methods inherently overlook data not associated with failures, and
the scarcity of labeled failure data severely limits the performance of these approaches.
In response, recent efforts have shifted toward using only normal operation datato model
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system degradation. Accurately identifying and classifying anomal ous states within the
incoming stream of sensor data from productsin operation remains acomplex challenge.
The myriad of possible failure modes, their influence on operational behavior, and how
these relationships are affected by current operating conditions and product variant
characteristics present significant difficulties that open exciting research avenues.

References

[1] Zhang W, Yang D, Wang H. (2019). Data-driven methods for predictive maintenance of
industrial  equipment: A survey. |IEEE Systems Journal, 13(3), 2213-2227.
https.//doi.org/10.1109/JSY ST.2018.2863243

[2] Inda, R., & Somu, B. (2024). Agentic Al in Retail Banking: Redefining Customer Service
and Financial Decision-Making. Journal of Artificial Intelligence and Big Data Disciplines,
1(2).

[3] Lee J, Bagheri B, Jin C. (2016). Introduction to cyber-physical systems and data-driven
predictive  maintenance. Journal of  Manufacturing  Systems, 39, 12-20.
https://doi.org/10.1016/j.jmsy.2016.05.005

[4] Kdisetty, S. (2023). Harnessing Big Data and Deep Learning for Real-Time Demand
Forecasting in Retail: A Scalable Al-Driven Approach. American Online Journal of Science
and Engineering (AOJSE)(1SSN: 3067-1140), 1(1).

[5] Susto GT, Schirru A, Pampuri S, McLoone S, Beghi A. (2015). Machine learning for
predictive maintenance: A multiple classifier approach. |IEEE Transactions on Industrial
Informatics, 11(3), 812-820. https://doi.org/10.1109/T11.2015.2420043

[6] Gadi, A. L. The Role of Digital Twinsin Automotive R& D for Rapid Prototyping and System
Integration.

[7]1 Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao R X. (2019). Deep learning and its applications
to machine health monitoring: A survey. Mechanical Systems and Signal Processing, 115,
213-237. https://doi.org/10.1016/j.ymssp.2018.05.050

[8] Pandiri, L., & Singireddy, S. (2023). Al and ML Applications in Dynamic Pricing for Auto
and Property Insurance Markets. Journa for ReAttach Therapy and Developmental
Diversities. https://doi.org/10.53555/jrtdd.v6i10s(2).3611

[9] Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. (2014). Prognostics and health
management design for rotary machinery systems— Reviews, methodol ogy and applications.
Mechanical Systems and Signal Processing, 42(1-2), 314-334.
https://doi.org/10.1016/j.ymssp.2013.12.004

[10] Recharla, M., & Chitta, S. Al-Enhanced Neuroimaging and Deep Learning-Based Early
Diagnosis of Multiple Sclerosis and Alzheimer’s.

194



	Chapter 11: AI-Driven Maintenance and Failure Prediction in Smart Connected Systems
	11.1. Introduction
	11.1.1. Overview of Smart Connected Systems

	11.2. Overview of Smart Connected Systems
	11.2.1. Definition and Characteristics
	11.2.2. Applications in Industry

	11.3. Importance of Maintenance in Smart Systems
	11.3.1. Traditional Maintenance Strategies
	11.3.2. Challenges in Current Approaches

	11.4. AI Technologies for Predictive Maintenance
	11.4.1. Machine Learning Algorithms
	11.4.2. Data Analytics Techniques
	11.4.3. Sensor Technologies

	11.5. Failure Prediction Models
	11.5.1. Statistical Models
	11.5.2. Machine Learning Models
	11.5.3. Hybrid Approaches

	11.6. Data Collection and Management
	11.6.1. Data Sources
	11.6.2. Data Quality and Preprocessing
	11.6.3. Data Storage Solutions

	11.7. Conclusion
	11.7.1. Final Thoughts and Future Directions

	References


