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Chapter 6: Real-Time Monitoring Systems: From 
Sensor Networks to Predictive Analytics  

6.1 Introduction 

An array of industries employs real-time monitoring systems to curb expensive damage 
and reduce the risk of harm to human lives, especially when any infrastructure fails. The 
zone of increased demand includes fire, traffic, and activity, especially when associated 
with the management of crowded recreational places. Crowded societies and increased 
demand for services of recreational places, such as tourism and businesses in cities, have 
brought several drawbacks, such as more traffic, more fire accidents, more contaminated 
air, and a poor travel environment. Therefore, the public is worried about issues such as 
traffic jams, congestion during travel, traffic behavior, route planning, and the 
occurrence of weather emergencies such as fire. 

Complex problems require complex solutions that can involve different well-established 
fields such as real-time monitoring, activity recognition, and prediction, contributing not 
only to fire safety but also to providing a better environment. Developed systems depend 
on monitoring and the recognition of activities through real-time image data or sensor-
based data that extract essential attributes for making the right decision in the different 
activities of the monitoring environments, such as fire detection based on fire color 
analysis and activity recognition based on optical-flow divergence. Overcrowding may 
occur in any crowded place and can cause dangerous situations, such as in shopping 
malls, during concerts, or even in other major events. Controlling overcrowding can be 
realized by estimating the pattern of people movement—detecting, recognizing, and 
predicting people's activities in a crowded place. 

6.1.1. Brief Introduction to Real-Time Monitoring Systems 

Sensors are electronic devices capable of sensing or measuring the real-world 
environment and transforming such data into electrical signals before sending these 
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signals to a command center for meaningful analysis. Examples of sensors include those 
that detect objects or surfaces or transform physical properties into electrical or wireless 
signals. Sensors may be deployed in robots for object detection or in automated self-
driving vehicles for obstacle detection or to recognize and avoid accidents at crossing 
points. Humans cannot process data in bulk like robots, but teachers can still use answers 
furnished by students to evaluate individual success. Sensor networks incorporate 
multiple sensors to collect large amounts of data. One such type is the wireless sensor 
network (WSN). A WSN consists of distributed sensors that communicate via low-
power radio-frequency (RF) technology within a limited area to perform long-distance 
sensing tasks. The data collected by these sensors is then delivered to a command center 
or base station to represent the sensed data. WSNs have been widely used in military 
applications, healthcare, shape-changing robots, ice-embedded robots, and climate 
monitoring applications. WSNs are also known as wireless networks or distributed 
sensor networks. The real-time transmission of streaming data from WSNs is most 
vulnerable to security problems and attacks, so securing a WSN is increasingly 
important. Moreover, it requires the best algorithms to generate the best human answer 
or output [1-3]. 

A deployed WSN, such as the sensor network in the smart city, collects data in real time 
and generates sensitive streaming data. Various applications generate sensitive 
streaming data that needs to be secured through the use of cloud environments. The cloud 
is a versatile and innovative system that provides various computing and storage services 
to its customers and users. Research in recent years has focused mostly on facilitating 
fast data transmission and ensuring a reliable cloud environment. Although a cloud 
environment facilitates data transmission through non-Maximum Suppression (NMS) 
algorithms, it still lacks real-time monitoring. Thus, the present work develops a real-
time monitoring system using a sensor network through a cloud-based NMS framework. 

6.2. Overview of Real-Time Monitoring Systems 

Real-time monitoring systems enable the collection and analysis of immediate data over 
telecommunications and Ethernet networks. This capability allows professional teams to 
oversee their operations remotely, making informed, timely decisions. The benefits of 
these systems span across a diverse range of industries and applications—such as 
government agencies monitoring for illicit nuclear activities, environmentalists tracking 
forest conditions, tsunami warning centers, coastal surveillance, military radar 
operations, traffic monitoring, and air–traffic control. The application of real-time 
monitoring aligns with the Internet of Things (IoT) concept, where the network links 
sensors and actuators to supervisory control systems. IoT also supports areas such as 
smart meters, home appliances, transportation, and electric vehicles. 
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Fig 6 . 1 : Real-Time Monitoring Systems and Applications 

Real-time monitoring systems typically comprise a set of event sensors connected to an 
event actuator, with supervisory control building the remaining part of the system. 
Monitoring entails supervising measured results on a real-time basis. In nuclear 
monitoring, sensors detect start and stop events, producing long-running outputs—as in 
the first example of the case study, where real-time monitoring helps identify clandestine 
nuclear activity. Real-time monitoring applies to the supervision and analysis of sensor 
events, turning actionable data into information and knowledge. Supervisory control 
occupies the highest level of control: it collects measurements, generates commands, 
manages buffers and queues, and performs scheduling. Specifically, supervisory control 
manages processing resources with delayed response—such as a nuclear spectrum 
analyzer or the floodgate of a tsunami warning center. 

6.2.1. Key Components of Real-Time Monitoring Systems 

Real-time monitoring is central to any real-time system, whether the domain is 
environmental protection, security and defense, space exploration, or any other area 
requiring timely information. It comprises four distinct components. The first is the 
system to be monitored, which in the case of industrial infrastructure is the equipment; 
in the case of environmental, the atmosphere or the ocean; in the case of security, the 
environment; and in the case of space exploration, all the planets. These systems require 
continuous monitoring to avoid dangerous situations such as system failure or support 
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situations such as weather forecasting, atmospheric chemistry, or sensing the 
environment for target tracking and detection, which could also result in catastrophe. 

The second component is the set of sensory elements deployed either on the surface of 
or in the vicinity of the systems requiring monitoring, equipped with proprietary onboard 
data-processing facilities and communications links facilitating exchange of data and 
control information with neighbors and with a central station for monitoring and control. 
While data gathering remains an important primary role of sensory elements in the 
network, these functions need to be supplemented with new capabilities that enable their 
adaptation to the dynamic environment they are monitoring. In essence, the dynamic 
network environment is charged with monitoring itself in a real-time intelligent loop. 
The third component is the task to be performed that falls into one of the following 
categories: a simple alarm indicating abnormal conditions of interest at the monitored 
site, the estimation of the source responsible for the disturbance and prediction of its 
subsequent evolution, or the control of one of the system parameters (e.g., ocean waves, 
atmospheric pollutant concentration). 

6.3. Sensor Networks 

Sensor networks are the invigorating pulse of a real-time monitoring system. In such an 
intelligent arrangement, several sensing nodes are spatially distributed, tasked with 
measuring variables such as temperature, pressure, humidity, or the intensity of 
radiation. After their assessment, the data circulate through the network's communication 
structure, ultimately reaching sink nodes known as gateways or concentrators. These 
gateways concentrate data before transmitting the information to a controlling server. 

Upon arrival at the server, each measurement is duly signaled to the production 
management. This process of sending data in real time is oftentimes referred to as “data 

push.” As communication technologies evolve and systems become more sophisticated, 

adaptation is necessary. Paradoxically, several modern systems opt not to push data but 
instead to “pull” it. This approach uses scheduled tasks—called cron jobs in Linux 
environments—that request sensor information on a predetermined schedule. Moreover, 
with the constant shrinking of the industrial human workforce, new requirements arise 
that enable production management to receive and interpret data before taking action. 

6.3.1. Types of Sensors 

Properly and reliably detecting an event requires the use of different types of sensors. 
Appropriate sensors must be selected for specific operations, environmental conditions, 
destination, application, and operation field. A sensor is a device that measures a 
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physical quantity from the environment and transforms the information into an electrical 
signal for further analysis [2,4,5]. The documents analyzed identify the following 
sensors: 

Acoustic Sensor. An acoustic sensor is a device that detects and measures changes, 
noises, and vibrations in the air. One of the main advantages of this type of sensor is that 
it detects target objects without the need for visual contact. It is commonly deployed in 
noisy environments such as supramax ports, airports, dolphins, and oil piers to monitor 
the sound of ships and airborne noise created through industrial activities. The most used 
sensor is the hydrophone, which is designed to work under water with an omnidirectional 
deterioration of low frequency. 

6.3.2. Sensor Deployment Strategies 

Sensors can be deployed strategically across arbitrary environments, remotely controlled 
and programmed, in order to achieve quick and flexible integration. Sensor deployment 
implies the distribution of a vast number of small-sized and low-cost sensor nodes that 
are equipped with environmental sensors, radio transmitters, and receivers in order to 
communicate the collected data. They capture temporal, spatial, or environmental kinds 
of data. Sensor nodes can be equipped with light sensors, thermometers, accelerometers, 
or microphones, depending on the specific purpose. In addition, it is highly probable that 
computing clocks or other measuring devices are integrated, which are considered 
standard for many applications. Sensors collect data from their environment and send it 
to a base station, which controls the transfer of data and node distribution. The base 
station is responsible for gathering, storing, and displaying the collected information. 

The output of the sensor nodes can be binary or continuous. Binary-type sensors transmit 
only two signals, e.g., 0 or 1. For instance, a vibration sensor recognizes whether an 
object is moving, while a magnetometer detects whether an object is magnetic. The 
output of such sensors can be used to measure the presence of an object, whether it has 
moved, as well as the creation of a particular phenomenon. Continuous sensory activity 
is usually generated by an angular measurement. A rotary sensor detects the rotation 
angular position, direction, or velocity. It is also possible to measure angles, velocities, 
or directions in all three axes, e.g., through the use of three accelerometers or a 
combination of an accelerometer with the rotary sensor. Along these lines, an 
inclinometer detects the spatial position of a surface, about the horizontal and vertical 
axes. 
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6.4. Data Acquisition Techniques 

The large amounts of data collected by these sensor networks must be sent to a central 
computer where they are processed and stored. In applications requiring real-time, rapid 
data collection, the techniques used must capture measurements quickly and send this 
information with no delay. The data must be acquired, or retrieved, from the sensor 
network at high rates of periodic sampling and sent to a central processing unit that can 
handle large data volumes. To accomplish this, many different data-accessing techniques 
use wired and wireless real-time data-transmission methods over various protocols. 

Many real-time data-acquisition protocols allow data to be accessed and sent efficiently 
and rapidly. When performing real-time monitoring, it is vital to connect and 
communicate with the sensors accurately. Real-time systems work by capturing the 
measurements and making them available as soon as the system allows. By doing so, 
continuous measurements from the sensors become rapidly accessible for use with 
cascading systems, such as real-time data storage and real-time analytics. 

 

Fig 6 . 2 : Real-Time Data Collection and Analysis from Sensor Networks 

6.4.1. Sampling Methods 

Sampling is an essential step in data acquisition from sensor networks. It consists of 
determining the time interval between the execution of two consecutive samples for a 
given sensor. For time-dependent variables, the sampling rate according to the Nyquist–
Shannon theorem must be greater than the bandwidth of the analyzed signal to avoid the 
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aliasing effect. For slowly varying signals, such as air quality, temperature, humidity, or 
solar radiation, high-frequency sampling only generates larger data volume, resulting in 
an accelerated sensor battery discharge. 

Sampling methods in sensor networks can be classified into uniform sampling and non-
uniform sampling. Uniform sampling is the simplest method, which is easy to implement 
and understand, but at the same time, it can lead to wasted resources or capture 
insufficient details. On the other hand, non-uniform sampling obtains the data with 
variable intervals according to the state of the monitored environment. In the application 
of these sampling methods, the sampling interval ΔT is dynamically updated according 

to specific strategies. 

6.4.2. Data Transmission Protocols 

In real-time monitoring systems, once the data is acquired, it must be transmitted to a 
location at which it is processed. Single sensor systems may transmit data directly to the 
processing location, whereas data from general sensor networks may be collected into 
one terminal node and transmitted to the processing location from the terminal node. The 
transmission of data within large sensor networks can require the use of multi-hop 
communications, where the data is transmitted by multiple sensor nodes before reaching 
a sink node or terminal node. 

The utilization of sensor networks often requires a trade-off between monitoring 
coverage and costs. For example, in large-scale water environments such as oceans, it is 
difficult to guarantee coverage using wired monitoring stations because they have 
geographical restrictions and are difficult to access. In this case, an unmanned aerial 
vehicle (UAV) payload system with a wireless sensor network can be a good choice. A 
battery-powered underwater wireless sensor network system can also be used for ocean 
monitoring, with careful routing properties, network topology determination, and node 
deployment schemes serving to increase the network lifetime and the overall monitoring 
coverage. 

6.5. Data Processing and Storage 

Data processing and storage underpin real-time monitoring applications. On-site data 
processing is frequently implemented at one or several cluster-heads of the sensor 
network, where the aggregation and filtering of data forego unnecessary communication. 
Storage is primarily housed in on-site controllers, but long-term data retention is 
commonly managed through central or cloud storage. High-speed data transfer coupled 
with powerful on-site servers can facilitate transfer and storage in these locations. 
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Additional on-site storage at a sensor or cluster-head can serve as a short-term memory 
to buffer data before off-site transfer, thereby preventing data loss even when network 
bandwidth is limited. The general flow, from sensor to central storage, proceeds through 
filtering, aggregation, and fusion. Filtering removes data points considered 
uninteresting. Aggregation consolidates the data set, typically reducing the sampling rate 
and data volume by combining individual components into a single overall picture of the 
measurement[6-8]. 

Data fusion extends the scope from a single sensor to the entire sensor network, using 
simultaneously gathered data to enhance sensing performance. Common applications 
include fault clearness and data reconstruction. Fault detection entails the time-based 
comparison of data from a single sensor; any abnormality suggests measurement issues, 
possibly indicating sensor failure requiring immediate replacement. Fault clearness—

the identification of faulty sensors within the network—relies on space- and time-based 
comparison of data from multiple sensors. In case of abnormality, the sensor is tagged 
as faulty, triggering notifications requesting replacement or repair. Furthermore, data 
fusion can also reconstruct damaged or incomplete data based on information from other 
sensors. 

6.5.1. Edge Computing 

The advent of cloud and software-defined services has redefined the architecture of 
networked computing, turning it into an Internet of Services. Many applications, 
including finance, life science, and critical infrastructure, require deploying services 
close to various data sources—particularly sensors—to manipulate data locally and 
reduce the latency of the updating process. Edge computing is a new paradigm that 
addresses these needs. It brings computation and data storage closer to the sources of 
data, thus enabling real-time and context-aware services—processes that traditional 
cloud-based services struggle to support. 

Edge computing certainly benefits the deployment of real-time monitoring systems. By 
enabling real-time services, localizing the formation, processing, and decision-making 
of data, it reduces data transportation. Edge computing can decrease monitoring latency 
and first-level decision-making latency at the network edge and inside local agencies. 
Moreover, it reduces the risk of data leakage and loss during transportation and scales 
down the gate of entry. The monitoring system, deployed between the sources and the 
cloud, makes the overall process more intelligent and capable of supporting the specific 
needs of real-time monitoring services. 

6.5.2. Cloud Storage Solutions 
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Industry and business increasingly rely on software-as-a-service (SaaS) solutions to 
reduce their costs. Accordingly, cloud storage offers an attractive alternative for real-
time monitoring systems as it enables accessing files securely anytime and from any 
place via the Internet without incurring additional costs for an in-house file server. For 
instance, cloud services such as Google Drive, Dropbox, and Microsoft OneDrive enable 
the unified storage of geo-distributed files, thereby simplifying file management and 
supporting coordinated collaboration. These companies guarantee reliable services 
based on robust infrastructures that distribute redundant data in multiple data centres 
around the world. Nevertheless, users have to accept a range of limitations and risks that 
can affect the deployment of a particular real-time monitoring system. 

A sequence of tests was conducted to further investigate Cloud Storage Solutions that 
are not yet operating in real-time. During the study, each test was run in a browser using 
JavaScript, with each client uploading a file and saving it to the cloud. Then, every 5 s, 
an attempt was made to download the file and verify its contents, measuring the 
download latency [1,3,5]. Three cloud storage solutions were examined under this 
methodology: Google Drive, Microsoft OneDrive, and Dropbox. For Google Drive and 
Microsoft OneDrive, the upload requests take less than 2s on average, while the 
download ones show excessive latency, which reaches up to 16s, making the services 
not suitable for real-time video streaming. A different behaviour is observed for 
Dropbox, whose upload requests take more time to be completed, but its download 
latency remains low and stable regardless of the file size; it enables the gradual 
downloading of files as they are being uploaded (i.e., streaming), a very useful feature 
for real-time monitoring systems. 

6.6. Real-Time Data Analytics 

Real-time data analytics—defined by low latency or delay from data generation to 
action—goes beyond the capabilities of batch processing and standard operational 
business intelligence systems. Its short processing time, supported by operational data 
stores, enables swift pattern identification or frequencies with both low data volume and 
operational turnaround time. In a real-time data analytics system, information is prepared 
immediately for analysis. Data quality tuning is performed as the data moves into the 
system, and emergency handling quickly addresses sudden issues. 

Real-time analytics offers greater responsiveness to emerging customer contexts, 
coupled with substantial support for strategic decision-making. Sometimes referred to as 
"Fast Data," it allows for timely insights into global business performance and 
functioning. In an age where business agility helps create sustainable competitive 
advantage, organizations have a profound need to focus on every aspect of their 
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operations in real-time. As a result, real-time data analytics has become an indispensable 
component of business intelligence. 

6.6.1. Streaming Data Analysis 

Real-time data analysis is a rapidly growing topic in many research areas, since in certain 
situations it is better to monitor processes or phenomena as they happen and better 
understand their dynamics. Real-time data arise under several different circumstances, 
such as (i) monitoring of streaming online processes, (ii) analysis of online sensor 
networks, (iii) monitoring and analysis of web traffic, (iv) analysis of online financial 
data, and (v) the analysis of online healthcare data. In several cases, real-time data arise 
with the need for real-time decision making based on the available information at the 
time of decision. The most common application areas for analysis of real-time data 
include environmental monitoring, telecommunication services, finance, medicine, 
emergency and crime management, environmental crisis handling, and biosurveillance. 

 

Fig 6 . 3 : Real-Time Data Analysis and Decision Making 

The rapid technological advances in sensor design, sensor networks, and connectivity 
enable scientists to obtain large volumes of data in real time and from multiple sources. 
Real-time data analysis and decision making are essential for recent predictive analytics 
in many areas of analysis. For example, sensor data aims at predicting future states of 
the environment, health, and financial markets, to perform actions on the system to avoid 
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undesired future states. Real-time data frequently arrives in streaming fashion and needs 
to be analyzed online as they are collected, or decisions need to be made if the process 
is operating within the preset specifications. Streaming data is usually dynamic and 
changing rapidly, which creates new challenges in the field of data analysis and decision-
making. 

6.6.2. Machine Learning Algorithms 

Monitoring, prediction, and pre-alert of different phenomena are important in different 
areas such as health, industry, smart cities, smart houses, smart agriculture, and smart 
metering, among others. Teams in the environmental area are dedicating efforts to real-
time monitoring, prediction, and pre-alert of different environmental phenomena. One 
of the monitoring activities involves the measurement of rain, water stored in reservoirs, 
humidity, temperature, or the level of water in a river. Additionally, the pre-alert and 
prediction of environmental phenomena are positively impacted by timely decisions and 
the adoption of security measures. 

Within these activities, the use of automatic stations for measuring the level of water in 
rivers plays an important role. However, there are large temporal gaps in the historical 
time series of some measuring stations, generated by various causes, such as lack of 
maintenance, dependence on electrical energy supply, and the sensitivity of monitoring 
stations to lightning, among others. Artificial intelligence data treatment tools have made 
it possible to design models that not only reconstruct these missing data but also predict 
the level of water in a river using machine learning algorithms. 

6.7. Predictive Analytics 

Expressing a picture requires many colors, but what is important is the concentration and 
subtlety of colors; for example, a person’s face looks very natural if the artist uses a thin 

film of color on a white canvas without precisely pre-planning the picture. In the same 
way, placing many LMS sensors densely in real space may make pictures too noisy to 
visualize clearly. The best method is not mapping sensors on the map 1:1, but drawing 
the “average” elevation of each region by analyzing a big data set. 

For this data analysis, the authors chose to use space-time kriging, a Gaussian process 
regression method. In this analysis, data points far away from the analysis point are 
assigned reduced weight, providing a natural function of smoothing noise. However, this 
method requires more computational resources and thus it is more suitable for offline 
analysis than for real-time use. Real-time calculation is required during an emergency 
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disaster, but for hazard maps and evacuation planning, the results obtained after the 
events have ended are useful. redrawcolor 

6.7.1. Statistical Models 

Prediction of future events is an integral part of statistical analysis, with its significance 
growing alongside technological advancement. Accurate forecasting is critical for public 
and industrial safety, and devising methods to achieve it remains a core objective of 
statistics. However, in many scenarios, predictions are required for sequences of events 
rather than isolated incidents. For example, the failure detection of electrical generators 
during peak loads involves an urgent and logical request: Identify which devices are 
likely to fail next. The question is reversed: Identify the generators that have already 
failed. Instances of such problems are numerous. 

The synchronous radar detection of low-orbit aircraft poses a similar question. At any 
time, indicate the planes that have passed a given point located on Earth's surface. 
Carriers of radar equipment are mounted on Earth, stationary or in continuous flight, at 
a given altitude. The arrival times of signals reflected from each plane are recorded. 
These flights, considered as a stationary process, form a point process. By classification, 
an estimate of the plane passage times is obtained. This is a prediction of the positions 
of the airplanes at some time in the past. Yet, the closest and most attractive example is 
signal processing [8-10]. Filters applied to noisy signals contain replicating blocks that 
require estimation of the signal at time points not previous to the time under 
consideration. The methods employed are under the generic name of prediction. Time 
series forecasting can be considered in a broader framework. 

6.7.2. Time Series Forecasting 

Both sensor and social sources have also been utilized for what is known as time series 
forecasting. A time series is an ordered sequence of data points recorded at regular time 
intervals, where the objective is to use the sequential history to predict the next point of 
the time series. Time series forecasting is widely used in social and economic domains. 
The main advantage of time series forecasting is that a time series can be used even if 
there is no knowledge or data about the underlying system. However, this may not be 
the best approach when there is enough knowledge about the system—for example, if a 
physical model exists. 

Most time series forecasting approaches utilize one or a combination of the following 
three classes of models: (i) moving average, (ii) exponential smoothing, and (iii) 
autoregressive models. Moving average is a simple list of averages computed by sliding 
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a time window across the data set, which is widely used for noise reduction in time series 
data. Additionally, it can be used for forecasting using the next point mean given a 
weight. Exponential smoothing assigns exponentially decreasing weights to previous 
observations. Any example value can be used for the first observation, and each of the 
following observations, the last forecast is computed using the last observation and the 
previous forecast. Autoregressive models use the relationship between current and 
earlier observations to model the time series data set and forecast the next value. An 
example of such a model is the autoregressive moving average (ARMA) model, which 
models the current observation as a weighted sum of past observations and past model 
errors. 

6.8. Future Trends in Monitoring Systems 

Organisations in every sector of the economy increasingly demand Basic Monitoring 
Systems (1–5). The ability to quickly monitor and assess any information demands 
presented by a key user group as circumstances change is now accepted practice. As 
attention shifts from monitoring to control, there is growing demand for systems with 
additional decision-making functionality to help users select any equipment to be used 
in an industrial environment. In a Basic Monitoring System, the sensors/instruments and 
the associated data interface play the central role. They must communicate, 
communicate reliably, communicate consistently, and do so in any order conforming to 
demand, while responding to the changing needs of the primary users. That 
communication is required in real time, and the results must be presented in a suitable 
format capable of rapid assimilation and/or action. 

 

Fig 6 . 4 : Shifting Demand: From Monitoring to Control in BMS 
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The range of implemented Basic Monitoring Systems has rapidly expanded, with their 
development being largely led by technical advances in satellite communications. 
System growth has tended to be horizontal. New systems with different characteristics 
have been added to the range, but systems with differing far-end geographical 
characteristics have not been integrated. The large number of dedicated Basic 
Monitoring Systems is achieved by attempting to satisfy each user group’s distinctive 

needs, with the result that most of their messages tend to be generated and transmitted 
by the same set of sensors/instruments. Basically, these dedicated systems are 
performing the same task, developing Basic Monitoring Systems for sending essentially 
identical messages generated by weather sensors/instruments. Other Basic Monitoring 
Systems that monitor and control key environmental variables such as levels of industrial 
pollution have been developed for, although not devoted totally to, industrial activities. 

6.8.1. Integration with IoT 

A real-time monitoring system may utilize algorithms such as logistic regression, 
support vector machine (SVM), k-nearest neighbor (KNN), nearest mean classification 
(NMC), random forest (RF), artificial neural network (ANN), gradient boosting 
algorithm (GBM), and Naive Bayes (NB) algorithms to assess the health status of pumps. 
Integrating intelligent vibration monitoring systems into a smart factory connects each 
device directly to the cloud, enabling users to track the status of production equipment 
in real time. 

The real-time condition monitoring system of equipment is an indispensable part of a 
smart factory that integrates the Internet of Things (IoT) with real-time monitoring 
technologies. The system combines offline historical data with real-time data for training 
and prediction and utilizes machine learning algorithms in the cloud. It evaluates the 
health status of each pump and equipment in the factory during operation and assigns 
appropriate maintenance priorities based on the predicted risk levels of the equipment. 

6.8.2. Advancements in AI 

Recent decades have witnessed rapid progress in the use of artificial intelligence (AI) 
for real-time monitoring systems. The integration of AI with other technological 
innovations creates vast potential for real-time monitoring applications. The 
implementation of a deep learning (DL) model for simultaneous vibration-based 
condition monitoring of a multiunit gearbox is proposed by leveraging untapped features 
in the transmission error signal. In particular, a multiobjective convolutional neural 
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network, called MO-CNN, is developed by simultaneously optimizing multiple 
objectives that collectively contribute to the robustness and performance of the 
framework. 

The shift from Vibration Analysis to Predictive Maintenance emphasizes that real-time 
monitoring delivers appropriate information to the right person at the right time in the 
right format, using online sensor technology to optimize performance monitoring. 
Condition-based maintenance is no longer reserved for monitoring large, high-value 
assets but can be applied to all rotating equipment in process industries. Although the 
theoretical benefits of the vibration condition-based maintenance practice have long 
been identified, actual implementation remains low due to the unpleasant experience of 
false alarms induced by unconfident diagnosis. A two-stage deep learning-based 
intelligent fault diagnosis framework is thus proposed to enhance the robustness of 
diagnosis. 

6.9. Conclusion 

Although numerous monitoring systems can be implemented, their implementation is 
invariably limited by budgets and priorities, preventing the inclusion of sophisticated 
features or even the basic infrastructure. In the presented study, the construction of a 
real-time monitoring system is reduced to a basic and very broad functional set. At least 
an alerting mechanism is implemented to inform decision-makers about potentially 
harmful changes across a monitored area. Any logging implemented during operation is 
considered a bonus. Aside from real-time operation, the main goal is to attract investment 
for comprehensive environmental monitoring systems by demonstrating the potential of 
even a minimum setup. This simple approach, capable of improving existing 
environmental monitoring with little effort and at a reasonable cost, can create demand 
for a more sophisticated follow-up installation. 

However, a real-time aspect is rather imposing. A non-real-time system would eliminate 
several budgetary constraints because two key areas are saved: data transmission and 
automatic processing. These two areas become exponentially more expensive when 
trying to provide an environment where data is not held back for hours or days as a 
compilation for manual review, but where everyone can access the server live and use 
any functionality like alerting, visualization, or statistical computation. Even though it 
might seem paradoxical, it is cheaper to operate a non-real-time system with authentic 
sensors than to employ a satellite monitoring service. Although only a few measu­red 
parameters would be available, the satellite service would guarantee real-time data 
transmission accompanied by rapid processing and reliable alerting. 
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6.9.1. Final Thoughts and Future Directions 

Automated monitoring systems are the future of water resources management. Near real-
time spatial and temporal water quality and flow condition data are essential for 
understanding the health, status, and trends of a watershed. The data can also be used to 
explain the influences of a watershed, including flow volumes, pollutant transport, 
pollutant loadings, and changes. Agilent’s expert water quality engineers can guide 

readers through their application and selection process, the necessary components, and 
important planning considerations, providing specific examples of water quality and 
flow conditions in Rivers of America. 

Predicting ionospheric scintillation, which holds significant implications for global 
navigation satellite system receivers in equatorial regions, involves analyzing global 
positioning system signal characteristics, lunar phase, and various geomagnetic and 
geophysical parameters, employing neural network methodologies to forecast the S4 
index at equatorial locations. The selection of input parameters substantially influences 
prediction accuracy; thus, using diverse input sets across multiple stations in central and 
southern Brazil helps determine optimal combinations for enhanced prediction. 
Predicted data reveal that scintillation activity remains intense during the early hours of 
the night and late lunar phases. 
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