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Chapter 6: Real-Time Monitoring Systems. From
Sensor Networksto Predictive Analytics

6.1 Introduction

An array of industries employs real-time monitoring systems to curb expensive damage
and reduce the risk of harm to human lives, especially when any infrastructure fails. The
zone of increased demand includes fire, traffic, and activity, especially when associated
with the management of crowded recreational places. Crowded societies and increased
demand for services of recreational places, such astourism and businessesin cities, have
brought several drawbacks, such as moretraffic, more fire accidents, more contaminated
air, and a poor travel environment. Therefore, the public is worried about issues such as
traffic jams, congestion during travel, traffic behavior, route planning, and the
occurrence of weather emergencies such asfire.

Complex problems require complex solutions that can involve different well-established
fields such as real-time monitoring, activity recognition, and prediction, contributing not
only to fire safety but also to providing abetter environment. Devel oped systems depend
on monitoring and the recognition of activities through real-time image data or sensor-
based data that extract essential attributes for making the right decision in the different
activities of the monitoring environments, such as fire detection based on fire color
analysis and activity recognition based on optical-flow divergence. Overcrowding may
occur in any crowded place and can cause dangerous situations, such as in shopping
malls, during concerts, or even in other mgjor events. Controlling overcrowding can be
readized by estimating the pattern of people movement—detecting, recognizing, and
predicting peopl€e's activities in a crowded place.

6.1.1. Brief Introduction to Real-Time M onitoring Systems

Sensors are electronic devices capable of sensing or measuring the rea-world
environment and transforming such data into electrical signals before sending these
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signalsto acommand center for meaningful analysis. Examples of sensorsinclude those
that detect objects or surfaces or transform physical propertiesinto electrical or wireless
signals. Sensors may be deployed in robots for object detection or in automated self-
driving vehicles for obstacle detection or to recognize and avoid accidents at crossing
points. Humans cannot process datain bulk like robots, but teachers can still use answers
furnished by students to evaluate individual success. Sensor networks incorporate
multiple sensors to collect large amounts of data. One such type is the wireless sensor
network (WSN). A WSN consists of distributed sensors that communicate via low-
power radio-frequency (RF) technology within alimited area to perform long-distance
sensing tasks. The data collected by these sensorsisthen delivered to acommand center
or base station to represent the sensed data. WSNs have been widely used in military
applications, healthcare, shape-changing robots, ice-embedded robots, and climate
monitoring applications. WSNs are also known as wireless networks or distributed
sensor networks. The real-time transmission of streaming data from WSNs is most
vulnerable to security problems and attacks, so securing a WSN is increasingly
important. Moreover, it requires the best algorithms to generate the best human answer
or output [1-3].

A deployed WSN, such as the sensor network in the smart city, collects datain real time
and generates sensitive streaming data. Various applications generate sensitive
streaming datathat needs to be secured through the use of cloud environments. The cloud
isaversatile and innovative system that provides various computing and storage services
to its customers and users. Research in recent years has focused mostly on facilitating
fast data transmission and ensuring a reliable cloud environment. Although a cloud
environment facilitates data transmission through non-Maximum Suppression (NMS)
algorithms, it still lacks real-time monitoring. Thus, the present work develops a real-
time monitoring system using a sensor network through a cloud-based NM S framework.

6.2. Overview of Real-Time Monitoring Systems

Real-time monitoring systems enabl e the collection and analysis of immediate data over
telecommunications and Ethernet networks. This capability allows professional teamsto
oversee their operations remotely, making informed, timely decisions. The benefits of
these systems span across a diverse range of industries and applications—such as
government agencies monitoring for illicit nuclear activities, environmentalists tracking
forest conditions, tsunami warning centers, coastal surveillance, military radar
operations, traffic monitoring, and air-traffic control. The application of rea-time
monitoring aligns with the Internet of Things (10T) concept, where the network links
sensors and actuators to supervisory control systems. 10T also supports areas such as
smart meters, home appliances, transportation, and electric vehicles.
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Fig 6. 1: Real-Time Monitoring Systems and Applications

Real-time monitoring systems typically comprise a set of event sensors connected to an
event actuator, with supervisory control building the remaining part of the system.
Monitoring entails supervising measured results on a real-time basis. In nuclear
monitoring, sensors detect start and stop events, producing long-running outputs—asin
thefirst example of the case study, where real -time monitoring helpsidentify clandestine
nuclear activity. Real-time monitoring applies to the supervision and analysis of sensor
events, turning actionable data into information and knowledge. Supervisory control
occupies the highest level of control: it collects measurements, generates commands,
manages buffers and queues, and performs scheduling. Specifically, supervisory control
manages processing resources with delayed response—such as a nuclear spectrum
analyzer or the floodgate of a tsunami warning center.

6.2.1. Key Components of Real-Time Monitoring Systems

Real-time monitoring is central to any real-time system, whether the domain is
environmental protection, security and defense, space exploration, or any other area
requiring timely information. It comprises four distinct components. The first is the
system to be monitored, which in the case of industrial infrastructure is the equipment;
in the case of environmental, the atmosphere or the ocean; in the case of security, the
environment; and in the case of space exploration, all the planets. These systems require
continuous monitoring to avoid dangerous situations such as system failure or support
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situations such as weather forecasting, atmospheric chemistry, or sensing the
environment for target tracking and detection, which could also result in catastrophe.

The second component is the set of sensory elements deployed either on the surface of
or inthevicinity of the systems requiring monitoring, equipped with proprietary onboard
data-processing facilities and communications links facilitating exchange of data and
control information with neighbors and with a central station for monitoring and control.
While data gathering remains an important primary role of sensory elements in the
network, these functions need to be supplemented with new capabilities that enable their
adaptation to the dynamic environment they are monitoring. In essence, the dynamic
network environment is charged with monitoring itself in a rea-time intelligent loop.
The third component is the task to be performed that falls into one of the following
categories. a simple alarm indicating abnormal conditions of interest at the monitored
site, the estimation of the source responsible for the disturbance and prediction of its
subsequent evolution, or the control of one of the system parameters (e.g., ocean waves,
atmospheric pollutant concentration).

6.3. Sensor Networks

Sensor networks are the invigorating pulse of areal-time monitoring system. In such an
intelligent arrangement, several sensing nodes are spatially distributed, tasked with
measuring variables such as temperature, pressure, humidity, or the intensity of
radiation. After their assessment, the datacirculate through the network's communication
structure, ultimately reaching sink nodes known as gateways or concentrators. These
gateways concentrate data before transmitting the information to a controlling server.

Upon arrival at the server, each measurement is duly signaled to the production
management. This process of sending data in real time is oftentimes referred to as “data
push.” As communication technologies evolve and systems become more sophisticated,
adaptation is necessary. Paradoxically, severa modern systems opt not to push data but
instead to “pull” it. This approach uses scheduled tasks—called cron jobs in Linux
environments—that request sensor information on a predetermined schedule. Moreover,
with the constant shrinking of the industrial human workforce, new requirements arise
that enable production management to receive and interpret data before taking action.

6.3.1. Typesof Sensors

Properly and reliably detecting an event requires the use of different types of sensors.
Appropriate sensors must be selected for specific operations, environmental conditions,
destination, application, and operation field. A sensor is a device that measures a
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physical quantity from the environment and transforms the information into an electrical
signal for further analysis [2,4,5]. The documents analyzed identify the following
SeNnsors:

Acoustic Sensor. An acoustic sensor is a device that detects and measures changes,
noises, and vibrationsin the air. One of the main advantages of this type of sensor isthat
it detects target objects without the need for visual contact. It is commonly deployed in
noisy environments such as supramax ports, airports, dolphins, and oil piers to monitor
the sound of ships and airborne noise created through industrial activities. The most used
sensor isthe hydrophone, which isdesigned to work under water with an omnidirectional
deterioration of low frequency.

6.3.2. Sensor Deployment Strategies

Sensors can be deployed strategically across arbitrary environments, remotely controlled
and programmed, in order to achieve quick and flexible integration. Sensor deployment
implies the distribution of avast number of small-sized and low-cost sensor nodes that
are equipped with environmental sensors, radio transmitters, and receivers in order to
communicate the collected data. They capture temporal, spatial, or environmental kinds
of data. Sensor nodes can be equipped with light sensors, thermometers, accelerometers,
or microphones, depending on the specific purpose. In addition, it is highly probable that
computing clocks or other measuring devices are integrated, which are considered
standard for many applications. Sensors collect data from their environment and send it
to a base station, which controls the transfer of data and node distribution. The base
station is responsible for gathering, storing, and displaying the collected information.

The output of the sensor nodes can be binary or continuous. Binary-type sensors transmit
only two signals, e.g., 0 or 1. For instance, a vibration sensor recognizes whether an
object is moving, while a magnetometer detects whether an object is magnetic. The
output of such sensors can be used to measure the presence of an object, whether it has
moved, as well as the creation of a particular phenomenon. Continuous sensory activity
is usually generated by an angular measurement. A rotary sensor detects the rotation
angular position, direction, or velocity. It is also possible to measure angles, velocities,
or directions in all three axes, e.g., through the use of three accelerometers or a
combination of an accelerometer with the rotary sensor. Along these lines, an
inclinometer detects the spatial position of a surface, about the horizontal and vertical
axes.
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6.4. Data Acquisition Techniques

The large amounts of data collected by these sensor networks must be sent to a central
computer where they are processed and stored. In applications requiring real-time, rapid
data collection, the techniques used must capture measurements quickly and send this
information with no delay. The data must be acquired, or retrieved, from the sensor
network at high rates of periodic sampling and sent to a central processing unit that can
handle large datavolumes. To accomplish this, many different data-accessing techniques
use wired and wireless real -time data-transmission methods over various protocols.

Many real-time data-acquisition protocols allow data to be accessed and sent efficiently
and rapidly. When performing rea-time monitoring, it is vital to connect and
communicate with the sensors accurately. Real-time systems work by capturing the
measurements and making them available as soon as the system allows. By doing so,
continuous measurements from the sensors become rapidly accessible for use with
cascading systems, such as real-time data storage and real-time anal ytics.

Fig 6. 2: Red-Time Data Collection and Analysis from Sensor Networks

6.4.1. Sampling Methods

Sampling is an essentia step in data acquisition from sensor networks. It consists of
determining the time interval between the execution of two consecutive samples for a
given sensor. For time-dependent variables, the sampling rate according to the Nyquist—
Shannon theorem must be greater than the bandwidth of the analyzed signal to avoid the
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aliasing effect. For dlowly varying signals, such as air quality, temperature, humidity, or
solar radiation, high-frequency sampling only generates larger data volume, resulting in
an accelerated sensor battery discharge.

Sampling methods in sensor networks can be classified into uniform sampling and non-
uniform sampling. Uniform sampling isthe simplest method, whichis easy to implement
and understand, but at the same time, it can lead to wasted resources or capture
insufficient details. On the other hand, non-uniform sampling obtains the data with
variableintervals according to the state of the monitored environment. In the application
of these sampling methods, the sampling interval AT is dynamically updated according
to specific strategies.

6.4.2. Data Transmission Protocols

In real-time monitoring systems, once the data is acquired, it must be transmitted to a
location at which it is processed. Single sensor systems may transmit data directly to the
processing location, whereas data from general sensor networks may be collected into
oneterminal node and transmitted to the processing location from the terminal node. The
transmission of data within large sensor networks can require the use of multi-hop
communications, where the data is transmitted by multiple sensor nodes before reaching
asink node or terminal node.

The utilization of sensor networks often requires a trade-off between monitoring
coverage and costs. For example, in large-scale water environments such as oceans, it is
difficult to guarantee coverage using wired monitoring stations because they have
geographical restrictions and are difficult to access. In this case, an unmanned aerial
vehicle (UAV) payload system with awireless sensor network can be a good choice. A
battery-powered underwater wireless sensor network system can also be used for ocean
monitoring, with careful routing properties, network topology determination, and node
deployment schemes serving to increase the network lifetime and the overall monitoring
coverage.

6.5. Data Processing and Storage

Data processing and storage underpin real-time monitoring applications. On-site data
processing is frequently implemented at one or severa cluster-heads of the sensor
network, where the aggregation and filtering of dataforego unnecessary communication.
Storage is primarily housed in on-site controllers, but long-term data retention is
commonly managed through central or cloud storage. High-speed data transfer coupled
with powerful on-site servers can facilitate transfer and storage in these locations.
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Additional on-site storage at a sensor or cluster-head can serve as a short-term memory
to buffer data before off-site transfer, thereby preventing data loss even when network
bandwidth islimited. The general flow, from sensor to central storage, proceeds through
filtering, aggregation, and fusion. Filtering removes data points considered
uninteresting. Aggregation consolidates the data set, typically reducing the sasmpling rate
and data volume by combining individual componentsinto asingle overall picture of the
measurement[6-8].

Data fusion extends the scope from a single sensor to the entire sensor network, using
simultaneously gathered data to enhance sensing performance. Common applications
include fault clearness and data reconstruction. Fault detection entails the time-based
comparison of datafrom asingle sensor; any abnormality suggests measurement issues,
possibly indicating sensor failure requiring immediate replacement. Fault clearness—
the identification of faulty sensors within the network—relies on space- and time-based
comparison of data from multiple sensors. In case of abnormality, the sensor is tagged
as faulty, triggering notifications requesting replacement or repair. Furthermore, data
fusion can al so reconstruct damaged or incompl ete data based on information from other
SENnsors.

6.5.1. Edge Computing

The advent of cloud and software-defined services has redefined the architecture of
networked computing, turning it into an Internet of Services. Many applications,
including finance, life science, and critical infrastructure, require deploying services
close to various data sources—particularly sensors—to manipulate data locally and
reduce the latency of the updating process. Edge computing is a new paradigm that
addresses these needs. It brings computation and data storage closer to the sources of
data, thus enabling real-time and context-aware services—processes that traditional
cloud-based services struggle to support.

Edge computing certainly benefits the deployment of real-time monitoring systems. By
enabling real-time services, localizing the formation, processing, and decision-making
of data, it reduces data transportation. Edge computing can decrease monitoring latency
and first-level decision-making latency at the network edge and inside local agencies.
Moreover, it reduces the risk of data leakage and loss during transportation and scales
down the gate of entry. The monitoring system, deployed between the sources and the
cloud, makes the overall process more intelligent and capable of supporting the specific
needs of real-time monitoring services.

6.5.2. Cloud Storage Solutions
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Industry and business increasingly rely on software-as-a-service (SaaS) solutions to
reduce their costs. Accordingly, cloud storage offers an attractive alternative for real -
time monitoring systems as it enables accessing files securely anytime and from any
place viathe Internet without incurring additional costs for an in-house file server. For
instance, cloud services such as Google Drive, Dropbox, and Microsoft OneDrive enable
the unified storage of geo-distributed files, thereby simplifying file management and
supporting coordinated collaboration. These companies guarantee reliable services
based on robust infrastructures that distribute redundant data in multiple data centres
around the world. Nevertheless, users have to accept arange of limitations and risks that
can affect the deployment of a particular real-time monitoring system.

A sequence of tests was conducted to further investigate Cloud Storage Solutions that
are not yet operating in real-time. During the study, each test was run in abrowser using
JavaScript, with each client uploading afile and saving it to the cloud. Then, every 5 s,
an attempt was made to download the file and verify its contents, measuring the
download latency [1,3,5]. Three cloud storage solutions were examined under this
methodology: Google Drive, Microsoft OneDrive, and Dropbox. For Google Drive and
Microsoft OneDrive, the upload requests take less than 2s on average, while the
download ones show excessive latency, which reaches up to 16s, making the services
not suitable for real-time video streaming. A different behaviour is observed for
Dropbox, whose upload requests take more time to be completed, but its download
latency remains low and stable regardiess of the file size; it enables the gradual
downloading of files as they are being uploaded (i.e., streaming), a very useful feature
for real-time monitoring systems.

6.6. Real-Time Data Analytics

Real-time data analytics—defined by low latency or delay from data generation to
action—goes beyond the capabilities of batch processing and standard operational
business intelligence systems. Its short processing time, supported by operational data
stores, enables swift pattern identification or frequencies with both low data volume and
operational turnaround time. In areal-time data analytics system, information is prepared
immediately for analysis. Data quality tuning is performed as the data moves into the
system, and emergency handling quickly addresses sudden issues.

Read-time analytics offers greater responsiveness to emerging customer contexts,
coupled with substantial support for strategic decision-making. Sometimesreferred to as
"Fast Data," it allows for timely insights into globa business performance and
functioning. In an age where business agility helps create sustainable competitive
advantage, organizations have a profound need to focus on every aspect of their
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operationsin real-time. Asaresult, real-time data analytics has become an indispensable
component of business intelligence.

6.6.1. Streaming Data Analysis

Real-time dataanalysisisarapidly growing topic in many research areas, sincein certain
situations it is better to monitor processes or phenomena as they happen and better
understand their dynamics. Real-time data arise under several different circumstances,
such as (i) monitoring of streaming online processes, (ii) analysis of online sensor
networks, (iii) monitoring and analysis of web traffic, (iv) analysis of online financia
data, and (v) the analysis of online healthcare data. In several cases, rea-time data arise
with the need for real-time decision making based on the available information at the
time of decision. The most common application areas for analysis of real-time data
include environmental monitoring, telecommunication services, finance, medicine,
emergency and crime management, environmental crisis handling, and biosurveillance.

Fig 6. 3: Red-Time Data Analysis and Decision Making

The rapid technological advances in sensor design, sensor networks, and connectivity
enable scientists to obtain large volumes of dataiin real time and from multiple sources.
Real-time data analysis and decision making are essential for recent predictive analytics
in many areas of analysis. For example, sensor data aims at predicting future states of
the environment, health, and financial markets, to perform actions on the system to avoid
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undesired future states. Real-time data frequently arrivesin streaming fashion and needs
to be analyzed online as they are collected, or decisions nheed to be made if the process
is operating within the preset specifications. Streaming data is usually dynamic and
changing rapidly, which creates new challengesin thefield of dataanalysisand decision-
making.

6.6.2. Machine Learning Algorithms

Monitoring, prediction, and pre-alert of different phenomena are important in different
areas such as health, industry, smart cities, smart houses, smart agriculture, and smart
metering, among others. Teams in the environmental area are dedicating efforts to real-
time monitoring, prediction, and pre-aert of different environmental phenomena. One
of the monitoring activities involves the measurement of rain, water stored in reservairs,
humidity, temperature, or the level of water in ariver. Additionally, the pre-alert and
prediction of environmental phenomenaare positively impacted by timely decisions and
the adoption of security measures.

Within these activities, the use of automatic stations for measuring the level of water in
rivers plays an important role. However, there are large temporal gaps in the historical
time series of some measuring stations, generated by various causes, such as lack of
maintenance, dependence on electrical energy supply, and the sensitivity of monitoring
stationsto lightning, among others. Artificial intelligence datatreatment tools have made
it possible to design models that not only reconstruct these missing data but also predict
the level of water in ariver using machine learning algorithms.

6.7. Predictive Analytics

Expressing a picture requires many colors, but what isimportant is the concentration and
subtlety of colors; for example, a person’s face looks very natural if the artist uses a thin
film of color on a white canvas without precisely pre-planning the picture. In the same
way, placing many LMS sensors densely in real space may make pictures too noisy to
visualize clearly. The best method is not mapping sensors on the map 1:1, but drawing
the “average” elevation of each region by analyzing a big data set.

For this data analysis, the authors chose to use space-time kriging, a Gaussian process
regression method. In this analysis, data points far away from the analysis point are
assigned reduced weight, providing anatural function of smoothing noise. However, this
method requires more computational resources and thus it is more suitable for offline
analysis than for real-time use. Real-time calculation is required during an emergency
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disaster, but for hazard maps and evacuation planning, the results obtained after the
events have ended are useful. redrawcolor

6.7.1. Statistical M odels

Prediction of future eventsis an integral part of statistical analysis, with its significance
growing alongside technol ogical advancement. Accurate forecasting iscritical for public
and industrial safety, and devising methods to achieve it remains a core objective of
statistics. However, in many scenarios, predictions are required for sequences of events
rather than isolated incidents. For example, the failure detection of electrical generators
during peak loads involves an urgent and logical request: Identify which devices are
likely to fail next. The question is reversed: Identify the generators that have already
failed. Instances of such problems are numerous.

The synchronous radar detection of low-orbit aircraft poses a similar question. At any
time, indicate the planes that have passed a given point located on Earth's surface.
Carriers of radar equipment are mounted on Earth, stationary or in continuous flight, at
a given dltitude. The arrival times of signals reflected from each plane are recorded.
Theseflights, considered as a stationary process, form a point process. By classification,
an estimate of the plane passage times is obtained. Thisis a prediction of the positions
of the airplanes at some time in the past. Y et, the closest and most attractive exampleis
signal processing [8-10]. Filters applied to noisy signals contain replicating blocks that
require estimation of the signal at time points not previous to the time under
consideration. The methods employed are under the generic name of prediction. Time
series forecasting can be considered in a broader framework.

6.7.2. Time Series For ecasting

Both sensor and socia sources have also been utilized for what is known as time series
forecasting. A time seriesis an ordered sequence of data points recorded at regular time
intervals, where the objective is to use the sequentia history to predict the next point of
the time series. Time series forecasting is widely used in social and economic domains.
The main advantage of time series forecasting is that a time series can be used even if
there is no knowledge or data about the underlying system. However, this may not be
the best approach when there is enough knowledge about the system—for example, if a
physical model exists.

Most time series forecasting approaches utilize one or a combination of the following
three classes of models. (i) moving average, (ii) exponential smoothing, and (iii)
autoregressive models. Moving average isasimple list of averages computed by sliding
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atimewindow across the data set, which iswidely used for noise reduction in time series
data. Additionally, it can be used for forecasting using the next point mean given a
weight. Exponential smoothing assigns exponentially decreasing weights to previous
observations. Any example value can be used for the first observation, and each of the
following observations, the last forecast is computed using the last observation and the
previous forecast. Autoregressive models use the relationship between current and
earlier observations to model the time series data set and forecast the next value. An
example of such amodel is the autoregressive moving average (ARMA) model, which
models the current observation as a weighted sum of past observations and past model
errors.

6.8. Future Trendsin Monitoring Systems

Organisations in every sector of the economy increasingly demand Basic Monitoring
Systems (1-5). The ability to quickly monitor and assess any information demands
presented by a key user group as circumstances change is now accepted practice. As
attention shifts from monitoring to control, there is growing demand for systems with
additional decision-making functionality to help users select any equipment to be used
inanindustrial environment. In aBasic Monitoring System, the sensorg/instruments and
the associated data interface play the central role. They must communicate,
communicate reliably, communicate consistently, and do so in any order conforming to
demand, while responding to the changing needs of the primary users. That
communication is required in real time, and the results must be presented in a suitable
format capable of rapid assimilation and/or action.

High

BMS Fucttioallity

=2

Low

Past Present Future
(Monitoring) (Analytics & {Predictive Control)
Optimization)
Time

Fig 6. 4 : Shifting Demand: From Monitoring to Control in BMS
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The range of implemented Basic Monitoring Systems has rapidly expanded, with their
development being largely led by technical advances in satellite communications.
System growth has tended to be horizontal. New systems with different characteristics
have been added to the range, but systems with differing far-end geographical
characteristics have not been integrated. The large number of dedicated Basic
Monitoring Systems is achieved by attempting to satisfy each user group’s distinctive
needs, with the result that most of their messages tend to be generated and transmitted
by the same set of sensorg/instruments. Basicaly, these dedicated systems are
performing the same task, developing Basic Monitoring Systems for sending essentially
identical messages generated by weather sensors/instruments. Other Basic Monitoring
Systemsthat monitor and control key environmental variables such aslevelsof industrial
pollution have been developed for, although not devoted totally to, industrial activities.

6.8.1. Integration with l1oT

A real-time monitoring system may utilize algorithms such as logistic regression,
support vector machine (SVM), k-nearest neighbor (KNN), nearest mean classification
(NMC), random forest (RF), artificial neural network (ANN), gradient boosting
algorithm (GBM), and Naive Bayes (NB) algorithmsto assessthe health status of pumps.
Integrating intelligent vibration monitoring systems into a smart factory connects each
device directly to the cloud, enabling users to track the status of production equipment
inreal time.

The real-time condition monitoring system of equipment is an indispensable part of a
smart factory that integrates the Internet of Things (IoT) with real-time monitoring
technologies. The system combines offline historical datawith real-time datafor training
and prediction and utilizes machine learning algorithms in the cloud. It evaluates the
health status of each pump and equipment in the factory during operation and assigns
appropriate maintenance priorities based on the predicted risk levels of the equipment.

6.8.2. Advancementsin Al

Recent decades have witnessed rapid progress in the use of artificial intelligence (Al)
for real-time monitoring systems. The integration of Al with other technological
innovations creates vast potential for real-time monitoring applications. The
implementation of a deep learning (DL) model for simultaneous vibration-based
condition monitoring of amultiunit gearbox is proposed by leveraging untapped features
in the transmission error signal. In particular, a multiobjective convolutional neural
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network, called MO-CNN, is developed by simultaneously optimizing multiple
objectives that collectively contribute to the robustness and performance of the
framework.

The shift from Vibration Analysis to Predictive Maintenance emphasizes that real-time
monitoring delivers appropriate information to the right person at the right time in the
right format, using online sensor technology to optimize performance monitoring.
Condition-based maintenance is no longer reserved for monitoring large, high-value
assets but can be applied to al rotating equipment in process industries. Although the
theoretical benefits of the vibration condition-based maintenance practice have long
been identified, actual implementation remains low due to the unpleasant experience of
false alarms induced by unconfident diagnosis. A two-stage deep learning-based
intelligent fault diagnosis framework is thus proposed to enhance the robustness of
diagnosis.

6.9. Conclusion

Although numerous monitoring systems can be implemented, their implementation is
invariably limited by budgets and priorities, preventing the inclusion of sophisticated
features or even the basic infrastructure. In the presented study, the construction of a
real-time monitoring system is reduced to a basic and very broad functional set. At least
an aerting mechanism is implemented to inform decision-makers about potentially
harmful changes across a monitored area. Any logging implemented during operation is
considered abonus. Aside from real -time operation, the main goal isto attract investment
for comprehensive environmental monitoring systems by demonstrating the potential of
even a minimum setup. This smple approach, capable of improving existing
environmental monitoring with little effort and at a reasonable cost, can create demand
for a more sophisticated follow-up installation.

However, areal-time aspect is rather imposing. A non-real-time system would eliminate
several budgetary constraints because two key areas are saved: data transmission and
automatic processing. These two areas become exponentially more expensive when
trying to provide an environment where data is not held back for hours or days as a
compilation for manual review, but where everyone can access the server live and use
any functionality like alerting, visualization, or statistical computation. Even though it
might seem paradoxical, it is cheaper to operate a non-real-time system with authentic
sensors than to employ a satellite monitoring service. Although only a few measu-red
parameters would be available, the satellite service would guarantee real-time data
transmission accompanied by rapid processing and reliable aerting.
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6.9.1. Final Thoughtsand Future Directions

Automated monitoring systems are the future of water resources management. Near real -
time gpatial and temporal water quality and flow condition data are essentia for
understanding the health, status, and trends of a watershed. The data can aso be used to
explain the influences of a watershed, including flow volumes, pollutant transport,
pollutant loadings, and changes. Agilent’s expert water quality engineers can guide
readers through their application and selection process, the necessary components, and
important planning considerations, providing specific examples of water quality and
flow conditionsin Rivers of America.

Predicting ionospheric scintillation, which holds significant implications for global
navigation satellite system receivers in equatorial regions, involves analyzing global
positioning system signal characteristics, lunar phase, and various geomagnetic and
geophysical parameters, employing neural network methodologies to forecast the $4
index at equatorial locations. The selection of input parameters substantially influences
prediction accuracy; thus, using diverse input sets across multiple stationsin central and
southern Brazil helps determine optimal combinations for enhanced prediction.
Predicted data reveal that scintillation activity remains intense during the early hours of
the night and late lunar phases.
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