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Chapter 1. Architecting Al-Based Systemsfor Scalable
and Adaptive Digital Ecosystems

1.1. Introduction to Al-Based Systems

A great variety of systems are being developed using Artificial Intelligence (Al)
technologies. In the context of intelligent Digital Ecosystems, the capacity of the Al-
based systems to adapt dynamically is highly desirable, even in domains where
scalability isan important requirement. Specifically, Al models are currently applied for
the automatic control of three elements of a Digital Ecosystem environment: the
integration of servicesfrom different providers, servicesthat offer the same functionality
or capability, and the exchange of data and information between the components of the
ecosystem. This approach contributes to satisfying scalability requirements in Digital
Ecosystems.

To face the requirements of scalability and adaptability in the control of smart Digital
Ecosystems, an architectural framework that facilitates the integration of different Al-
based control modules was developed. Based on it, it is possible to incorporate machine
learning models, online training methods, and different data management alternatives.
The services that perform the roles of Data Collector and Data Manager allow the
implementation of an adequate operation of the system, collecting, storing, and
providing the required data and information for the training and execution processes of
any Al-based service that needs to be used. This architecture is intended to support the
development of intelligent systems that require adaptability and scalability features in
the context of Digital Ecosystems.

1.1.1. Overview of Al-Driven Systems

Artificia intelligence (Al) encompasses methods to implement human-like intelligent
behaviors in machines, such as perception, reasoning, learning, and natural language
processing. Al-driven systems are designed to build autonomous systems for human use
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with varying degrees of autonomy. Achieving scalability and adaptahility is crucial for
Al-based systemsto function within any digital ecosystem. Asdigital ecosystemsevolve
and businesses grow, user requests increase accordingly. Without well-designed
infrastructures capable of scaling resources in response to growing demands, the
performance of Al-based systems will inevitably degrade. Moreover, architects must
address not only scalability but also adaptability to ensure that these systems can adjust
readily to changes in the digital ecosystem and continue to meet user requirements.
Adaptive Al-based systems process learning dynamically, introducing better concepts
and knowledge to other systems operating within the digital ecosystem.

The construction of Al-based systems hinges on an architectural style selected to best
meet given organizational requirements. Microservice architecture is often deemed the
most suitable for developing scalable software products. Event-driven architecture is
likewise employed to support scalability and adaptability in dynamic business
environments. In this architectural style, distinct components generate and consume
events asynchronously. The emergence of serverless computing has transformed
applications into functions that execute on-demand, eschewing the traditional model of
aways-on, monoalithic services and yielding ample capacity for dynamic resource
scaling. Beyond these architectures, data management remains pivotal. The prowess of
an Al-based system derives largely from the quantity and quality of data collected from
source systems, along with the methods used for efficient storage and processing.
Machine learning models—spanning supervised, unsupervised, and reinforcement
learning—play an instrumental role in shaping the machine’s learning capabilities.

1.2. Under standing Digital Ecosystems

Similar to natural ecosystems, the co-evolution and interplay of species within digital
ecosystems drive agile adaptation and novelty in complex, changing environments.
Digital ecosystems can therefore be defined as distributed adaptive open socio-technical
systems with properties of self-organisation, scalability, and sustainability, inspired by
natural ecosystems [1,2,3]. The ecosystem-orientated architecture of Digital Business
Ecosystems supports the spontaneous evolution of a “healthy” balance between supply
and demand at the level of business sectors, regions, nations, and continents, supporting
the evolution of business sectors, regions, nations, and continents. To enable the
interplay of business sectors, the modelling of the Digital Business Ecosystem
architecture must conserve real-world locality of supply and demand.

The proposed Generic Ecosystem, an abstraction of essential structures and functions of
the biological ecosystems, is defined before its use as an environment for Digita
Ecosystems. Generic Ecosystem Properties, modelling the variation, selection, and
retention processes of any adaptive system, are identified. These define the self-
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replicating agent population dynamics, evolutionary processes, and spatial interactions
that underpin the formation of complex hierarchical organisations, localised populations,
and the continuous adaptation of the Digita Ecosystem. The Service-Oriented
Architecture and Distributed Evolutionary Computing are then introduced, before their
usein aDigital Business Ecosystem is detailed.

1.2.1. Exploring the Components of Digital Ecosystems

A key source of inspiration for the Aufbau of aDigital Ecosystem is natural ecosystems,
specifically their robust, self-organising properties, which allow complex organisations
to emerge without a centralised or hierarchical organisation. These properties lead to the
high-order organisation of asystem. Natural ecosystemsalso providealevel of assurance
about the stability, resilience, and sustainability of the energy flow. Energy cycles
provide abasefor the survival of the speciesin the ecosystem. Similarly, theinformation
cycle for Digital Ecosystems ensures the survival of the business of the Digita
Ecosystem.

Fig 1. 1: Digital Ecosystem Inspired by Natural Ecosystems



A natural ecosystem is composed of living (biotic) and nonliving (abiotic) components.
Community isaterm for the living component, which consists of populations of different
species interacting with each other. Similarly, the abiotic environment is composed of
things such as the atmosphere and the physical resources of any particular place, for
example, water and minerals[2-4]. A community, together with the abiotic environment
of aplace, makes up an ecosystem. Such biosystems are of great concern for the survival
of the species. Similarly, companies need the support of digital and physical resources
for their survival in any environment. Therefore, the support of the digital and physical
resources to the community of companies through Digital Ecosystems ensures the
survival of the community. The following is an abstraction of the communities of the
natural ecosystems and of the communities of the businessesin any digital environment.
Communities are composed of populations, and each population consists of individuals.
The collection of populations makes up a community. The community of businesses
makes up the business ecosystem.

1.3. Scalability in Al Systems

The preceding discussion has suggested that while platform-type Al systems are aptly
scaled for rapid demand growth, those requiring mass personalization tend to
underperform when faced with exponential growth in demand for new behaviors. Y et
the notion of scalability istwofold; on the one hand, it refersto scaling out with growing
demand (as automatic spatial scale rescaling provides). On the other hand, there is also
scaling up of services, i.e., adding new intelligent services and behaviors to the system.
The Architecture of Intelligence in an Al-based system determines its capability
concerning the second form of scalability. For instance, intelligent behavior is more
scalable in birds than in ants. Humans are, in turn, more capable of conceiving novel
intelligent behavior and designing intelligent artifacts (leading to an accelerated
development of Machine Intelligence). Similar conclusions hold when comparing
intelligence across different areas of the neural network within an individual.

The four basic chalenges with designing self-aware Al-based systems—scalability,
openness, distribution,* self-capabilities, and adaptability—are independent of
architecture but differ in magnitude. In this context, the Architecture of Intelligence in
an Al-based system can be defined as the underlying architecture, way of designing, and
mechanism governing the learning process through which it evolves its intelligent
behavior. An attempt at defining a generative model for artificial Intelligence that
captures different styles of learning in Biology and Machine Intelligence goes beyond
the focus of this paper. Nonetheless, the concept of an Architecture of Intelligence can
guide research in Al systems towards designing platform B—systems that exhibit these
self-* properties.



1.3.1. Defining Scalability

While many definitions of scalable systems exist within computer science and IT,
standardized interpretations or widely agreed-upon meanings remain scarce. In a purely
computational context, scalability denotes the capacity of a system, network, or process
to manage a growing amount of work or its potential to be enlarged to accommodate
such growth. Bearing this in mind, an Al-based system requiring extra computational
power to achieve atarget quality of service upon an increasein workload is scalableif it
is capable of acquiring those additional resources—perhaps leveraging Dynamic
Resource Allocation within a cloud ecosystem—when necessary. Specific behaviours
such as Idle Removal and Supplantation are also pertinent. Scalability extends beyond
merely scaling upwards in size and can also involve scaling downwards. A system that
obtains more computational resources to handle growing workloads is characterized as
Scaling Up, whereas scaling its workload downward. It is described as Scaling Down.

Within simple operating systems like Windows, asingle user is usually not permitted to
open more than one instance of a program—severe word processing does not allow two
Word documents to be open simultaneously—and similar constraints often apply to
specific programs. Complex systems, however, should be able to handle increased
workloads and, if necessary, distribute jobs across various computational units. When
faced with escalating workloads, the system should be capable of processing tasks in
paralel to meet escalating Quality of Service demands. This ability constitutes Service
Scalability. An Al-based system that allocates tasks across the devices available in the
environment can thus be termed a Service-Scalable Al-based System.

1.3.2. Challengesin Scaling Al

The section of Interest centers on specific architectural challenges that arise when
deploying Al-based systems in highly distributed digital ecosystem platforms. It
showcases the pragmatic factors that often inhibit the realization of these systems' fulll
potential, instead creating unanticipated limitations that entail complex adaptation and
evolution operations. Interest is therefore concentrated on real-life Al capabilities rather
than the ream of theoretical and proof-of-concept research. Although these issues
partially pertain to scaling, different perspectives are adopted in distinct operational
contexts [1-5].

The advent of Al services in highly distributed settings, such as Smart Cities, unveils
distinctive requirements that remain underexplored in scientific literature and
commercia offerings. Some of these gaps arise from the proprietary nature of the
underlying technologies and the innovative character of these ecosystems. The



integration of Al services within the urban infrastructure introduces ever-new demands
and constraints, challenging existing paradigms and spurring new research directions.

1.3.3. Techniquesfor Achieving Scalability

The previous section introduced Artificial Intelligence (Al) concepts that have been
proven useful for developers composing highly scalable systems. The current section
discusses techniques for attaining adaptability, self-learning, and self-organization in
highly scalable systems.

Achieving Adaptability in Highly Scalable Systems. Milojicic [2016] identifies the
distinct properties of adaptable and non-adaptable architectures. An architecture is
considered adaptable when it is context-aware, can self-configure, self-heal, and self-
protect, and possesses self-development capabilities. These properties enable the
architecture to self-design, self-organize, self-manage, self-contain faults, and self-
recover. Within the context of Cloud Computing and highly scalable systems, the term
adaptability can be refined, directed, and limited to three basic properties: the ability to
self-configure (i.e., react properly to changesin the context, such as a sudden growth or
peak in resource-demanding tasks), the ability to self-heal (i.e., recover internaly from
disrupted services and dependencies), and the ability to self-optimize (i.e., monitor
operational metrics to optimize the use of available resources).

1.4. Adaptability in Al Systems

A central areato be considered when architecting Al-based systems is the adaptability
aspects. Adaptability in these systems comprises four properties: tolerance, elasticity,
scalability, and dynamics. Tolerance can be achieved by introducing redundancy in Al-
based systems[6-8]. Elasticity indicates the ability to maintain service quality by adding
or removing redundant resources when necessary, considering the defined service class
of the client (SLA) requirements. Scalability is the ability to retain operation despite
changes in resource consumption or demands on processing capacity. Dynamics refers
to the reaction to disturbances generated by the environment, system, or even provoked
by the system.

1.4.1. Concept of Adaptability

Due to volatile requirements and infrastructure in a constantly changing environment,
system adaptability becomes a major concern for any Digital Decision Support System
(DDSS). Adaptive DDSSs respond correctly to changes in their environment. The
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environment of such a system could be any change that can influence the system, such
as a business process change or an emergent user reguest.

UML can be used for illustrating adaptive system behavior because of its capability to
achieve broad recognition and interoperability among various analysis and design tools
when combined with the right set of mechanisms. These mechanisms incorporate the
concepts of roles, scenarios, generic relationships, and frameworks. They provide a
lightweight support and do not require changes in the UML metamodel.

1.4.2. Factor s Affecting Adaptability

Adaptability focuses on how fast a system can respond to changes and can be thought of
as the derivative of responsiveness. Factors influencing adaptability and resilience
include scalability, degree of mobility, and the presence of self-awareness. High
scalability—encompassing bandwidth and latency—provides additional capacity for
replication and reallocation of components, enabling timely responses to environmental
requirements [2,4,6]. The degree of mobility supported in adigital ecosystem affectsits
ability to rapidly position components closer to points of interest. Systems with more
mobility support are capable of greater responsiveness and adaptability. Self-awareness
adds supplementary functionalities and perspectives to a system, resulting in enhanced
adaptability and resilience.

1.4.3. Strategiesfor Enhancing Adaptability

Adaptability is an important characteristic of an active digital ecosystem that enables it
to react quickly to business continuity failures by scaling up or down to meet operational
demands. It is necessary to enrich the proposed ecosystem with new adapted versions of
the Al artefacts. It is recommended that the current ecosystem be enhanced such that the
Planning phase of the MAPE-K model of the adaptive control loop supports various
strategies for adaptability.

The strategies for adaptability should include:

— Horizontal scaling of Al artefact containers when the active digital ecosystem requires
that more copies of an Al artefact must operate simultaneoudly.

— Vertica scaling of Al artefact containers when the active digital ecosystem requires
that an Al artefact must allocate the resources of its container dynamically.

— Adapted versions of current Al artefacts should ensure that the active digital ecosystem
operates with new versions that, ideally, improve services.



Fig1.2: Adaptability in Digital Ecosystems

1.5. Architectural Frameworksfor Al Systems

The CoCoSim Arguments Model proposes a Meta-model, a Finite Domain Linear
Temporal Logic formulagenerator, and a satisfiability checker. The Meta-model allows
the representation of structured natural-language argument descriptions. An example
illustrates how a LINQ-generated test requires the Properties of several other tests. The
corresponding Finite Domain Linear Tempora Logic formulas are deduced from the
Meta-model description.

Achieving the great promises made by Al requires sharing the benefits of Al with as
many people as possible. Ensuring that Al is accessible to ordinary people is
fundamental—whether it is in education, taking leadership positions, or running their
businesses. Increasing the number of human beings who can benefit from Al is rapidly
becoming a moral imperative. A society in which the benefits of Al are shared by only
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afew isonethat will lead to a great deal of discontent. In aworld in which progressis
accelerated through Al, access to education and enterprise becomes even more important
than ever.

1.5.1. Microservices Architecture

New-generation digital platforms are characterized by their high degree of scalability,
agility, cost-effective resilience to failures, and dynamic nature. These requirements
point to the adoption of cloud-native solutions, which generally rely on microservice-
based ecosystems for their architecture and deployment. Services comprise an
application design pattern built around discrete aspects of a business function that
interact through well-defined interfaces and protocols. This approach to service
orientation enables the partitioning of complex applications into small independent
services and hence provides a degree of modularity and scalability that is not possible
when creating monoalithic applications. For these reasons, microservices have become
the prevalent architectural choice for the evolution of existing service ecosystems and
the implementation of new-generation commercial services. The microservices
architecture style promotesthe design of complex applications as suites of independently
deployable services that are loosely coupled and can be implemented in any
programming language and evolve independently. These capabilities enable continuous
delivery and deployment of complex applications and help in the alignment with
business objectives through the autonomous organization around business capabilities.
Thus, microservice-based software architectures reduce the gap between software
development and marketing teams.

1.5.2. Event-Driven Architecture

Cloud-native systems rely heavily on event-driven system architectures that promote
loose coupling between services and enable the development of highly scalable and
adaptive systems. At the heart of event-driven cloud-native systems lie event brokers,
which deliver messages among event producers and consumers via publish-subscribe
mechanisms. They provide asynchronous messaging that allows decoupling in time,
space, and synchronization, and enable powerful semantic features such as topic-based
and type-based filtering of events.

Event brokers are distinguished by architectural choices such as the topology of their
broker networks, the associated routing strategies, the delivery semantics, and the size
of an event backlog. Some designs feature a decoupled topology with distributed and
loosely coupled brokers disseminating events among each other. This topology supports
a many-to-many communication semantics that complements the publish-subscribe
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functions of the individual brokers. However, decoupled topologies a so pose additional
design challenges. In particular, routing strategies are required to efficiently map
subscriptions onto producers and consumers across the broker network. Provide state-
of-the-art knowledge regarding the design of scalable and adaptive event-driven cloud-
native systems.

1.5.3. Serverless Architecture

Serverless architecture is defined as the execution model of cloud computing in which
the cloud provider dynamically manages the allocation and provisioning of servers. The
name is a misnomer, as servers are still used by the cloud provider to execute code.
Serverless code runs in containers that are ephemera and event-triggered. Application
code is usually packaged and deployed as one or more functions, asin popular Function-
as-a-Service (FaaS) offerings, or as one or more containers, as in Backend-as-a-Service
(BaaS) offerings [7-9].

Schlag et al. argue that the computational model underlying serverless functions
abstracts out many low-level concerns that have traditionally been the responsibility of
software architects, projecting the complications of concurrency, scaling, fault-
tolerance, and security to the architects of serverless applications. Consequently, it pays
to take acloser look at these underlying concernsin order to better understand what they
imply for architectures of serverless applications.

1.6. Data Management in Al Systems

Intelligent systems require the management of three forms of data: the model, the input
data, and the product of the intelligent behavior. In the Intelligent Localization System
case, the learning model (m), the snapshot to which new data is aligned (s), and the
transformed point cloud (T). The enterprise of data management involves the alocation
of these forms of data to resource groups. Essentially, m was associated with the cloud,
given its compute resource requirements, s was alocated to the local network, given its
association with a physical location, and T was collocated with the service requesting
the data, given the utility of the information for business processes.

By revisiting the four digital ecosystem functions through the lens of data management,
it becomes evident that they are essential capabilities that foster the evolution of
structuresthat support the implementation of various service allocators. These structures,
carefully crafted to optimize the performance of each function, manage resource
alocation for corresponding combinations of m, s, and T. Within the Intelligent
Localization System, severa functions regulate the handling of the three data forms:
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Resource Management (m) governs the learning model; Data Management (s), the
snapshot; Load Management (T), the transformed point cloud; and Adaptability
Management (m, s, T) oversees all three. Depending on the service allocator employed,
a single data-centred function or a complementary combination addresses allocation
reguirements.

1.6.1. Data Coallection Techniques

The development of Al-powered digital ecosystems, such as supply network resilience
experts and crowd-sourced disaster management tools, benefits greatly from
incorporating structured and disparate data and knowledge sources. Data acquisition
techniques may leverage natural language processing, web scraping, and semantic
technologies to integrate machine-interpretable semantics. Public APIs can also provide
additional information. Suitable styles and patterns that enable loose coupling and
scalability with such external data sources are crucial.

For example, supply network data and knowledge are often distributed across disparate
sources and processes. The SnD resilience expert architecture aims to leverage ML
techniques for correlations in production and supply network data, such as data from
various network tiers and external information like adverse weather conditions.

1.6.2. Data Storage Solutions
Data Storage Solutions

The continuous growth of data volume in current and future information systems places
increasingly heavy demands on information storage. Adaptive systems need more
resource expansion to accommodate more learners, organizational users, and learners
historical interaction data. When performing large-scale distributed collaborative
computing, the system requires massive operational data for model parameter updates.
Data storage—designed in a distributed manner with increased storage and query
efficiency—must scale accordingly to meet changing quantities. B/s construct services
involve data storage and analyzing learners content on digital learning platforms.
Additionally, data storage is fundamental for supporting the adaptive data of self-
regulating adaptive systems[5,7,8].

Technologies related to self-regulating adaptive system data storage include both an
operational data store for collaborative computing in data analysis and data mining, and
adigital learning platform data store for storing learners digital content. In thefirst case,
large-scale distributed collaborative computing requires massive user operationa data
for model training; distributed data management, replication, modification, and deletion

11



present challenges. In the second, learnersrequire sufficient digital content for intelligent
analysis and data mining, while server and database architectures must efficiently adapt
to complex business requirements. An adaptive system can harness a B/S architecture to
provide users with operational services, positing services defined by intelligent
classification of large-scale content and subsequent services for disseminating
knowledge or skills. However, with continuous user growth, adaptive storage for digital
learning platforms demands enhanced storage and query capacity.

Fig 1. 3: Adaptive Data Storage for Self-Regulating Systems

1.6.3. Data Processing Frameworks

Data processing frameworksintegrate various types of data processing engineswith data
storage and messaging systems to form a processing-oriented cohesive framework. Each
processing engine specializes in a particular processing pattern optimized for specific
workloads and use cases. To address the running costs of the overall data processing,
cloud providers have diversified their cloud offerings with different services—
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homogeneous services, heterogeneous services, and emerging lightweight services.
Services in data store systems also tend to support multiple data access patterns in a
scalable and elastic manner. These efforts guarantee the cost-efficiency of both the cloud
platform and the hosted Data Engineering (DE) applications. They can be divided into
cluster resource managers and job schedulers, which apply to all workloads, and service-
specific resource managers and job schedulers, designed for specific engines, support
multi-engine workloads, or target emerging Kubernetes platforms.

While existing scheduling solutions leverage the knowledge of job structures for
performance optimization, they have limited consideration of the underlying
heterogeneous cloud infrastructures or diverse workload characteristics. Thevariationin
cost—when using services of varying capabilities and runtimes—is usually a key factor
in the execution of batch-oriented DE jobs. Runtime estimationisavital part of dataflow
scheduling. Dataflow jobs can be broken down into tasks of different structures, and
heuristic or dynamic programming methods can be employed to calculate the shortest
runtime. Runtime prediction also plays a central role in data engineering on shared
infrastructure, where runtime impacts the performance and cost of executions [5,10-11].
Architectures that support multiple types of batch workloads and architectures focusing
on optimizations tailored to MapReduce batch processing have been proposed. "Job-
aware" cluster managers use job-level information to schedule tasks, improving
performance and efficiency. Resource management on emerging lightweight services,
such as Apache Spark on AWS Fargate, has been explored.

1.7. Machine L earning Modelsin Digital Ecosystems

Digital Ecosystems are integrated technology environments that act as distributed
engines of intelligent services within dynamic, scalable, and adaptive complex adaptive
systems. Empirical evidence based on the Scaled Agile Framework (SAFe®) suggests
that Al-driven engineering can improve business integration, business agility, software
quality, inspection efficiency, and predictability, thereby accel erating the transformation
into a digital business. The key question is. Which Al techniques, services, and
capabilities achieve the greatest gain at different stages of business transformation?

Machine learning models constitute automated systems for predicting the values of
variables from the available data. These predictive systems can recommend business
decisions by using data to train a model based on experience. Specifically, a trained
model can be used to estimate the values of the target property to support the decision-
making process. Classification explores the relationships between a category value of a
predetermined attribute in a data set and the values of other variables to predict the
category for future instances. Conseguently, machine learning models properly trained
can be used to estimate the values of performance metrics, predict risk factors, and
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evaluate other measures related to testing. These models cover the subproblems of
categorization, ranking, and rating.

1.7.1. Supervised Learning Models

Supervised learning models are the most prevalently utilized algorithms today in many
fields, showcasing impressive results with very large datasets. They are implemented
using feedforward neural networks that are trained using backpropagation on a dataset
comprising many examples. During each training iteration, the network receives an
image and provides aclass scorefor each possible class. The prediction isthen compared
to theimage label, and an error is calculated against the ground truth. This differenceis
propagated back through the network to adjust the weights, with the goal of minimizing
the error. This training procedure is inspired by the real-time adjustment of the animal
brain's synaptic structures during life. Over time, the network becomes an expert on the
dataset it has been trained on.

However, this approach has a drawback: the larger the dataset is, the longer the training
time. Similar to a car engine, the network's performance depends on the learning rate
parameter. Before training, network weights must be initialized, as indicated by their
name. During operation, a lower learning rate can increase accuracy but reduce the
network's ability to learn new categories. This constraint is also present in the animal
brain; mature brains excel at pattern recognition but struggle with acquiring new
knowledge, thereby affecting scalability.

1.7.2. Unsupervised L earning Models

Unsupervised learning or pattern discovery includes raw or unstructured data, such as
clustering, where the training vectors have no class labels and the algorithms train a
model to group the training vectorsinto clusters. The output is either alinear projection
or a mapping of each training vector to a cluster. Clustering is one of the most used
unsupervised learning methods. Unlike classification, the clustersthat are represented as
groups of patterns may only be used for descriptive purposes without any subsequent
interpretation or labeling. An often used goal is dimensionality reduction, such as in
Kohonen self-organizing maps or cluster graph trees. The two main reasons for using
unsupervised learning are deadling with data stored in very large volumes or
multidimensionality or variable spaces, and the patterns found by unsupervised learning
methods may provide knowledge about the data and its associations that was not known
before.
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Techniques used in unsupervised learning include competitive learning, adaptive
resonance theory, Hamerly K-means algorithm, self-organizing maps, and simple
clustering methods based on Voronoi diagrams. Autoassociative neural networks can be
considered a hybrid since they optimize an error function during training, but training
vectors have identical input and output components. They are used for clustering dueto
their dimensionality reduction capabilitiesin hidden layers, asin the context of signature
verification. At the same time, ANNS can perform unsupervised learning, although the
training of the systemsis mainly associated with their use in pattern recognition.

1.7.3. Reinforcement L earning Models

Digital ecosystems leverage cooperation and competition to ensure the growth of the
service platform and ensure the ecosystem stays in balance by using resources
efficiently. In highly dynamic service ecosystems, the future state and strategy of other
agents are unknown or difficult to predict. Therefore, agents must have cognitive
abilities to continuously adapt their behaviors to current situations—to maintain the
balance between cooperation and competition—thus ensuring smooth execution of
services and platform development. In an SGFE modeling framework, the service
ecosystem is modeled as a game. Based on state observations, an agent determines its
strategy by learning an approximate value function, which reflects the contributions of
its behaviors toward expected future profits [1,5,7].

Reinforcement-learning (RL) approaches are promising for scheme design and decision-
making in complex and dynamic service ecosystems. By constructing reward functions,
the objectives of agents are trandated to the reinforcement signals, enabling the
associations of current behaviors with the profits gained in along-term process. Time-
varying environment states and the unknown strategies of other agents can be reflected
in the observations used by the learning algorithm. Therefore, agents with RL
capabilities can make adaptively cooperative-competitive decisions, based on their real-
time interests, and are capable of naturally handling the exploration—exploitation
conflict.

1.8. Future Trendsin Al-Based Systems

The next development stage of smart cyber-physical ecosystem-—oriented systems will
integrate on a deep semantic level Al methods and tools for smart services in various
orders and levels with smart ecosystems. In these newly defined ecosystems, Al models
work with human-centric and community-related data to provide the required smart
services for the community. Shortly, the structure of an Al-based smart digital
ecosystem-—oriented system will be an ecosystem of ecosystems because it will integrate
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entities such as 10T, big data, cloud, edge, fog, and so on, from other ecosystems. A
significant trend will develop because multiple systems will integrate the Al methods
and tools to provide smart services in a complete, efficient, and effective decision-
making process for the community involved. Even though many new smart ecosystems
will arise for specific domains, at present, these systems lack the provided Al methods
and tools.

The Al ecosystem services will create smart services oriented to community progress
and management. Each Al smart service will employ specific sensors from the cyber-
physical ecosystem and the community and will be characterized by a certain periodicity
and geographical area, al of which will be defined by the Al models associated with the
service. A related and very important trend for a smart community is Al ecosystem
services. Al is one of the key technologies for the smart society, smart city, and smart
country of the future. The implementation of Al methods tackles community problems
such as climate change, e-health during the pandemic crisis, or a deteriorated economy.

ADAPTIVE Al MARKET SIZE
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1.8.1. Emerging Technologies
From Brain Coevolution to Digital Ecosystems

Processes from biology and natural ecosystems can also be applied to computing and
software architecture. Ecosystems have inspired applied digital ecosystems, because
they are robust, self-organising, and scalable architectures that can automatically solve
complex, dynamic problems. These properties come from the underlying organisations
of ecosystems—acting to provide complex solutions for the survival of the species
within the ecosystem—that can be used to solve complex, dynamic problemsin artificial
systems. Moreover, biological systems are characterised by being energy-efficient
because they use natural energy sources such as photosynthesis, internal body heat, and
natural movement within the environment, as well as requiring little maintenance over
thousands of years of natural evolutionary development.

Processes from biology and natural ecosystems can also be applied to computing and
software architecture. Ecosystems have inspired applied digital ecosystems, because
they are robust, self-organising, and scalable architectures that can automatically solve
complex, dynamic problems [9,11-12]. These properties come from the underlying
organisations of ecosystems—acting to provide complex solutionsfor the survival of the
species within the ecosystem—that can be used to solve complex, dynamic problemsin
artificial systems. Moreover, biological systems are characterised by being energy-
efficient because they use natural energy sources such as photosynthesis, internal body
heat, and natural movement within the environment, as well as requiring little
maintenance over thousands of years of natural evolutionary development.

1.8.2. Predictionsfor Al Evolution

One way to look at the progress of Al isto look at the timeline of the milestones and
estimate prediction curves. Whether that is Moore’s law, plotting the number of elements
per integrated circuit over time, or the number of operations per second of the most
powerful computer at a given year, they are good at revealing general trends. Other
models focus on larger datasets and more complex quantum computers.

Although the MIT Al professor Eugene Charniak stated in 2019 that “six of the ten
following predictions will be fulfilled in the next 10 years,” this list cannot be regarded
asareliable or scientific forecast. It does serve as menta preparation for the upcoming
Al changes, nonetheless.

17



1.9. Conclusion

Successfully operating Al-based systems within dynamic ecosystems comprises real-
time analysis, flexible adaptation, and designing novel ecosystem components.
Continuous adaptation addresses ecosystem evol ution and unexpected system situations,
enabled by Al learning and self-adaptation techniques. Human-in-the-loop supports
expert knowledge integration, while marketplace-oriented mechanisms consider the
vendor perspective in dynamic ecosystem environments.

The Digital Business Ecosystem (DBE) fosters Digital Product Innovation through the
Digital Product Innovation Ecosystem (DPIE) sub-ecosystem, implementing open
collaboration and integration functionalities. The Al Solutions Marketplace sub-
ecosystem supports Diversified Al Supply through Collaboration and Competition
among Al actors. Finally, the Al-based Digital Enterprise sub-ecosystem enables Digital
Enterprise Growth by connecting Al Supply and Demand. These sub-ecosystems
collectively contribute to diversified digitalization within enterprises and respond to
multiple industrial demands for intelligent digital transformation.

1.9.1. Final Thoughtsand Key Takeaways

Adaptability and scalability are essential characteristics of Al-based digital ecosystem
architectures. The emerging trends in Al-based digital ecosystems cater to diverse
application scenarios, exhibiting a high degree of adaptability and dynamic, scalable
attributes. An LLM-CoT approach is envisioned to effectively construct such systems,
where the Chain of Thought methodology features dynamic branching, enabling the
ecosystem framework to evolve organically according to application requirements. The
ecosystem's dynamic, scalable model incorporates three perspectives. assignment
scalability, resource scalability, and architecture scalability, which correspond to three
levels of Al Coach judgements—task-oriented, resource-oriented, and actor-oriented,
respectively.

The Assignment Scalability (AS) model dynamicaly assigns and decomposes tasks
based on the LLM Coaches’ assessment of dependencies among Al Agents and tasks.
The Resource Scalability (RS) model determines resource allocation for each task group
and Al Agent according to environmental demands and resource availability. The
Architecture Scalability (AtS) model constructs the Al Agent ecosystem architecture by
enabling dynamicincremental and decremental adjustmentsin responseto the constantly
changing application environment. Moving forward, one principal challenge of the
LLM-CoT approach for Al-based digital ecosystem architecting involves managing the
recursive composability among system actors, thus preserving the adaptability and
scalability of the constructed ecosystems.
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