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Chapter 1: Architecting AI-Based Systems for Scalable 
and Adaptive Digital Ecosystems  

1.1. Introduction to AI-Based Systems 

A great variety of systems are being developed using Artificial Intelligence (AI) 
technologies. In the context of intelligent Digital Ecosystems, the capacity of the AI-
based systems to adapt dynamically is highly desirable, even in domains where 
scalability is an important requirement. Specifically, AI models are currently applied for 
the automatic control of three elements of a Digital Ecosystem environment: the 
integration of services from different providers, services that offer the same functionality 
or capability, and the exchange of data and information between the components of the 
ecosystem. This approach contributes to satisfying scalability requirements in Digital 
Ecosystems. 

To face the requirements of scalability and adaptability in the control of smart Digital 
Ecosystems, an architectural framework that facilitates the integration of different AI-
based control modules was developed. Based on it, it is possible to incorporate machine 
learning models, online training methods, and different data management alternatives. 
The services that perform the roles of Data Collector and Data Manager allow the 
implementation of an adequate operation of the system, collecting, storing, and 
providing the required data and information for the training and execution processes of 
any AI-based service that needs to be used. This architecture is intended to support the 
development of intelligent systems that require adaptability and scalability features in 
the context of Digital Ecosystems. 

1.1.1. Overview of AI-Driven Systems 

Artificial intelligence (AI) encompasses methods to implement human-like intelligent 
behaviors in machines, such as perception, reasoning, learning, and natural language 
processing. AI-driven systems are designed to build autonomous systems for human use 
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with varying degrees of autonomy. Achieving scalability and adaptability is crucial for 
AI-based systems to function within any digital ecosystem. As digital ecosystems evolve 
and businesses grow, user requests increase accordingly. Without well-designed 
infrastructures capable of scaling resources in response to growing demands, the 
performance of AI-based systems will inevitably degrade. Moreover, architects must 
address not only scalability but also adaptability to ensure that these systems can adjust 
readily to changes in the digital ecosystem and continue to meet user requirements. 
Adaptive AI-based systems process learning dynamically, introducing better concepts 
and knowledge to other systems operating within the digital ecosystem. 

The construction of AI-based systems hinges on an architectural style selected to best 
meet given organizational requirements. Microservice architecture is often deemed the 
most suitable for developing scalable software products. Event-driven architecture is 
likewise employed to support scalability and adaptability in dynamic business 
environments. In this architectural style, distinct components generate and consume 
events asynchronously. The emergence of serverless computing has transformed 
applications into functions that execute on-demand, eschewing the traditional model of 
always-on, monolithic services and yielding ample capacity for dynamic resource 
scaling. Beyond these architectures, data management remains pivotal. The prowess of 
an AI-based system derives largely from the quantity and quality of data collected from 
source systems, along with the methods used for efficient storage and processing. 
Machine learning models—spanning supervised, unsupervised, and reinforcement 
learning—play an instrumental role in shaping the machine’s learning capabilities. 

1.2. Understanding Digital Ecosystems 

Similar to natural ecosystems, the co-evolution and interplay of species within digital 
ecosystems drive agile adaptation and novelty in complex, changing environments. 
Digital ecosystems can therefore be defined as distributed adaptive open socio-technical 
systems with properties of self-organisation, scalability, and sustainability, inspired by 
natural ecosystems [1,2,3]. The ecosystem-orientated architecture of Digital Business 
Ecosystems supports the spontaneous evolution of a “healthy” balance between supply 
and demand at the level of business sectors, regions, nations, and continents, supporting 
the evolution of business sectors, regions, nations, and continents. To enable the 
interplay of business sectors, the modelling of the Digital Business Ecosystem 
architecture must conserve real-world locality of supply and demand. 

The proposed Generic Ecosystem, an abstraction of essential structures and functions of 
the biological ecosystems, is defined before its use as an environment for Digital 
Ecosystems. Generic Ecosystem Properties, modelling the variation, selection, and 
retention processes of any adaptive system, are identified. These define the self-
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replicating agent population dynamics, evolutionary processes, and spatial interactions 
that underpin the formation of complex hierarchical organisations, localised populations, 
and the continuous adaptation of the Digital Ecosystem. The Service-Oriented 
Architecture and Distributed Evolutionary Computing are then introduced, before their 
use in a Digital Business Ecosystem is detailed. 

1.2.1. Exploring the Components of Digital Ecosystems 

A key source of inspiration for the Aufbau of a Digital Ecosystem is natural ecosystems, 
specifically their robust, self-organising properties, which allow complex organisations 
to emerge without a centralised or hierarchical organisation. These properties lead to the 
high-order organisation of a system. Natural ecosystems also provide a level of assurance 
about the stability, resilience, and sustainability of the energy flow. Energy cycles 
provide a base for the survival of the species in the ecosystem. Similarly, the information 
cycle for Digital Ecosystems ensures the survival of the business of the Digital 
Ecosystem. 

 

Fig 1. 1 : Digital Ecosystem Inspired by Natural Ecosystems 
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A natural ecosystem is composed of living (biotic) and nonliving (abiotic) components. 
Community is a term for the living component, which consists of populations of different 
species interacting with each other. Similarly, the abiotic environment is composed of 
things such as the atmosphere and the physical resources of any particular place, for 
example, water and minerals [2-4]. A community, together with the abiotic environment 
of a place, makes up an ecosystem. Such biosystems are of great concern for the survival 
of the species. Similarly, companies need the support of digital and physical resources 
for their survival in any environment. Therefore, the support of the digital and physical 
resources to the community of companies through Digital Ecosystems ensures the 
survival of the community. The following is an abstraction of the communities of the 
natural ecosystems and of the communities of the businesses in any digital environment. 
Communities are composed of populations, and each population consists of individuals. 
The collection of populations makes up a community. The community of businesses 
makes up the business ecosystem. 

1.3. Scalability in AI Systems 

The preceding discussion has suggested that while platform-type AI systems are aptly 
scaled for rapid demand growth, those requiring mass personalization tend to 
underperform when faced with exponential growth in demand for new behaviors. Yet 
the notion of scalability is twofold; on the one hand, it refers to scaling out with growing 
demand (as automatic spatial scale rescaling provides). On the other hand, there is also 
scaling up of services, i.e., adding new intelligent services and behaviors to the system. 
The Architecture of Intelligence in an AI-based system determines its capability 
concerning the second form of scalability. For instance, intelligent behavior is more 
scalable in birds than in ants. Humans are, in turn, more capable of conceiving novel 
intelligent behavior and designing intelligent artifacts (leading to an accelerated 
development of Machine Intelligence). Similar conclusions hold when comparing 
intelligence across different areas of the neural network within an individual. 

The four basic challenges with designing self-aware AI-based systems—scalability, 
openness, distribution,* self-capabilities, and adaptability—are independent of 
architecture but differ in magnitude. In this context, the Architecture of Intelligence in 
an AI-based system can be defined as the underlying architecture, way of designing, and 
mechanism governing the learning process through which it evolves its intelligent 
behavior. An attempt at defining a generative model for artificial Intelligence that 
captures different styles of learning in Biology and Machine Intelligence goes beyond 
the focus of this paper. Nonetheless, the concept of an Architecture of Intelligence can 
guide research in AI systems towards designing platform B–systems that exhibit these 
self-* properties. 
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1.3.1. Defining Scalability 

While many definitions of scalable systems exist within computer science and IT, 
standardized interpretations or widely agreed-upon meanings remain scarce. In a purely 
computational context, scalability denotes the capacity of a system, network, or process 
to manage a growing amount of work or its potential to be enlarged to accommodate 
such growth. Bearing this in mind, an AI-based system requiring extra computational 
power to achieve a target quality of service upon an increase in workload is scalable if it 
is capable of acquiring those additional resources—perhaps leveraging Dynamic 
Resource Allocation within a cloud ecosystem—when necessary. Specific behaviours 
such as Idle Removal and Supplantation are also pertinent. Scalability extends beyond 
merely scaling upwards in size and can also involve scaling downwards. A system that 
obtains more computational resources to handle growing workloads is characterized as 
Scaling Up, whereas scaling its workload downward. It is described as Scaling Down. 

Within simple operating systems like Windows, a single user is usually not permitted to 
open more than one instance of a program—severe word processing does not allow two 
Word documents to be open simultaneously—and similar constraints often apply to 
specific programs. Complex systems, however, should be able to handle increased 
workloads and, if necessary, distribute jobs across various computational units. When 
faced with escalating workloads, the system should be capable of processing tasks in 
parallel to meet escalating Quality of Service demands. This ability constitutes Service 
Scalability. An AI-based system that allocates tasks across the devices available in the 
environment can thus be termed a Service-Scalable AI-based System. 

1.3.2. Challenges in Scaling AI 

The section of Interest centers on specific architectural challenges that arise when 
deploying AI-based systems in highly distributed digital ecosystem platforms. It 
showcases the pragmatic factors that often inhibit the realization of these systems' full 
potential, instead creating unanticipated limitations that entail complex adaptation and 
evolution operations. Interest is therefore concentrated on real-life AI capabilities rather 
than the realm of theoretical and proof-of-concept research. Although these issues 
partially pertain to scaling, different perspectives are adopted in distinct operational 
contexts [1-5]. 

The advent of AI services in highly distributed settings, such as Smart Cities, unveils 
distinctive requirements that remain underexplored in scientific literature and 
commercial offerings. Some of these gaps arise from the proprietary nature of the 
underlying technologies and the innovative character of these ecosystems. The 
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integration of AI services within the urban infrastructure introduces ever-new demands 
and constraints, challenging existing paradigms and spurring new research directions. 

1.3.3. Techniques for Achieving Scalability 

The previous section introduced Artificial Intelligence (AI) concepts that have been 
proven useful for developers composing highly scalable systems. The current section 
discusses techniques for attaining adaptability, self-learning, and self-organization in 
highly scalable systems. 

Achieving Adaptability in Highly Scalable Systems. Milojicic [2016] identifies the 
distinct properties of adaptable and non-adaptable architectures. An architecture is 
considered adaptable when it is context-aware, can self-configure, self-heal, and self-
protect, and possesses self-development capabilities. These properties enable the 
architecture to self-design, self-organize, self-manage, self-contain faults, and self-
recover. Within the context of Cloud Computing and highly scalable systems, the term 
adaptability can be refined, directed, and limited to three basic properties: the ability to 
self-configure (i.e., react properly to changes in the context, such as a sudden growth or 
peak in resource-demanding tasks), the ability to self-heal (i.e., recover internally from 
disrupted services and dependencies), and the ability to self-optimize (i.e., monitor 
operational metrics to optimize the use of available resources). 

1.4. Adaptability in AI Systems 

A central area to be considered when architecting AI-based systems is the adaptability 
aspects. Adaptability in these systems comprises four properties: tolerance, elasticity, 
scalability, and dynamics. Tolerance can be achieved by introducing redundancy in AI-
based systems [6-8]. Elasticity indicates the ability to maintain service quality by adding 
or removing redundant resources when necessary, considering the defined service class 
of the client (SLA) requirements. Scalability is the ability to retain operation despite 
changes in resource consumption or demands on processing capacity. Dynamics refers 
to the reaction to disturbances generated by the environment, system, or even provoked 
by the system. 

1.4.1. Concept of Adaptability 

Due to volatile requirements and infrastructure in a constantly changing environment, 
system adaptability becomes a major concern for any Digital Decision Support System 
(DDSS). Adaptive DDSSs respond correctly to changes in their environment. The 
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environment of such a system could be any change that can influence the system, such 
as a business process change or an emergent user request. 

UML can be used for illustrating adaptive system behavior because of its capability to 
achieve broad recognition and interoperability among various analysis and design tools 
when combined with the right set of mechanisms. These mechanisms incorporate the 
concepts of roles, scenarios, generic relationships, and frameworks. They provide a 
lightweight support and do not require changes in the UML metamodel. 

1.4.2. Factors Affecting Adaptability 

Adaptability focuses on how fast a system can respond to changes and can be thought of 
as the derivative of responsiveness. Factors influencing adaptability and resilience 
include scalability, degree of mobility, and the presence of self-awareness. High 
scalability—encompassing bandwidth and latency—provides additional capacity for 
replication and reallocation of components, enabling timely responses to environmental 
requirements [2,4,6]. The degree of mobility supported in a digital ecosystem affects its 
ability to rapidly position components closer to points of interest. Systems with more 
mobility support are capable of greater responsiveness and adaptability. Self-awareness 
adds supplementary functionalities and perspectives to a system, resulting in enhanced 
adaptability and resilience. 

1.4.3. Strategies for Enhancing Adaptability 

Adaptability is an important characteristic of an active digital ecosystem that enables it 
to react quickly to business continuity failures by scaling up or down to meet operational 
demands. It is necessary to enrich the proposed ecosystem with new adapted versions of 
the AI artefacts. It is recommended that the current ecosystem be enhanced such that the 
Planning phase of the MAPE-K model of the adaptive control loop supports various 
strategies for adaptability. 

The strategies for adaptability should include: 

– Horizontal scaling of AI artefact containers when the active digital ecosystem requires 
that more copies of an AI artefact must operate simultaneously. 

– Vertical scaling of AI artefact containers when the active digital ecosystem requires 
that an AI artefact must allocate the resources of its container dynamically. 

– Adapted versions of current AI artefacts should ensure that the active digital ecosystem 
operates with new versions that, ideally, improve services. 
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Fig 1 . 2 : Adaptability in Digital Ecosystems 

1.5. Architectural Frameworks for AI Systems 

The CoCoSim Arguments Model proposes a Meta-model, a Finite Domain Linear 
Temporal Logic formula generator, and a satisfiability checker. The Meta-model allows 
the representation of structured natural-language argument descriptions. An example 
illustrates how a LINQ-generated test requires the Properties of several other tests. The 
corresponding Finite Domain Linear Temporal Logic formulas are deduced from the 
Meta-model description. 

Achieving the great promises made by AI requires sharing the benefits of AI with as 
many people as possible. Ensuring that AI is accessible to ordinary people is 
fundamental—whether it is in education, taking leadership positions, or running their 
businesses. Increasing the number of human beings who can benefit from AI is rapidly 
becoming a moral imperative. A society in which the benefits of AI are shared by only 
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a few is one that will lead to a great deal of discontent. In a world in which progress is 
accelerated through AI, access to education and enterprise becomes even more important 
than ever. 

1.5.1. Microservices Architecture 

New-generation digital platforms are characterized by their high degree of scalability, 
agility, cost-effective resilience to failures, and dynamic nature. These requirements 
point to the adoption of cloud-native solutions, which generally rely on microservice-
based ecosystems for their architecture and deployment. Services comprise an 
application design pattern built around discrete aspects of a business function that 
interact through well-defined interfaces and protocols. This approach to service 
orientation enables the partitioning of complex applications into small independent 
services and hence provides a degree of modularity and scalability that is not possible 
when creating monolithic applications. For these reasons, microservices have become 
the prevalent architectural choice for the evolution of existing service ecosystems and 
the implementation of new-generation commercial services. The microservices 
architecture style promotes the design of complex applications as suites of independently 
deployable services that are loosely coupled and can be implemented in any 
programming language and evolve independently. These capabilities enable continuous 
delivery and deployment of complex applications and help in the alignment with 
business objectives through the autonomous organization around business capabilities. 
Thus, microservice-based software architectures reduce the gap between software 
development and marketing teams. 

1.5.2. Event-Driven Architecture 

Cloud-native systems rely heavily on event-driven system architectures that promote 
loose coupling between services and enable the development of highly scalable and 
adaptive systems. At the heart of event-driven cloud-native systems lie event brokers, 
which deliver messages among event producers and consumers via publish-subscribe 
mechanisms. They provide asynchronous messaging that allows decoupling in time, 
space, and synchronization, and enable powerful semantic features such as topic-based 
and type-based filtering of events. 

Event brokers are distinguished by architectural choices such as the topology of their 
broker networks, the associated routing strategies, the delivery semantics, and the size 
of an event backlog. Some designs feature a decoupled topology with distributed and 
loosely coupled brokers disseminating events among each other. This topology supports 
a many-to-many communication semantics that complements the publish-subscribe 
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functions of the individual brokers. However, decoupled topologies also pose additional 
design challenges. In particular, routing strategies are required to efficiently map 
subscriptions onto producers and consumers across the broker network. Provide state-
of-the-art knowledge regarding the design of scalable and adaptive event-driven cloud-
native systems. 

1.5.3. Serverless Architecture 

Serverless architecture is defined as the execution model of cloud computing in which 
the cloud provider dynamically manages the allocation and provisioning of servers. The 
name is a misnomer, as servers are still used by the cloud provider to execute code. 
Serverless code runs in containers that are ephemeral and event-triggered. Application 
code is usually packaged and deployed as one or more functions, as in popular Function-
as-a-Service (FaaS) offerings, or as one or more containers, as in Backend-as-a-Service 
(BaaS) offerings [7-9]. 

Schlag et al. argue that the computational model underlying serverless functions 
abstracts out many low-level concerns that have traditionally been the responsibility of 
software architects, projecting the complications of concurrency, scaling, fault-
tolerance, and security to the architects of serverless applications. Consequently, it pays 
to take a closer look at these underlying concerns in order to better understand what they 
imply for architectures of serverless applications. 

1.6. Data Management in AI Systems 

Intelligent systems require the management of three forms of data: the model, the input 
data, and the product of the intelligent behavior. In the Intelligent Localization System 
case, the learning model (m), the snapshot to which new data is aligned (s), and the 
transformed point cloud (T). The enterprise of data management involves the allocation 
of these forms of data to resource groups. Essentially, m was associated with the cloud, 
given its compute resource requirements, s was allocated to the local network, given its 
association with a physical location, and T was collocated with the service requesting 
the data, given the utility of the information for business processes. 

By revisiting the four digital ecosystem functions through the lens of data management, 
it becomes evident that they are essential capabilities that foster the evolution of 
structures that support the implementation of various service allocators. These structures, 
carefully crafted to optimize the performance of each function, manage resource 
allocation for corresponding combinations of m, s, and T. Within the Intelligent 
Localization System, several functions regulate the handling of the three data forms: 
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Resource Management (m) governs the learning model; Data Management (s), the 
snapshot; Load Management (T), the transformed point cloud; and Adaptability 
Management (m, s, T) oversees all three. Depending on the service allocator employed, 
a single data-centred function or a complementary combination addresses allocation 
requirements. 

1.6.1. Data Collection Techniques 

The development of AI-powered digital ecosystems, such as supply network resilience 
experts and crowd-sourced disaster management tools, benefits greatly from 
incorporating structured and disparate data and knowledge sources. Data acquisition 
techniques may leverage natural language processing, web scraping, and semantic 
technologies to integrate machine-interpretable semantics. Public APIs can also provide 
additional information. Suitable styles and patterns that enable loose coupling and 
scalability with such external data sources are crucial. 

For example, supply network data and knowledge are often distributed across disparate 
sources and processes. The SnD resilience expert architecture aims to leverage ML 
techniques for correlations in production and supply network data, such as data from 
various network tiers and external information like adverse weather conditions. 

1.6.2. Data Storage Solutions 

Data Storage Solutions 

The continuous growth of data volume in current and future information systems places 
increasingly heavy demands on information storage. Adaptive systems need more 
resource expansion to accommodate more learners, organizational users, and learners' 
historical interaction data. When performing large-scale distributed collaborative 
computing, the system requires massive operational data for model parameter updates. 
Data storage—designed in a distributed manner with increased storage and query 
efficiency—must scale accordingly to meet changing quantities. B/s construct services 
involve data storage and analyzing learners' content on digital learning platforms. 
Additionally, data storage is fundamental for supporting the adaptive data of self-
regulating adaptive systems [5,7,8]. 

Technologies related to self-regulating adaptive system data storage include both an 
operational data store for collaborative computing in data analysis and data mining, and 
a digital learning platform data store for storing learners' digital content. In the first case, 
large-scale distributed collaborative computing requires massive user operational data 
for model training; distributed data management, replication, modification, and deletion 
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present challenges. In the second, learners require sufficient digital content for intelligent 
analysis and data mining, while server and database architectures must efficiently adapt 
to complex business requirements. An adaptive system can harness a B/S architecture to 
provide users with operational services, positing services defined by intelligent 
classification of large-scale content and subsequent services for disseminating 
knowledge or skills. However, with continuous user growth, adaptive storage for digital 
learning platforms demands enhanced storage and query capacity. 

 

Fig 1 . 3 : Adaptive Data Storage for Self-Regulating Systems 

1.6.3. Data Processing Frameworks 

Data processing frameworks integrate various types of data processing engines with data 
storage and messaging systems to form a processing-oriented cohesive framework. Each 
processing engine specializes in a particular processing pattern optimized for specific 
workloads and use cases. To address the running costs of the overall data processing, 
cloud providers have diversified their cloud offerings with different services—
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homogeneous services, heterogeneous services, and emerging lightweight services. 
Services in data store systems also tend to support multiple data access patterns in a 
scalable and elastic manner. These efforts guarantee the cost-efficiency of both the cloud 
platform and the hosted Data Engineering (DE) applications. They can be divided into 
cluster resource managers and job schedulers, which apply to all workloads, and service-
specific resource managers and job schedulers, designed for specific engines, support 
multi-engine workloads, or target emerging Kubernetes platforms. 

While existing scheduling solutions leverage the knowledge of job structures for 
performance optimization, they have limited consideration of the underlying 
heterogeneous cloud infrastructures or diverse workload characteristics. The variation in 
cost—when using services of varying capabilities and runtimes—is usually a key factor 
in the execution of batch-oriented DE jobs. Runtime estimation is a vital part of dataflow 
scheduling. Dataflow jobs can be broken down into tasks of different structures, and 
heuristic or dynamic programming methods can be employed to calculate the shortest 
runtime. Runtime prediction also plays a central role in data engineering on shared 
infrastructure, where runtime impacts the performance and cost of executions [5,10-11]. 
Architectures that support multiple types of batch workloads and architectures focusing 
on optimizations tailored to MapReduce batch processing have been proposed. "Job-
aware" cluster managers use job-level information to schedule tasks, improving 
performance and efficiency. Resource management on emerging lightweight services, 
such as Apache Spark on AWS Fargate, has been explored. 

1.7. Machine Learning Models in Digital Ecosystems 

Digital Ecosystems are integrated technology environments that act as distributed 
engines of intelligent services within dynamic, scalable, and adaptive complex adaptive 
systems. Empirical evidence based on the Scaled Agile Framework (SAFe®) suggests 
that AI-driven engineering can improve business integration, business agility, software 
quality, inspection efficiency, and predictability, thereby accelerating the transformation 
into a digital business. The key question is: Which AI techniques, services, and 
capabilities achieve the greatest gain at different stages of business transformation? 

Machine learning models constitute automated systems for predicting the values of 
variables from the available data. These predictive systems can recommend business 
decisions by using data to train a model based on experience. Specifically, a trained 
model can be used to estimate the values of the target property to support the decision-
making process. Classification explores the relationships between a category value of a 
predetermined attribute in a data set and the values of other variables to predict the 
category for future instances. Consequently, machine learning models properly trained 
can be used to estimate the values of performance metrics, predict risk factors, and 
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evaluate other measures related to testing. These models cover the subproblems of 
categorization, ranking, and rating. 

1.7.1. Supervised Learning Models 

Supervised learning models are the most prevalently utilized algorithms today in many 
fields, showcasing impressive results with very large datasets. They are implemented 
using feedforward neural networks that are trained using backpropagation on a dataset 
comprising many examples. During each training iteration, the network receives an 
image and provides a class score for each possible class. The prediction is then compared 
to the image label, and an error is calculated against the ground truth. This difference is 
propagated back through the network to adjust the weights, with the goal of minimizing 
the error. This training procedure is inspired by the real-time adjustment of the animal 
brain's synaptic structures during life. Over time, the network becomes an expert on the 
dataset it has been trained on. 

However, this approach has a drawback: the larger the dataset is, the longer the training 
time. Similar to a car engine, the network's performance depends on the learning rate 
parameter. Before training, network weights must be initialized, as indicated by their 
name. During operation, a lower learning rate can increase accuracy but reduce the 
network's ability to learn new categories. This constraint is also present in the animal 
brain; mature brains excel at pattern recognition but struggle with acquiring new 
knowledge, thereby affecting scalability. 

1.7.2. Unsupervised Learning Models 

Unsupervised learning or pattern discovery includes raw or unstructured data, such as 
clustering, where the training vectors have no class labels and the algorithms train a 
model to group the training vectors into clusters. The output is either a linear projection 
or a mapping of each training vector to a cluster. Clustering is one of the most used 
unsupervised learning methods. Unlike classification, the clusters that are represented as 
groups of patterns may only be used for descriptive purposes without any subsequent 
interpretation or labeling. An often used goal is dimensionality reduction, such as in 
Kohonen self-organizing maps or cluster graph trees. The two main reasons for using 
unsupervised learning are dealing with data stored in very large volumes or 
multidimensionality or variable spaces, and the patterns found by unsupervised learning 
methods may provide knowledge about the data and its associations that was not known 
before. 
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Techniques used in unsupervised learning include competitive learning, adaptive 
resonance theory, Hamerly K-means algorithm, self-organizing maps, and simple 
clustering methods based on Voronoi diagrams. Autoassociative neural networks can be 
considered a hybrid since they optimize an error function during training, but training 
vectors have identical input and output components. They are used for clustering due to 
their dimensionality reduction capabilities in hidden layers, as in the context of signature 
verification. At the same time, ANNs can perform unsupervised learning, although the 
training of the systems is mainly associated with their use in pattern recognition. 

1.7.3. Reinforcement Learning Models 

Digital ecosystems leverage cooperation and competition to ensure the growth of the 
service platform and ensure the ecosystem stays in balance by using resources 
efficiently. In highly dynamic service ecosystems, the future state and strategy of other 
agents are unknown or difficult to predict. Therefore, agents must have cognitive 
abilities to continuously adapt their behaviors to current situations—to maintain the 
balance between cooperation and competition—thus ensuring smooth execution of 
services and platform development. In an SGFE modeling framework, the service 
ecosystem is modeled as a game. Based on state observations, an agent determines its 
strategy by learning an approximate value function, which reflects the contributions of 
its behaviors toward expected future profits [1,5,7]. 

Reinforcement-learning (RL) approaches are promising for scheme design and decision-
making in complex and dynamic service ecosystems. By constructing reward functions, 
the objectives of agents are translated to the reinforcement signals, enabling the 
associations of current behaviors with the profits gained in a long-term process. Time-
varying environment states and the unknown strategies of other agents can be reflected 
in the observations used by the learning algorithm. Therefore, agents with RL 
capabilities can make adaptively cooperative–competitive decisions, based on their real-
time interests, and are capable of naturally handling the exploration–exploitation 
conflict. 

1.8. Future Trends in AI-Based Systems 

The next development stage of smart cyber-physical ecosystem–oriented systems will 
integrate on a deep semantic level AI methods and tools for smart services in various 
orders and levels with smart ecosystems. In these newly defined ecosystems, AI models 
work with human-centric and community-related data to provide the required smart 
services for the community. Shortly, the structure of an AI-based smart digital 
ecosystem–oriented system will be an ecosystem of ecosystems because it will integrate 
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entities such as IoT, big data, cloud, edge, fog, and so on, from other ecosystems. A 
significant trend will develop because multiple systems will integrate the AI methods 
and tools to provide smart services in a complete, efficient, and effective decision-
making process for the community involved. Even though many new smart ecosystems 
will arise for specific domains, at present, these systems lack the provided AI methods 
and tools. 

The AI ecosystem services will create smart services oriented to community progress 
and management. Each AI smart service will employ specific sensors from the cyber-
physical ecosystem and the community and will be characterized by a certain periodicity 
and geographical area, all of which will be defined by the AI models associated with the 
service. A related and very important trend for a smart community is AI ecosystem 
services. AI is one of the key technologies for the smart society, smart city, and smart 
country of the future. The implementation of AI methods tackles community problems 
such as climate change, e-health during the pandemic crisis, or a deteriorated economy. 

 

Fig 1 . 4 : Adaptive AI Market Size 
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1.8.1. Emerging Technologies 

From Brain Coevolution to Digital Ecosystems 

Processes from biology and natural ecosystems can also be applied to computing and 
software architecture. Ecosystems have inspired applied digital ecosystems, because 
they are robust, self-organising, and scalable architectures that can automatically solve 
complex, dynamic problems. These properties come from the underlying organisations 
of ecosystems—acting to provide complex solutions for the survival of the species 
within the ecosystem—that can be used to solve complex, dynamic problems in artificial 
systems. Moreover, biological systems are characterised by being energy-efficient 
because they use natural energy sources such as photosynthesis, internal body heat, and 
natural movement within the environment, as well as requiring little maintenance over 
thousands of years of natural evolutionary development. 

Processes from biology and natural ecosystems can also be applied to computing and 
software architecture. Ecosystems have inspired applied digital ecosystems, because 
they are robust, self-organising, and scalable architectures that can automatically solve 
complex, dynamic problems [9,11-12]. These properties come from the underlying 
organisations of ecosystems—acting to provide complex solutions for the survival of the 
species within the ecosystem—that can be used to solve complex, dynamic problems in 
artificial systems. Moreover, biological systems are characterised by being energy-
efficient because they use natural energy sources such as photosynthesis, internal body 
heat, and natural movement within the environment, as well as requiring little 
maintenance over thousands of years of natural evolutionary development. 

1.8.2. Predictions for AI Evolution 

One way to look at the progress of AI is to look at the timeline of the milestones and 
estimate prediction curves. Whether that is Moore’s law, plotting the number of elements 

per integrated circuit over time, or the number of operations per second of the most 
powerful computer at a given year, they are good at revealing general trends. Other 
models focus on larger datasets and more complex quantum computers. 

Although the MIT AI professor Eugene Charniak stated in 2019 that “six of the ten 

following predictions will be fulfilled in the next 10 years,” this list cannot be regarded 

as a reliable or scientific forecast. It does serve as mental preparation for the upcoming 
AI changes, nonetheless. 
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1.9. Conclusion 

Successfully operating AI-based systems within dynamic ecosystems comprises real-
time analysis, flexible adaptation, and designing novel ecosystem components. 
Continuous adaptation addresses ecosystem evolution and unexpected system situations, 
enabled by AI learning and self-adaptation techniques. Human-in-the-loop supports 
expert knowledge integration, while marketplace-oriented mechanisms consider the 
vendor perspective in dynamic ecosystem environments. 

The Digital Business Ecosystem (DBE) fosters Digital Product Innovation through the 
Digital Product Innovation Ecosystem (DPIE) sub-ecosystem, implementing open 
collaboration and integration functionalities. The AI Solutions Marketplace sub-
ecosystem supports Diversified AI Supply through Collaboration and Competition 
among AI actors. Finally, the AI-based Digital Enterprise sub-ecosystem enables Digital 
Enterprise Growth by connecting AI Supply and Demand. These sub-ecosystems 
collectively contribute to diversified digitalization within enterprises and respond to 
multiple industrial demands for intelligent digital transformation. 

1.9.1. Final Thoughts and Key Takeaways 

Adaptability and scalability are essential characteristics of AI-based digital ecosystem 
architectures. The emerging trends in AI-based digital ecosystems cater to diverse 
application scenarios, exhibiting a high degree of adaptability and dynamic, scalable 
attributes. An LLM-CoT approach is envisioned to effectively construct such systems, 
where the Chain of Thought methodology features dynamic branching, enabling the 
ecosystem framework to evolve organically according to application requirements. The 
ecosystem's dynamic, scalable model incorporates three perspectives: assignment 
scalability, resource scalability, and architecture scalability, which correspond to three 
levels of AI Coach judgements—task-oriented, resource-oriented, and actor-oriented, 
respectively. 

The Assignment Scalability (AS) model dynamically assigns and decomposes tasks 
based on the LLM Coaches’ assessment of dependencies among AI Agents and tasks. 

The Resource Scalability (RS) model determines resource allocation for each task group 
and AI Agent according to environmental demands and resource availability. The 
Architecture Scalability (AtS) model constructs the AI Agent ecosystem architecture by 
enabling dynamic incremental and decremental adjustments in response to the constantly 
changing application environment. Moving forward, one principal challenge of the 
LLM-CoT approach for AI-based digital ecosystem architecting involves managing the 
recursive composability among system actors, thus preserving the adaptability and 
scalability of the constructed ecosystems. 
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