

Risk Management

Health Insurance System Sustainability, Parametric Risk Transfer, and Using Accelerated Supervised Machine in Life Insurance Underwriting

Mamdouh Hamza Ahmed

Risk Management: Health
Insurance System Sustainability,
Parametric Risk Transfer, and
Using Accelerated Supervised
Machine in Life Insurance
Underwriting

Mamdouh Hamza Ahmed

Insurance & Actuarial Sciences Department, Faculty of Commerce, Cairo University

Published, marketed, and distributed by:

Deep Science Publishing, 2025 USA | UK | India | Turkey Reg. No. MH-33-0523625 www.deepscienceresearch.com editor@deepscienceresearch.com WhatsApp: +91 7977171947

ISBN: 978-93-7185-911-0

E-ISBN: 978-93-7185-066-7

https://doi.org/10.70593/978-93-7185-066-7

Copyright © Mamdouh Hamza Ahmed, 2025.

Citation: Ahmed, M. H. (2025). *Risk Management: Health Insurance System Sustainability, Parametric Risk Transfer, and Using Accelerated Supervised Machine in Life Insurance Underwriting*. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-066-7

This book is published online under a fully open access program and is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This open access license allows third parties to copy and redistribute the material in any medium or format, provided that proper attribution is given to the author(s) and the published source. The publishers, authors, and editors are not responsible for errors or omissions, or for any consequences arising from the application of the information presented in this book, and make no warranty, express or implied, regarding the content of this publication. Although the publisher, authors, and editors have made every effort to ensure that the content is not misleading or false, they do not represent or warrant that the information-particularly regarding verification by third parties-has been verified. The publisher is neutral with regard to jurisdictional claims in published maps and institutional affiliations. The authors and publishers have made every effort to contact all copyright holders of the material reproduced in this publication and apologize to anyone we may have been unable to reach. If any copyright material has not been acknowledged, please write to us so we can correct it in a future reprint.

Preface

The quest for Universal Health Coverage (UHC)-ensuring all people access to quality health services without suffering financial hardship-is a central target of the United Nations Sustainable Development Goals (SDGs) (WHO, 2021). The architecture of a country's health financing system, particularly its health insurance mechanism, is the primary engine for achieving this aim. Well-designed systems promote equity, efficiency, and resilience; poorly designed ones exacerbate inequality, foster inefficiency, and are vulnerable to collapse.

Globally, successful health insurance architectures, whether based on social health insurance (e.g., Germany), single-payer models (e.g., United Kingdom), or hybrid systems (e.g., Canada), share common foundational pillars. These include mandatory universal coverage, pre-pooled financing, strong regulation, and strategic purchasing. Conversely, systems that fail to institutionalize these pillars, such as the historically fragmented model in the United States, struggle with uninsurance, underinsurance, and the world's highest health expenditures despite suboptimal outcomes.

This chapter explores **parametric insurance** as a transformative financial mechanism to bridge this protection gap and bolster Canada's economic resilience. By providing rapid, transparent, and predictable payouts based on objective triggers, parametric insurance can stabilize incomes, ensure business continuity, and reduce the fiscal burden on governments in the immediate aftermath of a disaster.

Chapter Three: Using Accelerated Supervised Machine Learning Algorithms (ASMLA) as a Tool in Life Insurance Underwriting..35

This chapter applies Accelerated Supervised Machine Learning Algorithms (ASMLA), a method employed by various researchers, to enhance underwriting efficiency. We implement different ASMLA models combined with optimized preprocessing techniques to accelerate and improve risk assessment in life insurance underwriting. Accelerated underwriting relies on both traditional and non-traditional, non-medical data used within predictive models or machine learning algorithms to perform some of the tasks of an underwriter. This chapter investigates the application of Accelerated Supervised Machine Learning Algorithms (ASMLA) for risk classification in life insurance underwriting. Utilizing a synthetic dataset of 100,000 applicants, the study successfully categorizes individuals into four distinct risk tiers. The results indicate that the models achieve not only a high degree of predictive accuracy but also maintain explainability, underscoring the potential of ASMLA to render the underwriting process both more efficient and equitable.

Chapter Four: Selecting the Optimal Tool(s) of Risk Management......47

This case presents a simulated business facing a known probability of fire-related losses. The person responsible for risk must evaluate five distinct alternatives: from total self-insurance to various insured options. A key alternative involves a proactive loss control intervention—the installation of a sprinkler system—that fundamentally alters the risk profile. Each strategy presents a unique financial outcome, encompassing both direct expenses and the subjective toll of concern.

The purpose of this case study is to evaluate and compare nine risk management techniques using two separate decision-making criteria:

- a) Minimum Expected Tangible Loss-focusing solely on measurable financial losses
- b) Worry Method-incorporating both tangible losses and assigned values for anxiety or uncertainty.

Mamdouh Hamza Ahmwd