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Chapter 6: Building and Training Autonomous Deep 

Learning Agents 

6.1. Introduction to Autonomous Agents 

In the broadest sense, an autonomous agent is anything capable of acting on the 

environment autonomously. More precisely, it is an entity that operates in the 

environment without direct action from humans or agents. Most actions of an 

autonomous agent are sequentially correlated: the current action affects the next action. 

Many autonomous agents exhibit some form of goal-seeking behaviour; typically these 

goals are defined through some notion of a reward function or a score function. 

Autonomy exists in all forms of life on this planet. People perceive particular events in 

the environment, often converting the data to an abstract state space. An intelligent 

person will also choose an appropriate action for the current state. This action may have 

a long-term effect on a reward score, such as physical health. Of course, people are 

usually uncertain about their environment and will have a belief, rather than a concrete 

conclusion, about the best action. Nevertheless, people are capable of choosing their own 

actions based on their environment. 

6.1.1. Overview of Autonomous Agents 

An autonomous agent is a software entity that makes decisions on its own, shifting the 

focus from the classic AI question “How do we train computers to be smart?” to a 

distribution question: “How do we design and train smart agents to perform a variety of 

tasks?” Recent advances have yielded methods and tools that allow virtually anyone to 

build intelligent agents, including three key developments: effective agent architectures 

(i.e., neural networks that support agenthood), efficient training methods that yield 

generalist agents with good liabilities, and fast methods for collecting and leveraging 

training data. 
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Together, these advances have executed the pipeline for building and training 

autonomous deep learning agents, thereby migrating AI research questions from lab 

prototypes to applications in the wild. As such, they have ushered in the rise of 

autonomous AI. For readers just getting started with deep learning for autonomous 

agents and those eager to deepen their understanding, the subsequent sections provide 

brief introductions to each of these core areas. The resulting narrative is necessarily 

broad and shallow, and the interested reader is encouraged to consult the pointers to 

related books and articles scattered throughout the text. 

6.2. Fundamentals of Deep Learning 

Deep learning, a subfield within machine learning, investigates and develops learning 

mechanisms within artificial neural networks and their variants—convolutional,  

 

Fig 6 . 1 : Deep Learning: Unraveling Neural Networks 

recurrent, graph, variational, and attention-based models among others—through 

application to large data sets, creating multi-level representations of the incoming data 

[1-3]. Artificial neural networks consist of elements banded into layers, interconnected 

using matrices of coordinate-related weights, whose individual values are adjusted over 

the course of the training process so that the network produces useful outputs. Input 

nodes, or artificial neurons, convey the incoming signal to the first hidden layer. Hidden 

nodes operate on the signal, multiplying it first by the weight vector and summing, 
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adding a bias, and then applying a nonlinear activation function before sending the 

output on to the nodes of the subsequent layer. In this way, multiple levels of abstraction 

are learned, displayed by each succeeding hidden layer in the network, until the final 

layer produces a result matching requirements for a downstream task. 

Training involves the presentation of many labeled examples, each followed by an 

evaluation and adjustment of the hidden connections. The supervised paradigm makes 

use of datasets of question-answer pairs for the task being modeled, assessing network 

accuracy after each presentation by calculating the distance between output and expected 

answer and determining how to adjust the weights to minimize this error. In 

unsupervised and self-supervised learning, there are no such labeled pairs; solutions to 

the problem being addressed are generated by the network itself, with accuracy assessed 

and weights adjusted accordingly. In training by reinforcement learning, the network 

interacts with an environment, receiving positive and negative signals that measure its 

occasional actions. These signals, or rewards, can also be generated by other machine 

learning models, trained for their own purposes—for playing chess, for example, or 

maintaining conversation in a particular style. 

6.2.1. Core Concepts of Deep Learning 

Autonomous agents are systems capable of independent action to achieve predetermined 

goals in complex and dynamic environments. The rapid proliferation of these agents is 

driven largely by their ability to be trained using deep learning techniques. Having 

established what autonomous agents are and why deep learning methods are suitable for 

their development, attention now turns to the core concepts of deep learning as presented 

in "Fundamentals of Deep Learning." 

Autonomous agents are complex data-processing devices that transform raw information 

into meaningful knowledge. In the context of deep learning, neural networks are 

employed to implement such devices, although the underlying principles apply to other 

network types as well. Each processing element in a network corresponds to a neuron in 

a biological brain. A neuron's state is determined by its activation, which depends on the 

type of network—feedforward or recurrent [2,4-5]. The internal structure of a neuron 

within a network is outlined in Figure 2.4; feedforward networks contain neurons of 

either all the same type or two types. In the feedforward scheme, the activation of units 

in a given layer is independent, whereas, in recurrent networks, it exhibits temporal 

evolution. 
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6.3. Agent Architecture Design 

Implementing an autonomous agent in a modern computer or robot is much like building 

any other deep learning application: first, choose the architecture of the neural network 

that acts as the decision-making core of the agent. Any type of network can be used, 

including multilayer perceptrons or feed-forward networks, convolutional networks, 

recurrent networks, or a hybrid of several networks. Networks with different types of 

layers and structures can also be combined. Together they define the agent’s architecture. 

When building an agent, modular architectures, in which several neural networks each 

serve a distinct role, are often very useful. 

Next, choose a training paradigm. Most deep learning architectures are trained with 

supervised learning, meaning that the training data consists of input-output pairs, where 

the outputs are labels or classes associated with the input data. Supervised learning is 

commonly applied in computer vision problems, in which the networks are trained on 

images or video frames that have been labeled with the name of the object that is 

depicted, for example. This can also be considered teacher-forcing. The teacher forces, 

or enforces, that the many hidden layers of the neural network must funnel their 

information in a way that can be used to produce the right outputs for the given training 

inputs. This particular strategy points at two others that are also widely used for training 

autonomous agents: reinforcement learning and unsupervised learning. 

6.3.1. Neural Network Types 

Three fundamental deep-learning approaches to building autonomous systems—agent 

architectures, training paradigms, and data synthesis—are examined in the context of 

contemporary research. Agent architectures, commonly implemented as deep neural 

networks, encompass diverse designs tailored to specific tasks; these representational 

choices underpin decisionmaking processes that direct the agent’s actions in complex 

environments. Fundamentally, the architecture serves as a mapping function that 

converts the agent’s observations—typically high-dimensional sensory inputs such as 

RGB images—into subsequent actions, with the network’s weights encoding the 

strategic policy learned from experience. 

Neural-model-based agents, exemplified in run-time path-planning algorithms, make 

decisions without resorting to trial-and-error, exhibiting high reactivity by responding 

immediately to new environmental patterns. These agents are often modular, comprising 

function-specific components each associated with a distinct data column; this 

modularity affords design flexibility, enabling the integration of functions from various 

methods and allowing additional data sources to contribute new functionality. 
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Fig 6 . 2 : Deep Learning: Autonomous Systems Approaches 

The autonomic hierarchy within this framework recursively encodes constraints on 

lower-level control elements, expediting autonomous decision-making. In contrast, 

neural-model-free agents rely on reinforcement learning and trial-and-error strategies, 

wherein an adaptive feedback system evaluates the agent’s accrued experiences, sources 

data from these experiences, and supplies target values for training a corresponding state-

action decision-making neural model. 

6.3.2. Modular Architectures 

Modular structures can be found throughout nature. Indeed, the modularity of the brain 

had a great influence on special architectures proposed in the deep learning literature 

[99]. For example, convolutional networks [98] are inspired by the topological structure 

of the visual cortex, and translation invariance in the visual system (objects maintain 

their identity when their position in the visual field is shifted) is exploited through 

translation parameter sharing in the convolution operation. Modular structures are 

desirable to study and design, since such structures may emerge from the task 

complexity. For instance, a task can often be decomposed into manageable subtasks that, 

in turn, can be solved via a hierarchical structure, where each sub-network solves a 

particular subtask, and combines and forwards its solution to upper levels. 

Modular structures can be effortlessly added to convolutional nets, thanks to the well-

known, scalable and modular design of conv layers, which can be flexibly combined to 
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construct shallow or deep convolutional nets. However, small changes in the behavior 

of the object being detected (or, roughly speaking, in its statistical properties) require, in 

the case of a classification network, re-training the entire network. By contrast, the 

modular nature of the architectures proposed next, allows changes in the statistical 

properties of some particular features to be addressed by re-engineering only some 

specific sub-parts of the complete network. 

6.4. Reinforcement Learning Basics 

Reinforcement learning enables an agent to understand how to interact with its 

environment to achieve maximum reward. The agent takes an action based on the current 

state, after which the environment transitions to another state according to some 

underlying transition model and returns a reward. The agent’s goal is to maximize the 

discounted sum of all future rewards, for which it requires a belief about the value of an 

action given a state. This value is encapsulated in the state-action value function Qπ(s, 

a), the expected discounted sum of future rewards given that the agent took action _a_ 

in state _s_ and followed policy π afterward. From the state-action value function, the 

agent’s optimal policy π∗(a | s) can be derived by choosing the action that maximizes 

Q∗(s, a), thus guiding the agent’s decision-making in pursuit of maximum reward. 

An autonomous agent comprises an environment coupled with an agent. The 

environment generates the inputs and reward signals that the agent model processes, and 

the agent’s outputs influence both the agent’s future actions and the environment’s state. 

The training process involves iteratively sampling input, output, and reward signals. The 

agent’s action must encompass all information that might influence future actions, and 

the reward function should quantify the payoff of an action in a specific state. The 

computational core of the agent is a state-action value function Qθ(s, a), parameterized 

by θ and realized as a feedforward neural network. 

6.5. Training Strategies for Agents 

Autonomous agents provide a modern approach to designing intelligent systems. By 

using deep learning algorithms to approximate the policy, value function, or model of 

the environment, the agent represents the source of intelligence and then justifies the 

input data to enable decision making. This is an opposite idea from traditional control 

theory, where the agent is the step-by-step algorithm designed to perform a given task 

behavior. This strategy has many advantages: the agent can be highly specialized for a 

specific task, the agent can be designed to operate in multiple tasks, the agent can learn 

to interact with other agents, and the agent can learn to act from multiple input sources. 
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Fig 6 . 3 : Deep Learning: Autonomous Agents and Decision Making 

An agent interacts with the environment and continually updates its knowledge. An 

agent that achieves perfect performance can solve unknown tasks based only on 

interactions with the environment. In simple cases, the agent can be trained by imitation 

learning. This strategy is followed when the agent does not interact with the environment 

but can learn from high-quality datasets covering all situations of the problem. More 

commonly, the agent is updated using self-play, an approach based on the pre-training 

of the behavior and then using reinforcement learning by fooling an agent with itself. 

However, this generates a chicken-and-egg problem. Without training the relationship 

between states and actions, the agent is not able to get useful experiences. 

6.5.1. Supervised Learning 

Recent advances in artificial intelligence (AI) have brought machines closer to human-

level problem-solving abilities. One interesting way to approach AI is by constructing 

autonomous agents based on deep learning models. 

Fundamentals of Deep Learning Only a small subset of deep learning methods has been 

implemented in autonomous agents. Selecting the conceptually simpler ones leads to a 
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clearer understanding of the principles and also produces better-based systems. An 

autonomous agent is a goal-directed entity. Successful action completion requires 

interaction with the environment and adaptation to the changing circumstances. 

Interaction with the environment provides the feedback to evaluate the agent’s state and 

guide its next actions. An autonomous agent can be considered a system consisting of 

an observation function S = Obs(E), which assigns a mark allocation or response based 

on the activities of the environment E; a reward function R = Rew(E), which assigns a 

utility, usually a fold increase or decrease in the capital of the agent, based on the 

activities of the environment E; a state transition function that maps the agent’s current 

state and action to the next state; and finally, a policy π: S → A, which prescribes the 

best action in each state, in order to maximize the expected cumulative rewards in the 

long run. Action selection by the agent is typically driven by policies that are revised 

constantly based on updated states and rewards, and on the final objective pursued by 

the agent. The designer of the agent decides the operating logic of the reward function 

during the development phase of the agent: the reward function is triggered by internal 

states of the environment as well as actions of the agent itself, and in opposition to each 

other. In the context of supervised learning, the agent needs to discover and estimate the 

relationship between two or more variables presented in the form of samples from a data 

distribution. For example, a data scientist can design a model that predicts the price of 

assets based on past records by considering the relationship between the price of an asset 

at different points in time [1,3-5]. Training employed to develop such a model is referred 

to as supervised. Training often involves solving a complex optimization problem by 

following an iterative procedure; however, these details are not vital in the process of 

building an autonomous agent. As a result, the algorithm is treated as a black box that is 

capable of producing predictive models. The considerations that matter are, therefore, 

(a) the right data collection and preparation, and (b) choosing the best training labels and 

features for the problem at hand. 

6.5.2. Unsupervised Learning 

Having stated the motivation behind reinforcement learning, it is safe to wonder about 

its relative advantages and disadvantages when compared to more traditional forms of 

machine learning such as supervised learning and unsupervised learning. Reinforcement 

learning, compared to supervised learning, is more akin to how humans are trained into 

new skills, and is therefore much more flexible (i.e., it can be applied to a wider range 

of problems). It also enables a concept known as transfer learning, whereby the neural 

network training in one environment/with one task optimizes also for how fast it can 

learn other tasks. All this being said, supervised learning remains much more popular 

and much easier to apply. 
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Collecting data sets and creating environments that can provide the necessary supervised 

signals is much easier than defining the "reward" system for a reinforcement learning 

scenario. Furthermore, there also exist of pre-packaged data sets performing thousands 

of tasks that can be used to train deep learning models. It is easy to understand the 

difficulties of combining the advantages of RL and SL through the problem of training 

a robotic dog to fetch and fetch interactively rewarding the robot dog every time it does 

something right. Or, to reverse the roles, supposing that the researcher is willing to dog-

sit the robot dog every day for months on end, it is not so easy to create the environment 

in such a way that when the robot dog is rewarded for actually fetching does not 

simultaneously "break" the training by grabbing the ball and playing NOT FETCH. 

Instead, one can create a data set of correct actions, and then feed the labeled images / 

states over so that the robot dog can learn the basic rudiments of the task [6-8]. 

6.5.3. Reinforcement Learning 

Additionally, neural networks allow for context-sensitive behavior, by training a 

network to choose a response based not only on what is sensed at the moment but also 

on temporal context. This information can be encoded as internal state of a recurrent net 

of sigmoidal neurons. Such networks can be trained with a specialized algorithm for 

recurrent nets or with a reinforcement algorithm that simultaneously learns choice of 

actions and updates the internal state to remember past events and act on them 

appropriately. 

A different approach is to learn the value of states rather than learning policies directly. 

States are defined so as to be Markovian, that is, the best action to take in a given state 

depends only on the state itself. The value of a state is the expected future reward after 

entering it. By learning the values of states rather than the values of particular actions, 

agents can attend first to exploring the state space in a systematic fashion. Once the value 

function is known, an agent can follow a stable policy consisting of the actions that lead 

to the best successes. Several reinforcement learning algorithms, including temporal 

difference, Q-learning, and SARSA, are centered on learning value functions of states. 

By combining these with deep nets of different architectures, it is possible to build very 

powerful autonomous agents with wide-ranging capabilities. 

6.6. Data Collection and Preprocessing 

When training autonomous deep learning agents, data collection and preprocessing play 

foundational roles. Data can be collected through interaction with a simulator or real-

world environment, from online sources, or manually created for specific tasks. Careful 
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data preprocessing can significantly improve the quality of an agent's training 

experience. 

Preprocessing projects the raw data onto a new space where noise is reduced and 

meaningful relations become more apparent. Properly chosen feature representations can 

enhance the ability of subsequent modules to extract meaningful information. The 

discussion draws on previous coverage of training strategies for agents. 

6.6.1. Data Sources 

Training a neural network, regardless of its nature, requires an appropriate quantity of 

relevant data, preferably within a proper environment in which the agent will operate. 

Since supervised learning aims at explicitly providing the function the network must 

learn, the training data must contain input-output pairs that, when displayed, correctly 

represent the behavior of the network. However, providing input-output pairs typically 

has some drawbacks. First, supervising the input-output pairs requires that someone 

capable of performing the task also runs the demonstrations. Second, supervisors are 

frequently only able to demonstrate how to behave in simpler scenarios, limiting the 

complexity of the collected data. Third, many states are never visited while simply 

running the environment; therefore, no information is collected for the controller to learn 

from. 

 

Fig 6 . 4 : Neural Network Training: Data & Environment Paradigms 
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On the other hand, the advantage of supervised learning is that it provides a richer reward 

signal, reduces the probability of taking random actions, and reduces the risk of ending 

in a dead-end during training. Although reinforcement learning suffers from some of the 

drawbacks of supervised learning, its advantages encourage researchers to continue 

investigating ways to reduce these disadvantages. Subsection 6.1 describes a lock-

picking autonomous agent built using supervised deep learning, which leverages the 

abundant availability of videos on the task to learn from. Chapter 7, on the back cover 

of Fundamentals of Deep Learning, uses the ideas behind the agent to build and scaffold 

agents so that they can be easily trained using reinforcement learning. 

6.6.2. Data Cleaning Techniques 

Another crucial task for creating autonomous agents capable of handling unstructured 

data is data cleaning. Although autonomous agents can be trained to recognize and clean 

data, data cleaning in itself is a widely researched topic in machine learning. For 

example, Duan et al. [32] solved a specific practical data cleaning problem called data 

deduplication or entity matching. Recently, Krishnan et al. [55] introduced a multi-agent 

approach for data cleaning, and in particular data imputation—the filling of missing 

values in a data set. 

Beyond automatically cleaning data, it is also critical to guarantee that the data collected 

by an autonomous agent is not biased or influenced by the agent itself. Thus, researchers 

from different areas of machine learning recently started to investigate data collection 

approaches that guarantee privacy, debiasing, or causality. 

6.7. Future Directions in Agent Development 

The field of autonomous deep learning agents has achieved remarkable progress 

recently, yet numerous research avenues await exploration. The examination of agent 

architecture remains a rich domain, including a detailed study of modular networks, their 

benefits, and their ability for lateral transfer. Building upon the previous discussion on 

Training Strategies for Agents, an in-depth analysis of data collection and preprocessing 

techniques is equally vital. Training strategies themselves offer fertile ground for 

research; for example, recently advanced supervised approaches, such as procedural 

generation and strategic policy distillation, have demonstrated promising results. Further 

exploration of methods that employ diverse task sets for specialized subgoal mastery, 

followed by distillation into a generalist network, could yield significant improvements. 

Equally compelling are the directions presented by generative modeling. Generative 

models lend themselves naturally to environment design for reinforcement learning tasks 
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and might also be harnessed to generate new task descriptions. Conversely, methods 

from planning and classical AI—particularly search and optimization techniques—merit 

integration into the training of generalist agents capable of operating in complex 

environments. Developing agents with a modular architecture reinforces this thrust: 

employing advanced linguistic and logical models for natural language processing as 

adaptable services enables their application to a broad spectrum of tasks through lateral 

transfer. 

6.7.1. Emerging Technologies 

Narrow AI systems are usually trained in specific ways. Supervised learning methods 

are often used, in which a system is trained on input and output pairs provided by human 

teachers. "Cats-dogs" classifiers are the most popular example; training samples are 

labeled pictures of cats and dogs. Unsupervised learning methods are those in which the 

system trains only on the inputs; for example, by labeling clusters of input samples that 

are similar to each other. The dominant contemporary learning paradigm for autonomous 

agents, however, is reinforcement learning, in which an agent interacts with a world and 

learns the sequence of actions needed to maximize future reward signals. 

Techniques are emerging that combine the advantages of all three approaches — 

supervised, unsupervised, and reinforcement learning. For example, an agent can first 

gather unsupervised knowledge about percepts and possible actions using a method such 

as curiosity-based learning [5,9-10]. Then, during a second phase, it tries to learn 

behavior strategies that maximize externally assigned goals, using that initial 

preprocessed knowledge as a starting point. Current research is also investigating the 

transfer of knowledge from one agent to another, which in a training perspective can be 

framed as moving from supervised learning between different agents. In addition, multi-

modal data sources can be combined, permitting agents to train on several types of data 

simultaneously (e.g., audio and image information). These strategies are of interest 

because they can either reduce the amount of training time required for an agent to master 

a task, or make the system much more general. 

6.7.2. Interdisciplinary Approaches 

Interdisciplinary approaches are equally important, as game-playing decision-making 

agents with self-awareness, advanced reasoning, and explicit communication will likely 

incorporate various principles from cognitive science and linguistics, such as deep 

models of theory of mind, probabilistic programming, and grounding. It has been 

proposed that Bayesian inference with generative adversarial networks can bridge the 

gap between probabilistic programming and deep learning, and significant progress has 



  

95 
 

already been made in leveraging GANs for probabilistic inference. Although such 

research directions remain largely unexplored, a thoughtful integration of deep 

reinforcement learning with several core topics in AI and cognitive science may 

ultimately lead to smarter and more trustworthy agents. 

The discussion thus far has focused on deep reinforcement learning alone. The presented 

building blocks, however, pertain more generally to design and training of versatile deep 

architectures for autonomous agents. Even when the final agent does not employ 

reinforcement learning as its main optimization architecture, it will still likely need to 

leverage reinforcement learning for key training tasks: generating simulated experience 

to fine-tune an agent trained on supervised or unsupervised learning from real-world 

experience or shaping an agent’s behavior in an environment allowing fast training. 

Hence, interconnections with other training paradigms, such as supervised learning, 

unsupervised learning, and generative adversarial learning, will remain a central aspect 

of the future development of autonomous decision-making agents. 

6.8. Conclusion 

Artificial intelligence (AI) is evolving towards a state where deep learning–trained 

agents transform ideas into actions autonomously. Such agents independently explore 

ideas, generate scenarios for addressing them, and execute the most suitable scenario to 

solve the problem or deliver the AI service. Their ability to translate questions into 

answers without human assistance ushers in a new AI era of extraordinary growth. 

 

Fig 6 . 5 : Sources of Training Data for AI Agents 

The first step in preparing an agent for operation involves selecting an appropriate neural 

network type. Common models include deep neural networks, feed-forward neural 

networks, convolutional neural networks, recurrent neural networks, long short-term 
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memory networks, and transformer networks. Leveraging a modular design allows each 

specific neural network type to be trained through supervised learning, unsupervised 

learning, or reinforcement learning. Agents can utilize demonstration data, experiences 

from exploring the environment, or a combination of both for training purposes. 

6.8.1. Summary and Insights on Autonomous Agent Advancements 

Autonomous agents must be able to independently perform activities such as building 

and training. Building agents involves integrating architectural components—sometimes 

realized as neural networks—of certain types into an agent architecture. Training 

includes exposure of the architecture to various data-input–transform-target tuples that 

teach the agent what to do and when. These high-level definitions allow the creation of 

agents capable of constructing their own building and training processes, enabling 

flexible and diverse functionality. 

Agent-building methods are not restricted to neural networks. Given an autonomous-

agent architecture, various components—such as planning, attention, modulation, and 

memory—can be organized to yield any type of functionality. Training methods 

encompass supervised learning, for example, training convolutional networks like 

Inception-ResNet-v2. The proposed method for training an agent with arbitrary 

components broadens the scope of possible data and training paradigms beyond the 

supervised-learning training of convolutional networks. Notably, training does not 

necessarily require data labeled with the actions the agent should take, allowing 

reinforcement learning training with rewards for good behavior. The subsections that 

follow tackle architectural considerations and training options for autonomous agents 

next. 
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