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Chapter 6: Building and Training Autonomous Deep
Learning Agents

6.1. Introduction to Autonomous Agents

In the broadest sense, an autonomous agent is anything capable of acting on the
environment autonomously. More precisely, it is an entity that operates in the
environment without direct action from humans or agents. Most actions of an
autonomous agent are sequentially correlated: the current action affects the next action.
Many autonomous agents exhibit some form of goal-seeking behaviour; typically these
goals are defined through some notion of a reward function or a score function.

Autonomy exists in all forms of life on this planet. People perceive particular events in
the environment, often converting the data to an abstract state space. An intelligent
person will also choose an appropriate action for the current state. This action may have
a long-term effect on a reward score, such as physical health. Of course, people are
usually uncertain about their environment and will have a belief, rather than a concrete
conclusion, about the best action. Nevertheless, people are capable of choosing their own
actions based on their environment.

6.1.1. Overview of Autonomous Agents

An autonomous agent is a software entity that makes decisions on its own, shifting the
focus from the classic Al question “How do we train computers to be smart?” to a
distribution question: “How do we design and train smart agents to perform a variety of
tasks?” Recent advances have yielded methods and tools that allow virtually anyone to
build intelligent agents, including three key developments: effective agent architectures
(i.e., neural networks that support agenthood), efficient training methods that yield
generalist agents with good liabilities, and fast methods for collecting and leveraging
training data.
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Together, these advances have executed the pipeline for building and training
autonomous deep learning agents, thereby migrating Al research questions from lab
prototypes to applications in the wild. As such, they have ushered in the rise of
autonomous Al. For readers just getting started with deep learning for autonomous
agents and those eager to deepen their understanding, the subsequent sections provide
brief introductions to each of these core areas. The resulting narrative is necessarily
broad and shallow, and the interested reader is encouraged to consult the pointers to
related books and articles scattered throughout the text.

6.2. Fundamentals of Deep Learning

Deep learning, a subfield within machine learning, investigates and develops learning
mechanisms within artificial neural networks and their variants—convolutional,
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Fig 6 . 1 : Deep Learning: Unraveling Neural Networks

recurrent, graph, variational, and attention-based models among others—through
application to large data sets, creating multi-level representations of the incoming data
[1-3]. Artificial neural networks consist of elements banded into layers, interconnected
using matrices of coordinate-related weights, whose individual values are adjusted over
the course of the training process so that the network produces useful outputs. Input
nodes, or artificial neurons, convey the incoming signal to the first hidden layer. Hidden
nodes operate on the signal, multiplying it first by the weight vector and summing,
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adding a bias, and then applying a nonlinear activation function before sending the
output on to the nodes of the subsequent layer. In this way, multiple levels of abstraction
are learned, displayed by each succeeding hidden layer in the network, until the final
layer produces a result matching requirements for a downstream task.

Training involves the presentation of many labeled examples, each followed by an
evaluation and adjustment of the hidden connections. The supervised paradigm makes
use of datasets of question-answer pairs for the task being modeled, assessing network
accuracy after each presentation by calculating the distance between output and expected
answer and determining how to adjust the weights to minimize this error. In
unsupervised and self-supervised learning, there are no such labeled pairs; solutions to
the problem being addressed are generated by the network itself, with accuracy assessed
and weights adjusted accordingly. In training by reinforcement learning, the network
interacts with an environment, receiving positive and negative signals that measure its
occasional actions. These signals, or rewards, can also be generated by other machine
learning models, trained for their own purposes—for playing chess, for example, or
maintaining conversation in a particular style.

6.2.1. Core Concepts of Deep Learning

Autonomous agents are systems capable of independent action to achieve predetermined
goals in complex and dynamic environments. The rapid proliferation of these agents is
driven largely by their ability to be trained using deep learning techniques. Having
established what autonomous agents are and why deep learning methods are suitable for
their development, attention now turns to the core concepts of deep learning as presented
in "Fundamentals of Deep Learning."

Autonomous agents are complex data-processing devices that transform raw information
into meaningful knowledge. In the context of deep learning, neural networks are
employed to implement such devices, although the underlying principles apply to other
network types as well. Each processing element in a network corresponds to a neuron in
a biological brain. A neuron's state is determined by its activation, which depends on the
type of network—feedforward or recurrent [2,4-5]. The internal structure of a neuron
within a network is outlined in Figure 2.4; feedforward networks contain neurons of
either all the same type or two types. In the feedforward scheme, the activation of units
in a given layer is independent, whereas, in recurrent networks, it exhibits temporal
evolution.
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6.3. Agent Architecture Design

Implementing an autonomous agent in a modern computer or robot is much like building
any other deep learning application: first, choose the architecture of the neural network
that acts as the decision-making core of the agent. Any type of network can be used,
including multilayer perceptrons or feed-forward networks, convolutional networks,
recurrent networks, or a hybrid of several networks. Networks with different types of
layers and structures can also be combined. Together they define the agent’s architecture.
When building an agent, modular architectures, in which several neural networks each
serve a distinct role, are often very useful.

Next, choose a training paradigm. Most deep learning architectures are trained with
supervised learning, meaning that the training data consists of input-output pairs, where
the outputs are labels or classes associated with the input data. Supervised learning is
commonly applied in computer vision problems, in which the networks are trained on
images or video frames that have been labeled with the name of the object that is
depicted, for example. This can also be considered teacher-forcing. The teacher forces,
or enforces, that the many hidden layers of the neural network must funnel their
information in a way that can be used to produce the right outputs for the given training
inputs. This particular strategy points at two others that are also widely used for training
autonomous agents: reinforcement learning and unsupervised learning.

6.3.1. Neural Network Types

Three fundamental deep-learning approaches to building autonomous systems—agent
architectures, training paradigms, and data synthesis—are examined in the context of
contemporary research. Agent architectures, commonly implemented as deep neural
networks, encompass diverse designs tailored to specific tasks; these representational
choices underpin decisionmaking processes that direct the agent’s actions in complex
environments. Fundamentally, the architecture serves as a mapping function that
converts the agent’s observations—typically high-dimensional sensory inputs such as
RGB images—into subsequent actions, with the network’s weights encoding the
strategic policy learned from experience.

Neural-model-based agents, exemplified in run-time path-planning algorithms, make
decisions without resorting to trial-and-error, exhibiting high reactivity by responding
immediately to new environmental patterns. These agents are often modular, comprising
function-specific components each associated with a distinct data column; this
modularity affords design flexibility, enabling the integration of functions from various
methods and allowing additional data sources to contribute new functionality.
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Fig 6 . 2 : Deep Learning: Autonomous Systems Approaches

The autonomic hierarchy within this framework recursively encodes constraints on
lower-level control elements, expediting autonomous decision-making. In contrast,
neural-model-free agents rely on reinforcement learning and trial-and-error strategies,
wherein an adaptive feedback system evaluates the agent’s accrued experiences, sources
data from these experiences, and supplies target values for training a corresponding state-
action decision-making neural model.

6.3.2. Modular Architectures

Modular structures can be found throughout nature. Indeed, the modularity of the brain
had a great influence on special architectures proposed in the deep learning literature
[99]. For example, convolutional networks [98] are inspired by the topological structure
of the visual cortex, and translation invariance in the visual system (objects maintain
their identity when their position in the visual field is shifted) is exploited through
translation parameter sharing in the convolution operation. Modular structures are
desirable to study and design, since such structures may emerge from the task
complexity. For instance, a task can often be decomposed into manageable subtasks that,
in turn, can be solved via a hierarchical structure, where each sub-network solves a
particular subtask, and combines and forwards its solution to upper levels.

Modular structures can be effortlessly added to convolutional nets, thanks to the well-
known, scalable and modular design of conv layers, which can be flexibly combined to
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construct shallow or deep convolutional nets. However, small changes in the behavior
of the object being detected (or, roughly speaking, in its statistical properties) require, in
the case of a classification network, re-training the entire network. By contrast, the
modular nature of the architectures proposed next, allows changes in the statistical
properties of some particular features to be addressed by re-engineering only some
specific sub-parts of the complete network.

6.4. Reinforcement Learning Basics

Reinforcement learning enables an agent to understand how to interact with its
environment to achieve maximum reward. The agent takes an action based on the current
state, after which the environment transitions to another state according to some
underlying transition model and returns a reward. The agent’s goal is to maximize the
discounted sum of all future rewards, for which it requires a belief about the value of an
action given a state. This value is encapsulated in the state-action value function Qn(s,
a), the expected discounted sum of future rewards given that the agent took action _a_
in state s and followed policy = afterward. From the state-action value function, the
agent’s optimal policy n+(a | s) can be derived by choosing the action that maximizes
Qx(s, a), thus guiding the agent’s decision-making in pursuit of maximum reward.

An autonomous agent comprises an environment coupled with an agent. The
environment generates the inputs and reward signals that the agent model processes, and
the agent’s outputs influence both the agent’s future actions and the environment’s state.
The training process involves iteratively sampling input, output, and reward signals. The
agent’s action must encompass all information that might influence future actions, and
the reward function should quantify the payoff of an action in a specific state. The
computational core of the agent is a state-action value function Q0(s, a), parameterized
by 0 and realized as a feedforward neural network.

6.5. Training Strategies for Agents

Autonomous agents provide a modern approach to designing intelligent systems. By
using deep learning algorithms to approximate the policy, value function, or model of
the environment, the agent represents the source of intelligence and then justifies the
input data to enable decision making. This is an opposite idea from traditional control
theory, where the agent is the step-by-step algorithm designed to perform a given task
behavior. This strategy has many advantages: the agent can be highly specialized for a
specific task, the agent can be designed to operate in multiple tasks, the agent can learn
to interact with other agents, and the agent can learn to act from multiple input sources.
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Fig 6 . 3 : Deep Learning: Autonomous Agents and Decision Making

An agent interacts with the environment and continually updates its knowledge. An
agent that achieves perfect performance can solve unknown tasks based only on
interactions with the environment. In simple cases, the agent can be trained by imitation
learning. This strategy is followed when the agent does not interact with the environment
but can learn from high-quality datasets covering all situations of the problem. More
commonly, the agent is updated using self-play, an approach based on the pre-training
of the behavior and then using reinforcement learning by fooling an agent with itself.
However, this generates a chicken-and-egg problem. Without training the relationship
between states and actions, the agent is not able to get useful experiences.

6.5.1. Supervised Learning

Recent advances in artificial intelligence (Al) have brought machines closer to human-
level problem-solving abilities. One interesting way to approach Al is by constructing
autonomous agents based on deep learning models.

Fundamentals of Deep Learning Only a small subset of deep learning methods has been

implemented in autonomous agents. Selecting the conceptually simpler ones leads to a
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clearer understanding of the principles and also produces better-based systems. An
autonomous agent is a goal-directed entity. Successful action completion requires
interaction with the environment and adaptation to the changing circumstances.
Interaction with the environment provides the feedback to evaluate the agent’s state and
guide its next actions. An autonomous agent can be considered a system consisting of
an observation function S = Obs(E), which assigns a mark allocation or response based
on the activities of the environment E; a reward function R = Rew(E), which assigns a
utility, usually a fold increase or decrease in the capital of the agent, based on the
activities of the environment E; a state transition function that maps the agent’s current
state and action to the next state; and finally, a policy n: S — A, which prescribes the
best action in each state, in order to maximize the expected cumulative rewards in the
long run. Action selection by the agent is typically driven by policies that are revised
constantly based on updated states and rewards, and on the final objective pursued by
the agent. The designer of the agent decides the operating logic of the reward function
during the development phase of the agent: the reward function is triggered by internal
states of the environment as well as actions of the agent itself, and in opposition to each
other. In the context of supervised learning, the agent needs to discover and estimate the
relationship between two or more variables presented in the form of samples from a data
distribution. For example, a data scientist can design a model that predicts the price of
assets based on past records by considering the relationship between the price of an asset
at different points in time [1,3-5]. Training employed to develop such a model is referred
to as supervised. Training often involves solving a complex optimization problem by
following an iterative procedure; however, these details are not vital in the process of
building an autonomous agent. As a result, the algorithm is treated as a black box that is
capable of producing predictive models. The considerations that matter are, therefore,
(2) the right data collection and preparation, and (b) choosing the best training labels and
features for the problem at hand.

6.5.2. Unsupervised Learning

Having stated the motivation behind reinforcement learning, it is safe to wonder about
its relative advantages and disadvantages when compared to more traditional forms of
machine learning such as supervised learning and unsupervised learning. Reinforcement
learning, compared to supervised learning, is more akin to how humans are trained into
new skills, and is therefore much more flexible (i.e., it can be applied to a wider range
of problems). It also enables a concept known as transfer learning, whereby the neural
network training in one environment/with one task optimizes also for how fast it can
learn other tasks. All this being said, supervised learning remains much more popular
and much easier to apply.
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Collecting data sets and creating environments that can provide the necessary supervised
signals is much easier than defining the "reward" system for a reinforcement learning
scenario. Furthermore, there also exist of pre-packaged data sets performing thousands
of tasks that can be used to train deep learning models. It is easy to understand the
difficulties of combining the advantages of RL and SL through the problem of training
a robotic dog to fetch and fetch interactively rewarding the robot dog every time it does
something right. Or, to reverse the roles, supposing that the researcher is willing to dog-
sit the robot dog every day for months on end, it is not so easy to create the environment
in such a way that when the robot dog is rewarded for actually fetching does not
simultaneously "break" the training by grabbing the ball and playing NOT FETCH.
Instead, one can create a data set of correct actions, and then feed the labeled images /
states over so that the robot dog can learn the basic rudiments of the task [6-8].

6.5.3. Reinforcement Learning

Additionally, neural networks allow for context-sensitive behavior, by training a
network to choose a response based not only on what is sensed at the moment but also
on temporal context. This information can be encoded as internal state of a recurrent net
of sigmoidal neurons. Such networks can be trained with a specialized algorithm for
recurrent nets or with a reinforcement algorithm that simultaneously learns choice of
actions and updates the internal state to remember past events and act on them
appropriately.

A different approach is to learn the value of states rather than learning policies directly.
States are defined so as to be Markovian, that is, the best action to take in a given state
depends only on the state itself. The value of a state is the expected future reward after
entering it. By learning the values of states rather than the values of particular actions,
agents can attend first to exploring the state space in a systematic fashion. Once the value
function is known, an agent can follow a stable policy consisting of the actions that lead
to the best successes. Several reinforcement learning algorithms, including temporal
difference, Q-learning, and SARSA, are centered on learning value functions of states.
By combining these with deep nets of different architectures, it is possible to build very
powerful autonomous agents with wide-ranging capabilities.

6.6. Data Collection and Preprocessing

When training autonomous deep learning agents, data collection and preprocessing play
foundational roles. Data can be collected through interaction with a simulator or real-
world environment, from online sources, or manually created for specific tasks. Careful
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data preprocessing can significantly improve the quality of an agent's training
experience.

Preprocessing projects the raw data onto a new space where noise is reduced and
meaningful relations become more apparent. Properly chosen feature representations can
enhance the ability of subsequent modules to extract meaningful information. The
discussion draws on previous coverage of training strategies for agents.

6.6.1. Data Sources

Training a neural network, regardless of its nature, requires an appropriate quantity of
relevant data, preferably within a proper environment in which the agent will operate.
Since supervised learning aims at explicitly providing the function the network must
learn, the training data must contain input-output pairs that, when displayed, correctly
represent the behavior of the network. However, providing input-output pairs typically
has some drawbacks. First, supervising the input-output pairs requires that someone
capable of performing the task also runs the demonstrations. Second, supervisors are
frequently only able to demonstrate how to behave in simpler scenarios, limiting the
complexity of the collected data. Third, many states are never visited while simply
running the environment; therefore, no information is collected for the controller to learn
from.

Fig 6 . 4 : Neural Network Training: Data & Environment Paradigms
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On the other hand, the advantage of supervised learning is that it provides a richer reward
signal, reduces the probability of taking random actions, and reduces the risk of ending
in a dead-end during training. Although reinforcement learning suffers from some of the
drawbacks of supervised learning, its advantages encourage researchers to continue
investigating ways to reduce these disadvantages. Subsection 6.1 describes a lock-
picking autonomous agent built using supervised deep learning, which leverages the
abundant availability of videos on the task to learn from. Chapter 7, on the back cover
of Fundamentals of Deep Learning, uses the ideas behind the agent to build and scaffold
agents so that they can be easily trained using reinforcement learning.

6.6.2. Data Cleaning Techniques

Another crucial task for creating autonomous agents capable of handling unstructured
data is data cleaning. Although autonomous agents can be trained to recognize and clean
data, data cleaning in itself is a widely researched topic in machine learning. For
example, Duan et al. [32] solved a specific practical data cleaning problem called data
deduplication or entity matching. Recently, Krishnan et al. [55] introduced a multi-agent
approach for data cleaning, and in particular data imputation—the filling of missing
values in a data set.

Beyond automatically cleaning data, it is also critical to guarantee that the data collected
by an autonomous agent is not biased or influenced by the agent itself. Thus, researchers
from different areas of machine learning recently started to investigate data collection
approaches that guarantee privacy, debiasing, or causality.

6.7. Future Directions in Agent Development

The field of autonomous deep learning agents has achieved remarkable progress
recently, yet numerous research avenues await exploration. The examination of agent
architecture remains a rich domain, including a detailed study of modular networks, their
benefits, and their ability for lateral transfer. Building upon the previous discussion on
Training Strategies for Agents, an in-depth analysis of data collection and preprocessing
techniques is equally vital. Training strategies themselves offer fertile ground for
research; for example, recently advanced supervised approaches, such as procedural
generation and strategic policy distillation, have demonstrated promising results. Further
exploration of methods that employ diverse task sets for specialized subgoal mastery,
followed by distillation into a generalist network, could yield significant improvements.

Equally compelling are the directions presented by generative modeling. Generative
models lend themselves naturally to environment design for reinforcement learning tasks
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and might also be harnessed to generate new task descriptions. Conversely, methods
from planning and classical Al—particularly search and optimization techniques—merit
integration into the training of generalist agents capable of operating in complex
environments. Developing agents with a modular architecture reinforces this thrust:
employing advanced linguistic and logical models for natural language processing as
adaptable services enables their application to a broad spectrum of tasks through lateral
transfer.

6.7.1. Emerging Technologies

Narrow Al systems are usually trained in specific ways. Supervised learning methods
are often used, in which a system is trained on input and output pairs provided by human
teachers. "Cats-dogs" classifiers are the most popular example; training samples are
labeled pictures of cats and dogs. Unsupervised learning methods are those in which the
system trains only on the inputs; for example, by labeling clusters of input samples that
are similar to each other. The dominant contemporary learning paradigm for autonomous
agents, however, is reinforcement learning, in which an agent interacts with a world and
learns the sequence of actions needed to maximize future reward signals.

Techniques are emerging that combine the advantages of all three approaches —
supervised, unsupervised, and reinforcement learning. For example, an agent can first
gather unsupervised knowledge about percepts and possible actions using a method such
as curiosity-based learning [5,9-10]. Then, during a second phase, it tries to learn
behavior strategies that maximize externally assigned goals, using that initial
preprocessed knowledge as a starting point. Current research is also investigating the
transfer of knowledge from one agent to another, which in a training perspective can be
framed as moving from supervised learning between different agents. In addition, multi-
modal data sources can be combined, permitting agents to train on several types of data
simultaneously (e.g., audio and image information). These strategies are of interest
because they can either reduce the amount of training time required for an agent to master
a task, or make the system much more general.

6.7.2. Interdisciplinary Approaches

Interdisciplinary approaches are equally important, as game-playing decision-making
agents with self-awareness, advanced reasoning, and explicit communication will likely
incorporate various principles from cognitive science and linguistics, such as deep
models of theory of mind, probabilistic programming, and grounding. It has been
proposed that Bayesian inference with generative adversarial networks can bridge the
gap between probabilistic programming and deep learning, and significant progress has
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already been made in leveraging GANs for probabilistic inference. Although such
research directions remain largely unexplored, a thoughtful integration of deep
reinforcement learning with several core topics in Al and cognitive science may
ultimately lead to smarter and more trustworthy agents.

The discussion thus far has focused on deep reinforcement learning alone. The presented
building blocks, however, pertain more generally to design and training of versatile deep
architectures for autonomous agents. Even when the final agent does not employ
reinforcement learning as its main optimization architecture, it will still likely need to
leverage reinforcement learning for key training tasks: generating simulated experience
to fine-tune an agent trained on supervised or unsupervised learning from real-world
experience or shaping an agent’s behavior in an environment allowing fast training.
Hence, interconnections with other training paradigms, such as supervised learning,
unsupervised learning, and generative adversarial learning, will remain a central aspect
of the future development of autonomous decision-making agents.

6.8. Conclusion

Acrtificial intelligence (Al) is evolving towards a state where deep learning-trained
agents transform ideas into actions autonomously. Such agents independently explore
ideas, generate scenarios for addressing them, and execute the most suitable scenario to
solve the problem or deliver the Al service. Their ability to translate questions into
answers without human assistance ushers in a new Al era of extraordinary growth.

Fig 6 . 5 : Sources of Training Data for Al Agents

The first step in preparing an agent for operation involves selecting an appropriate neural
network type. Common models include deep neural networks, feed-forward neural
networks, convolutional neural networks, recurrent neural networks, long short-term
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memory networks, and transformer networks. Leveraging a modular design allows each
specific neural network type to be trained through supervised learning, unsupervised
learning, or reinforcement learning. Agents can utilize demonstration data, experiences
from exploring the environment, or a combination of both for training purposes.

6.8.1. Summary and Insights on Autonomous Agent Advancements

Autonomous agents must be able to independently perform activities such as building
and training. Building agents involves integrating architectural components—sometimes
realized as neural networks—of certain types into an agent architecture. Training
includes exposure of the architecture to various data-input-transform-target tuples that
teach the agent what to do and when. These high-level definitions allow the creation of
agents capable of constructing their own building and training processes, enabling
flexible and diverse functionality.

Agent-building methods are not restricted to neural networks. Given an autonomous-
agent architecture, various components—such as planning, attention, modulation, and
memory—can be organized to yield any type of functionality. Training methods
encompass supervised learning, for example, training convolutional networks like
Inception-ResNet-v2. The proposed method for training an agent with arbitrary
components broadens the scope of possible data and training paradigms beyond the
supervised-learning training of convolutional networks. Notably, training does not
necessarily require data labeled with the actions the agent should take, allowing
reinforcement learning training with rewards for good behavior. The subsections that
follow tackle architectural considerations and training options for autonomous agents
next.
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