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Preface

Mobile Crowdsensing Systems (MCS) rely on the collaborative participation of a
multitude of individuals equipped with mobile devices capable of sensing and
computing. Together, they share data and extract information to observe, map, analyze,
estimate, or predict various processes of common interest. This approach offers the
advantage of low deployment cost and extensive geographical coverage, making it
applicable in various domains such as transportation, environmental monitoring, smart
cities, pervasive healthcare, and more. However, MCS systems often encounter
challenges related to security, privacy, and trust. The presence of motion sensors like
accelerometers and gyroscopes in smartphones is crucial for monitoring our real-world
surroundings. Unfortunately, these sensors also make us vulnerable to privacy invasion
attacks, where leaked private information can reveal details about human behaviors,
physical characteristics, and location. Furthermore, MCS systems are susceptible to side-
channel attacks, where the operation of basic sensors can inadvertently leak sensitive
data in mobile crowdsensing applications. While traditional cryptography methods can
address some security and privacy concerns, they are not feasible for resource-
constrained smart mobile or Internet of Things devices, limiting their application in
MCS. In light of these issues, this chapter proposes an innovative Proactive Defense
Mechanism using Blockchain based Mobile Crowdsensing (BMCS) that aims to
intercept, disrupt, or deter attacks or threats before they can occur, ensuring the security
of the mobile crowd sensing process. The proposed approach has been thoroughly
analyzed, and the security proofs demonstrate that it significantly enhances the level of
security in MCS.

Keywords: Mobile crowdsensing, security, proactive defence mechanism, cyber-attacks,
Blockchain based Mobile Crowdsensing, Blockchain.
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Introduction

The advancement of portable gadgets propels a novel sensing paradigm known as mobile
crowdsensing. Equipped with an array of elegant sensors and intelligent devices, the
portable gadget possesses the capability to collect diverse sets of information for specific
purposes. In a formal sense, mobile crowdsensing pertains to a collective of mobile users
collaborating to undertake extensive sensing tasks across urban environments by
utilizing their portable devices. Figure 1 illustrates a typical workflow of mobile
crowdsensing. As depicted in Figure 1, three distinct types of participants emerge: the
requester (Task worker), the crowdsensing platform, and the task performer.

Task Workers Task Performer

Sensors and Scan and
Smart Devices [¥ ¥| Choose Task

Task Mobile Task
Designing [~ Crowdsensing - Resolving
Platform
Request p= = Result

Accept/Denial

— \

Figure 1: Mobile Crowdsensing- Workflow

The mobile crowdsensing process encompasses eight stages: task design, task release,
task scanning, task selection, task resolution, result submission, acceptance/refusal, and
integration. When a requester desires to initiate a task, they must present their task
requirements to the crowdsensing platform. The task performers within the
crowdsensing platform scan the available tasks and opt for those that are suitable.
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Following task completion, the performers submit their results to the platform, where
the requester assesses their quality. If deemed satisfactory, all the results are
consolidated, and the task concludes. Due to the convenience of deployment and
communication, mobile crowdsensing has been widely implemented in numerous
scenarios, including smart transportation, environmental monitoring, and data labeling.
While mobile crowdsensing presents an unprecedented solution for data collection and
processing, it also introduces a host of new challenges. One of the primary concerns lies
in privacy preservation when designing a mobile crowdsensing scheme. Previous studies
predominantly focus on safeguarding the privacy of task performers, particularly during
the result submission stage. However, certain tasks may also pose privacy risks during
the task release stage due to the platform's lack of complete trustworthiness. The
platform may deduce requesters' privacy based on their tasks. Furthermore, task access
control poses another issue that requires attention. In mobile crowdsensing, tasks are
stored on the platform, accessible to anyone in the system. This open access may result
in subpar task results, if unqualified performers accept the tasks. Moreover, task access
control effectively safeguards task information from being obtained by irrelevant
entities, such as the crowdsensing platform. Therefore, task access control and a
proactive defense mechanism are crucial for mobile crowdsensing.

Proactive defensive mechanisms are methods and strategies used in crowdsensing to
avoid or lessen possible security and privacy problems related to collecting data from a
large number of people or devices in a crowd. In order to learn more about a community
or area's inhabitants, crowdsensing entails gathering data from sensors, smart phones, or
other linked devices that they may be carrying. Crowdsensing proactive defense
mechanisms include Secure Communication Protocols, Access Control and
Authentication, Behavioral Analysis and Anomaly Detection, Risk Assessment and
Threat Modeling, Privacy-Preserving Data Collection, Participant Awareness and
Consent, and Secure Data Storage and Processing. This manuscript proposed a proactive
defense mechanism in crowdsensing by incorporating the access control and
authentication mechanisms, so that the data shall be preserved against the various
attacks. The contribution of the proposed work is as follows.

The proposed system provides an enhanced level of security to the mobile
crowdsensing by performing accessing control and authentication validation
mechanisms.

Maintaining the privacy of task performers and requesters is one of the key goals
of the suggested system. To the best of our knowledge, very little of the material
currently in publication addresses requesters' privacy. The crowdsensing platform is not
entirely reliable, though. The crowdsensing platform may infer information about
requesters and endanger their privacy if jobs are submitted to it without any safeguards.
The proposed Blockchain based Mobile Crowdsensing (BMCS) is suitable for multi-
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environment, resource and types of users and provides a better access control mechanism
than the existing methods.

The organization of the manuscript is preceded with the literature review in section 2 to
identify the drawbacks of the existing methodologies and to frame the objectives of the
proposed work. The section 3 describes the proposed work of providing access control
and the method is analyzed in the section 4. The manuscript is concluded in the section
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Literature Review

Privacy preservation is the major challenge of the mobile crowdsensing technique and
various researchers actively proposed novel methodologies in preserving the privacy.
Some of the notable research activities that act as the motivation for this proposed work
is summarized in this section. B.Zhao et al. (2023) devised a secure aggregation
algorithm (SecAgg) [11] that employs the threshold Paillier cryptosystem to combine
training models in an encrypted format. The authors introduced a unique hybrid incentive
mechanism that merges the reverse Vickrey auction and the posted pricing mechanism,
which has been proven to be honest yet unsuccessful. Theoretical analysis and
experimental evaluation in a practical MCS scenario (human activity recognition)
demonstrate the effectiveness of CrowdFL in safeguarding the privacy of participants
while maintaining operational efficiency.

J.Zhang et al. (2023) addressed the privacy-preserving task assignment for
heterogeneous users (PTAH) problem [12] in mobile crowdsensing. In this study, users
are divided into two groups: private users with location privacy requirements and public
users without such requirements. The authors developed a privacy-preserving
mechanism to obfuscate the actual location of private users. Furthermore, they
constructed a relationship graph based on the locations of users and tasks. J.Wang et al.
(2023) introduced a personalized location privacy incentive in the form of a double MCS
auction mechanism [13]. This innovative approach allows workers to determine the
extent of location information they disclose to the platform, providing personalized
location privacy protection. Additionally, workers are given the flexibility to submit
multiple bids for tasks of interest and perform a subset of tasks if they emerge as winners.
The auction mechanism enables the platform to select winning requesters and workers,
thereby achieving optimal sensing service accuracy.

Y.Jiang et al. (2023) proposed a learning-based mechanism [14] that comprises two
components: 1) privacy-preserving task release and allocation, and 2) accurate and
efficient task allocation. In the first part, the authors devised a location-based symmetric
key generator that enables two parties to generate a symmetric key independently,
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eliminating the need for fully trusted authorities. By leveraging this key generator and
Proxy Re-encryption, a privacy-preserving protocol was developed to safeguard location
information during task release and allocation. In the second part, a reinforcement
learning-based task allocation algorithm was designed to optimize the selection of
winners, ensuring high accuracy and efficiency. Y.Cheng et al. (2023) designed a
lightweight privacy-preserving sensing task matching algorithm [15] that upholds
location privacy, identity privacy, sensing data privacy, and reputation value privacy,
while minimizing computation and communication overhead for sensing vehicles. To
prevent reputation values from being tampered with and to select reliable sensing
vehicles, the authors devised a privacy-preserving reputation value equality verification
algorithm and a privacy-preserving reputation value range proof algorithm.
Additionally, a three-factor reputation value update algorithm was constructed to
efficiently and accurately update the reputation values of sensing vehicles.

R.Ganjavi et al. (2023) introduced an efficient edge-assisted MCS scheme [16] that
protects the privacy and anonymity of participants. This scheme effectively tackles the
join-and-leave problem, demonstrating minimal computational cost and communication
overhead that remains constant. B.Zhu et al. (2023) introduced an innovative approach
to data aggregation, leveraging the Chinese remainder theorem [17] for privacy
preservation. By incorporating blinding factor and Paillier homomorphic encryption
technology, the system not only ensures the privacy of the collected data, but also
enhances its robustness. The authors further enhanced the privacy aspect by introducing
a secure multicast communication technology based on the Chinese remainder theorem,
which allows only designated sensing nodes to access the task. Additionally, an efficient
signature scheme was devised to ensure data integrity.

S.Sangeetha et al. (2023) proposed a cutting-edge technique for preserving location
privacy in a crowdsensing environment, utilizing blockchain technology [18]. This novel
approach overcomes the limitations of traditional crowdsensing methods and safeguards
the location information of workers through a privacy preserving algorithm. P.Chaudhari
(2023) presented an innovative scheme for privacy-preserving and cost-effective work
distribution, incorporating a fine-grained access control system [19]. The scheme
employs a ciphertext-policy attribute-based encryption method with a hidden access
policy, ensuring the privacy of both data requesters and data collectors. Y.Cheng et al.
(2023) introduced a groundbreaking framework [20], named PRTD, which combines
privacy preservation and reputation-based truth discovery. This framework accurately
generates ground truths for sensing tasks while maintaining data privacy. The authors
achieve this by utilizing the Paillier algorithm and Pedersen commitment to protect
sensing data privacy, weight privacy, and reputation value privacy. Furthermore, they
devised a privacy-preserving reputation verification algorithm, based on reputation



commitment and zero-knowledge proof, to detect tampered reputation values and select
trustworthy mobile users based on a concept of reliability level.

Based on the literature study performed in this section, related to the security of the
mobile crowdsensing technology, the following challenges have been witnessed and act
as the motivation factor for the objective framing of this proposed work.

The existing works relies on centralized storage, in which the level of trust is not
to the acceptable level.

The quality of the data collected through the mobile devices are prune to the
location and hence questions the guarantee of the location secrecy.

The objectives of the proposed work are as follows.

To provide location based security to the data stored in centralized storage or
distributed storage.

To employ blockchain technology for maintaining a registry of data and to
preserve the privacy of the data gathered through the mobile crowdsensing.
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Proposed Work

Preliminaries

The preliminaries used in this proposed work of blockchain based proactive defense
mechanism in the mobile crowdsensing are as follows.

e Bilinearity property: The close groups ‘a’ and ‘b’ are cyclic with prime p, q to the
generator G such that e: G¥*G=Gr and is defined as if, Va,b € G and x,y € Z, then,
e(a,b)™” =e(a*,bY) =1

e Non-degeneracy property: e(G,G)#1.

Proposed blockchain based Proactive Defense Model

The proposed system is composed of the blockchain technology which involves the
contribution of entities namely, the task requester, task verifiers, workers and the
blockchain registers for data storage and validation purposes. The task requesting node
acts as the requester or a worker depending on the condition. As depicted in Figure 2,
the node desiring to publish a task transforms into a task requester and disseminates the
task information through the blockchain. The nodes yearning to undertake the task
upload their operational data and present a deposit to establish a contract with the task
requester. Following the completion of the preregistration process, the smart contract
will be automatically triggered to select competent workers from the preregistering
worker set for the specific task. The deposit will either be returned to the workers who
were unsuccessful in preregistering or were not selected. Upon accomplishing the task,
the workers upload the result metadata, while the tangible data is encrypted and stored
in the distributed database, patiently awaiting the task requester's evaluation. Ultimately,
the evaluation result will be submitted, and if deemed qualified, the workers shall receive
their well-deserved reward.
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Figure 2: Proposed Blockchain based Mobile Crowdsensing

As illustrated in Figure 2, the innovative model introduced a decentralized system called
Blockchain based Mobile Crowdsensing system (BMCS), portraying three central
characters: a task seeker, laborers, and an examiner, all able to engage in a collaborative

network. To enhance comprehension of the process of selecting workers, we have

provided a list of symbols and their corresponding explanations in Table 1.

Table 1: Parameter Nomenclature

Notations | Parameter Description
T, Task Requester
Ty Task Worker
T, Task Verifier
T, Sub Target
Nw Number of workers
Nrs Number of sub targets
Ly Worker’s location
Avw Area of the worker

A task requester, known as Tr, has the ability to create its own identity and account on
the blockchain in a secretive manner. Through this account, Tr can post tasks and
conduct transactions. The account holds various properties related to the requester,



including tokens and reputation. Tr can utilize the blockchain to publish tasks and select
suitable workers.
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REGISTRATION REGISTRATION
PHASE _'(—"— PHASE
PUBLISH TASK ,L, UPLOAD TASK
DATA [ | INFORMATION
y i)
o N ]
TO SATISFY
CONTRACT 1
STATEMENT g
vEs [ ]
DEFINE B
CONTRACT
STATEMENT
1]
d
s NO I—I
AUTHENTICAT EXIT 3
ION
VALIDATED AUTHENTICATION
VALIDATION
YES 9 T
B
PUBLISH

SENSORY DATA EXIT

Figure 3: Proposed Work- Flow process

Similarly, a worker, referred to as Tw, is a user created anonymously on the blockchain.
The worker's account contains their reputation and an acceptable travel budget, Tb, for
completing tasks. Prior to receiving tasks, Tw must submit relevant working information
to the blockchain and set aside a deposit for worker selection. The flow process of the
proposed work is depicted in Figure 3. A verifier, known as Tv, plays a role in the
verification and consensus process. Tv is a miner node selected through the proof of
work and is responsible for managing transaction information on the blockchain. In order
to protect the true location, a cloaked area is generated for a worker, Tw. This cloaked
area is defined as (ai, fi), where ai represents a spatial anonymous area based on the
worker's true location within our proposed algorithm, and fi represents the probability
density function. To ensure maximum task coverage, the area required for the task is
divided into multiple sub-areas. If the worker's working area is circular, the division
interval is a multiple of the radius of the worker's working coverage area. Similarly, the
entire target area is divided into multiple subtargets. This allows for the achievement of
full coverage of the target area by focusing on the full coverage of the subtargets within
the subareas.



To provide a more comprehensive explanation of the crowdsensing communication
process, we have devised seven distinct stages within the BMCS framework as
demonstrated in Figure 3. In the Initial Setup Phase, BMCS generates sets of public and
private keys for the mobile users who participate in the crowdsensing activities. The
users are responsible for safeguarding their private keys, which will be utilized during
the signature process. During the Task Release Phase, the task requester R disseminates
the specific task details along with its signature and public key to the blockchain. This
ensures the authenticity and efficacy of the task. Simultaneously, the crowdsensing
contract, containing the task information and the requirements for worker execution, is
posted by the task requester as a transaction on the public blockchain. Any worker who
fulfills the contract conditions can then sign the contract. To ensure fairness in trade, the
requester creates a smart contract outlined in Algorithm 1. This contract encompasses
information about the requester, the workers, and the task itself. It operates
autonomously on the public blockchain according to a predefined protocol.

In the Preregistration Phase, upon receiving the broadcasted task information, workers
who wish to undertake the task may initiate a transaction. This transaction includes their
work-related information as well as a certain deposit required to sign the contract. The
deposit serves as a preventive measure against fraudulent activities and will be refunded
if the worker fails during preregistration. Successful preregistration grants the worker
participation in the final selection process. Due to the setting of P and Q, the final set of
selected workers will be a subset of the preregistered worker set. Once the Preregistration
Phase concludes, the smart contract responsible for the final worker selection is
automatically triggered. If a worker is chosen as the final worker, their corresponding
deposit will be returned. To ensure data quality and protect location privacy, the Worker
Selection Methodology for Crowdsensing (WSMC) is employed to select suitable
workers from the preregistered worker set. Moving on to the Upload Result Phase, after
completing the sensing task, the worker must utilize a digital signature and public key
to upload the sensory results and await evaluation from the task requester. Considering
the limitation of storage space on the blockchain, only the metadata is uploaded, while
the actual data is stored in a distributed database. Furthermore, due to the transparent
nature of the blockchain, it is imperative to encrypt the result information using the task
requester's public key to prevent plagiarism.

During the Quality Evaluation Phase, once the task requester receives the result
information, they proceed to evaluate its quality using a specific evaluation method. In
our article, the task requester quantifies and normalizes the sensing data, subsequently
dividing it into two sets: qualified and unqualified. These sets reflect the satisfaction
levels of the results in relation to the task's requirements (Reqt). Finally, in payment
phase. If the uploaded data is deemed qualified, the smart contract automatically initiates
payment to the workers, in addition to returning their deposit. The number of workers
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chosen to work in a particular area ai will be successful in signing the work contract and
the increase in success rate of worker selection process is defined in equation 1.

Vi = Tw ijoxj < 7}';21':0 XjSj = Qj (1)

Where, Tw is the task workers, Tj is the threshold rate of process and the Qj is the total
number of process in the crowdsensing. After the worker acquires the task information,
the smart contract will be triggered. As each worker possesses self-awareness of their
whereabouts, they can utilize their precise location to refine the outcomes achieved in
the initial stage and deliberate whether or not to embrace the assigned tasks. In the event
of refusal, in order to minimize the excessive workload, the system model will solely
reevaluate workers within the specific subarea that the user declined. The second step's
optimization objective is depicted by equation 2.

S ={{Tw1, Twz Tz o oo Toon} @ {Tsy, Tsp) Tz oon oo Tsn}} )

The key generation by the entities for the creation of block and to access the data from
the BMCS incorporates the public key cryptography, involving public key and the
private key for encryption and decryption processes. The algorithm for the pre-
registration process is illustrated in Table 2.

Table 2: Pre-Registration Process

Algorithm 1: Pre-Registration process

Input: Tw,- Task work region; xiyj- Task work matrix; T,- Task coverage area; Tg- Task
coverage goal; Ny~ Number of Workers; Ty~ Worker threshold region.

Output: R~ Contracted result of worker

Processes:

Initialize the parameters

If Yien X;S; < Type; then

If N, <T,;; then

N, ++=1

«1

Xix j
Then, Initiate new register in blockchain
Return Registration Success
Else
Return Registration Failed

. Endif

. Endif

: Return completed

: End process

VRN R

—
W= O

The Table 2 defines the pre-registration process of the BMCS and initiates the
blockchain registration process. The algorithm 2 is based on the two vital parameters
11



namely the Tg- Task coverage goal; Twt- Worker threshold region. In the next phase,
we implement a two-step process to carry out the selection of workers. This process
involves the utilization of BMCSs and BMCSf. BMCSs refers to the initial screening of
workers, while BMCST denotes the subsequent refinement of selection results by the
workers themselves. During the initial step of worker selection, our proposed approach
introduces two effective techniques to address the uncertainty issue arising from location
anonymity in the first stage. The latter approach is employed in this article. To tackle the
optimization objectives for WSMCs, we then combine the efficient greedy algorithms
that have been put forth based on the partial set cover problem.

In our proposed model, the selection process replaces the exact location of the user with
a cloaked area. This enables the workers to receive tasks. Additionally, a distance-based
travel cost model is utilized, where the Euclidean distance serves as the measuring unit
for the sensing cost between workers and subtargets. Moreover, we extensively examine
the querying algorithms for uncertain spatiotemporal data. This involves the utilization
of existing range query, nearest neighbors, top-k, and other methods to propose querying
techniques. Within the cloaked area, denoted as z € a, there exists a substantial number
of evenly distributed location points. We calculate the geometric centroid of all these
points to determine the expected location of the worker. This calculation is then used to
establish the expected distance matrix, represented by equation 3.

diy =D (f, 4. 2fi(2)dz) 3)

The initial step involves the calculation of the likelihood that worker i can access subarea j,
represented as p;j. To reduce the cloaked area a;, a simple pruning technique is employed,
resulting in the coincident area a;, which is the intersection between a; and a circular area centered
at target j with a radius of r;. By combining this with fj, the probability that a; contains worker i
can be determined, which is equivalent to the probability p;; that worker i's travel scope includes
target j, as defined in equation 4.

pij = (JY g, 2 (2)d2) )

Subsequently, using the probability pij, the expected distance d;; between the intersection area
a; and the target can be calculated, as defined in equation 5.

(I jora#fi2)a2)
L Dij

d ®)

The proposed model adopts a worker selection strategy that combines the greedy approach in
the initial stage. Although this strategy may not be optimal, as it makes the best choice at each
step, it can be refined through iterations of the algorithm. This allows for the selection of the most
suitable worker for a subarea, resulting in cost-effective worker-target pairs and real-time updates
to the coverage of subarea targets. The iteration process continues until the coverage goal is

12



achieved or the worker's travel budget is depleted. The cost effectiveness of a worker wi, where
i €N, and a target tj, where j € M, is calculated according to equation 6.

di,j

1
max(l—xi,;)+e
J

In equation 6, di,j represents the expected distance, while the denominator represents the
expected coverage contributed by worker wi. The matrix vector u denotes the currently covered
portions of the subarea targets. If a subarea target is fully covered, its corresponding value in u
will be set to 1, with a value range of [0,1]. The algorithm for worker selection is illustrated in
Table 3. The worker selection is the vital algorithm, which determines the authentication of the
incoming workers.

N _
Yij =

(6)

Table 3: Algorithm- Worker Registration Phase
Algorithm 2: Worker Authentication Phase
Input: T,- Total Mobile workers; T~ Task sub target; B,- Budget vector; It- Threshold for
iteration
Output: x;i+- Worker selection matrix
Processes:
Initialize the parameters
While (Ty< Tyand B,< Ty) do
If (T==T,*), then
If(B,==B,*), then
X< 1

Ty < max <1 - xi,i)
xj
If (Uijzzl), then

e A A

10: BV «— Bv—l - dU
11: If I1=0; then

13: Endif

14: End if

15: End while

The method for estimating distance is proposed based on anticipated probabilities, and
Algorithm 2 is introduced for the purpose of selecting the most cost-effective pair of
worker—target (i, j) with probabilities pi,j. To achieve the desired convergence, an upper-
bound threshold R is set, serving as a convergence parameter, which allows the algorithm
to be stopped in the expected probabilistic approach. This threshold is specifically
designed for experimental purposes and enhanced efficiency. The first step involves
updating the coverage proportion in u, which is known as the expected coverage vector
and is later sent to the workers in the second step. Unlike traditional crowdsensing
systems where there is a risk of user-sensitive information being leaked during the
registration phase, BMCS utilizes pseudonymous Bitcoin-like addresses to represent

13



task requesters and workers. This innovative approach allows for privacy preservation
without the need for revealing the true identity of individuals involved in completing a
crowdsensing task. Additionally, we have developed a location-privacy-preserving
approach based on spatial cloaked areas, which replaces the true location of a worker
with a corresponding cloaked region when accepting task information. This prevents the
true locations of workers from being exposed to the public. As a result, BMCS provides
dual protection for identity privacy and location privacy. Assuming the number of
workers is represented by n, the number of subtargets by m, and the number of
continuous sampling points in each cloaked area by s, the time complexity of our
proposed uncertain distance estimation method is O(nms). For the expected probabilistic
method, the time complexity is O(nmR) due to the limitation imposed by the number of
iterations R. Given the uncertainty of anonymous locations, it is possible that the selected
worker may not have access to the subtargets. Therefore, the assignment results need to
be fine-tuned in the second step using the workers' exact locations, while ensuring that
the overall coverage is not affected. However, if each worker simply selects the closest
target to save cost, it may result in the selected workers exceeding the need of the
subarea, which can lead to overcoverage. To address this issue, we have proposed
additional constraints to limit the overall changes resulting from fine-tuning in the
second stage. The algorithm for fine tuning the task workers is illustrated in Table 4.

Table 4: Alrogithm- Task Workers Fine Tuning

Algorithm 3: Task workers fine tuning process

Input: W; — Present worker; T — Sub target; Typ- Budget for travel; v- Target covered
vector; I; — Iteration threshold.

Output: Y - Worker selection matrix

Processes:

Initializing the parameters

For all Tg in W; do

End for

While T, (LT) < T, (ST), do
If Ty < T, then

If choosing i<j<v

x5 <1

T,(LT) « max (1 - I’;—’) +LT
Lj
10: If T,(LT) == T, (LT)*; then

11: Return, Authenticated Task worker
12: Else, abort process

13: End if

14: End if

15: End processes

RN R WD

2

Algorithm 4 presents the refined algorithm for the selection of workers during the
second step. In a similar manner, it continuously chooses the appropriate worker wi for
the subtarget, employing a certain probability to prevent excessive coverage. Unlike
Algorithm 3, the proposed approach aims to fulfill the initial constraint, thus any

14



modifications to the selection in xi,j will incur a penalty. Consequently, the cost-
effective score for each choice can be determined using equation 7.

*ij *
ﬁ+1—xl-j

(7

2
(pi]' - . X _
) oo Xij

min(1 —Tb)+e

This score represents the ratio between the cost of the second step and the expected
coverage provided by worker wi for the subtarget tj € t, which is calculated using the
same method as in the first step. The probabilities used to select workers for the task in
the second step differ from those in the first step as well. Equation 8 is used to
calculate pi,j for a given subtarget j.

»ij
Pij=1— s (8)

max (¢7 ;)

The objective with this probability is to prevent excessive coverage of the overall
target while simultaneously reducing the likelihood of expensive tasks. Without it,
workers would be chosen repeatedly for the subtargets until their travel budgets are
depleted.

15
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Results and Discussion

This section describes the performance analysis and the discussion on the
performance of the proposed Blockchain based Mobile CrowdSensing (BMCS) model.
The section is initiated with the illustration of experimental settings for the proposed
work and is preceded with the analysis of the work in terms of security, computational
cost, task cost. To scrutinize the performance of the quality control model BMCS in this
article, a devised experimental environment based on Ethereum is employed. The
software environment is Python 3.5. The hardware environment comprises a 2.60 GHz
Core(TM) i7 CPU, 20 GB, and Win10 system of 64bits. The simulation strictly adheres
to the protocols and patterns that may be utilized in the real-life scenario of
crowdsensing. The dataset utilized was introduced and the execution of performance
analysis of the proposed work follows suit. The parameter settings for the proposed work
are delineated in Table 5 along with the specification of default settings. For the sake of
simplicity, the model is experimented with circular areas

Table 5: Parameter definition for the proposed work

Parameters Range of Specification Default
Settings
Total workers (Ty) 100-1000 200
Total Sub-targets (Ts) 100-500 200
Transfer limit (Ty) 50-200m 100m
Cloaking Model Rectangular, Hexagon, Circular
circular
Cloaking radius (C;) 10.5-40% of mapping area 25.5%
Task Goal (Ty) 50-100% 90%

For every worker, the cloaked region is randomly selected within the circular map,
covering between 12.5% and 37.5% of the total area. Each subtarget aims for complete
(100%) task coverage, though this target is not fully met because of the cloaked
positions. The coverage goal (g) varies from 50% to 90%, with 90% set as the default.
The parameters R and R* both range between 20 and 50. Every experiment is repeated
100 times, and the average performance across these trials is reported as the final result.
In the actual sensing process, the proposed model first takes into consideration the
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running time of block generation. The ability of the model to swiftly generate blocks is
deemed more crucial than the efficiency of task completion. The running time of
generating a block encompasses the period of Merkle tree generation in the consensus
and the production of a new block. The running time of the method that measures the
proposed worker selection time is also taken into account for data analysis.
Subsequently, the success rate and the time cost of the initial preregistration stage are
contemplated, which can be influenced by the proposed data control parameters P and
Q. Additionally, the task coverage (TU) and task cost (TC) are introduced. In many
instances, due to the constraints of the number of workers and budget, the expected
coverage g may not be accomplished assuming given worker locations. Thus, the
proposed work comprehensively considers the task coverage and cost and suggests a
novel evaluation indicator PI (penalized indicator), which is normalized within the range
of [0,1] using the min—max method. A lower PI value implies higher coverage and lower
cost, indicating a superior outcome.

Average Execution Time- for 10 tasks
70

60

50

®Y Liu (2023) [21]
uV.Agate (2023) [22]
¥ Proposed BCSM

Workers (msec)

20 40 60 80 100
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Average Execution Time- Selection of Task

Figure 4(a): Average Execution time for 10 tasks
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Figure 4(b): Average Execution time for 50 tasks
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Figure 4 (c): Average Execution time for 100 tasks

As illustrated in Figure 4(a), the average block generation time increases as the number
of workers grows, though it consistently remains within the millisecond range. The
execution time for block generation is primarily influenced by the worker count involved
in the task. This occurs because a larger number of workers results in a larger Merkle
tree structure within the block. In order to analyze the performance of the two-stage
worker selection approach WSMC proposed in this article, the other worker selection
approaches like TaskMe (Y.Liu [21]) and ActiveCrowd (V.Agate [22]) were compared.
Due to different experimental environments, we have retained its core ideas and adapted

18



it to fit our model. Fifty tasks were published to analyze average statistics. As shown in
Fig. 4(b), and 4(c) among the three methods, the running time of ActiveCrowd is the
longest, and the running time of TaskMe is slightly shorter than ActiveCrowd. The time
of our proposed scheme is the shortest, and the magnitude of increase with the number
of workers is not as sharp as the other two schemes.
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Figure 5: Comparison of Time coverage rate

Figure 5 illustrates the influence of preregistration on both success rate and time cost.
To evaluate the impact of the two control parameters, P and Q, one parameter is varied
dynamically while keeping the other constant. As depicted in Figure 6(a), when Q = 2,
the time cost increases with rising values of P. This occurs because a higher threshold P
allows more workers to be accommodated within each subregion, resulting in an average
contract success rate exceeding 90%. Conversely, when P = 6 is fixed and Q increases,
fewer workers agree to sign contracts due to tighter restrictions on the number of workers
per subregion, leading to a reduction in the average success rate. The effect of increasing
the number of workers while maintaining fixed subregions on both task coverage and
cost is depicted in Figure 6.
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Compared to one-step optimization methods (EPA1 and EPA2), our proposed two-step
optimization method (EPA3) achieves better result in terms of both task coverage and
task cost, which is closer to the result of NPA with no privacy constraint. Since the global
optimization of the first stage was taken into account, EPA2 shows a significant
improvement than EPAT in terms of the task coverage rate and efficiency. Based on the
fine-tuning optimization in the second stage, EPA3 shows the results closer to the
coverage objective. Additional, as shown in Fig. 7(c), increasing the number of workers
results in a lower penalized indicator, meaning that EPA3 outperforms the other two
approaches, i.e., EPA1 and EPA2.

Our proposed two-step optimization method, EPA3, achieves superior results compared
to the one-step optimization methods (EPA1 and EPA?2) in terms of task coverage, task
cost, and a penalized indicator. Impact of Cloaking Radius: Figure 10 displays the impact
of increasing the cloaked radius with a fixed number of workers and subregions on task
coverage and cost. The task coverage of EPA1, EPA2, and EPA3 is affected to some
extent with the increase in the cloaked radius, except for NPA. However, EPA3 exhibits
greater resilience compared to EPA1 and EPA2, indicating that EPA3 is less affected by
the cloaked radius. Moreover, EPA3 outperforms the other approaches across all cloaked
sizes.
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Conclusion

In this article, a location-privacy-preserving MCS system called BMCS was proposed,
which incorporates the concept of a blockchain into crowdsensing. This integration
facilitates the decentralization of crowdsensing, effectively mitigating security risks such
as repudiation and data tampering that are common in traditional centralized systems.
Drawing inspiration from smart contracts, we propose a two-phase framework composed
of a preregistration phase and a final selection phase. These phases employ spatial
location privacy-preserving mechanisms and greedy optimization algorithms to
safeguard workers’ location information, minimize task costs, and maintain data quality
within a blockchain-based crowdsensing model. Moreover, we demonstrate that the
optimization problems addressed in both phases are NP-hard. Comprehensive
experiments were conducted to evaluate the average block generation time and to
compare the proposed approach against two existing schemes. We also examined the
influence of various conditions on success rate, execution time, efficiency, and
robustness. The results confirm that our method outperforms alternative approaches in
terms of operational efficiency, location privacy protection, and task coverage. In future
work, we intend to further explore data quality assessment methods to enhance both data
reliability and system robustness, thereby improving the model’s applicability to real-
world deployment scenarios.
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