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Preface 

Mobile Crowdsensing Systems (MCS) rely on the collaborative participation of a 

multitude of individuals equipped with mobile devices capable of sensing and 

computing. Together, they share data and extract information to observe, map, analyze, 

estimate, or predict various processes of common interest. This approach offers the 

advantage of low deployment cost and extensive geographical coverage, making it 

applicable in various domains such as transportation, environmental monitoring, smart 

cities, pervasive healthcare, and more. However, MCS systems often encounter 

challenges related to security, privacy, and trust. The presence of motion sensors like 

accelerometers and gyroscopes in smartphones is crucial for monitoring our real-world 

surroundings. Unfortunately, these sensors also make us vulnerable to privacy invasion 

attacks, where leaked private information can reveal details about human behaviors, 

physical characteristics, and location. Furthermore, MCS systems are susceptible to side-

channel attacks, where the operation of basic sensors can inadvertently leak sensitive 

data in mobile crowdsensing applications. While traditional cryptography methods can 

address some security and privacy concerns, they are not feasible for resource-

constrained smart mobile or Internet of Things devices, limiting their application in 

MCS. In light of these issues, this chapter proposes an innovative Proactive Defense 

Mechanism using Blockchain based Mobile Crowdsensing (BMCS) that aims to 

intercept, disrupt, or deter attacks or threats before they can occur, ensuring the security 

of the mobile crowd sensing process. The proposed approach has been thoroughly 

analyzed, and the security proofs demonstrate that it significantly enhances the level of 

security in MCS.  

Keywords: Mobile crowdsensing, security, proactive defence mechanism, cyber-attacks, 

Blockchain based Mobile Crowdsensing, Blockchain. 
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Introduction 

The advancement of portable gadgets propels a novel sensing paradigm known as mobile 

crowdsensing. Equipped with an array of elegant sensors and intelligent devices, the 

portable gadget possesses the capability to collect diverse sets of information for specific 

purposes. In a formal sense, mobile crowdsensing pertains to a collective of mobile users 

collaborating to undertake extensive sensing tasks across urban environments by 

utilizing their portable devices. Figure 1 illustrates a typical workflow of mobile 

crowdsensing. As depicted in Figure 1, three distinct types of participants emerge: the 

requester (Task worker), the crowdsensing platform, and the task performer.  

 

 

Figure 1: Mobile Crowdsensing- Workflow 

 

The mobile crowdsensing process encompasses eight stages: task design, task release, 

task scanning, task selection, task resolution, result submission, acceptance/refusal, and 

integration. When a requester desires to initiate a task, they must present their task 

requirements to the crowdsensing platform. The task performers within the 

crowdsensing platform scan the available tasks and opt for those that are suitable. 
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Following task completion, the performers submit their results to the platform, where 

the requester assesses their quality. If deemed satisfactory, all the results are 

consolidated, and the task concludes. Due to the convenience of deployment and 

communication, mobile crowdsensing has been widely implemented in numerous 

scenarios, including smart transportation, environmental monitoring, and data labeling. 

While mobile crowdsensing presents an unprecedented solution for data collection and 

processing, it also introduces a host of new challenges. One of the primary concerns lies 

in privacy preservation when designing a mobile crowdsensing scheme. Previous studies 

predominantly focus on safeguarding the privacy of task performers, particularly during 

the result submission stage. However, certain tasks may also pose privacy risks during 

the task release stage due to the platform's lack of complete trustworthiness. The 

platform may deduce requesters' privacy based on their tasks. Furthermore, task access 

control poses another issue that requires attention. In mobile crowdsensing, tasks are 

stored on the platform, accessible to anyone in the system. This open access may result 

in subpar task results, if unqualified performers accept the tasks. Moreover, task access 

control effectively safeguards task information from being obtained by irrelevant 

entities, such as the crowdsensing platform. Therefore, task access control and a 

proactive defense mechanism are crucial for mobile crowdsensing. 

Proactive defensive mechanisms are methods and strategies used in crowdsensing to 

avoid or lessen possible security and privacy problems related to collecting data from a 

large number of people or devices in a crowd. In order to learn more about a community 

or area's inhabitants, crowdsensing entails gathering data from sensors, smart phones, or 

other linked devices that they may be carrying. Crowdsensing proactive defense 

mechanisms include Secure Communication Protocols, Access Control and 

Authentication, Behavioral Analysis and Anomaly Detection, Risk Assessment and 

Threat Modeling, Privacy-Preserving Data Collection, Participant Awareness and 

Consent, and Secure Data Storage and Processing. This manuscript proposed a proactive 

defense mechanism in crowdsensing by incorporating the access control and 

authentication mechanisms, so that the data shall be preserved against the various 

attacks. The contribution of the proposed work is as follows. 

 The proposed system provides an enhanced level of security to the mobile 

crowdsensing by performing accessing control and authentication validation 

mechanisms. 

 Maintaining the privacy of task performers and requesters is one of the key goals 

of the suggested system. To the best of our knowledge, very little of the material 

currently in publication addresses requesters' privacy. The crowdsensing platform is not 

entirely reliable, though. The crowdsensing platform may infer information about 

requesters and endanger their privacy if jobs are submitted to it without any safeguards. 

The proposed Blockchain based Mobile Crowdsensing (BMCS) is suitable for multi-
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environment, resource and types of users and provides a better access control mechanism 

than the existing methods. 

The organization of the manuscript is preceded with the literature review in section 2 to 

identify the drawbacks of the existing methodologies and to frame the objectives of the 

proposed work. The section 3 describes the proposed work of providing access control 

and the method is analyzed in the section 4. The manuscript is concluded in the section  
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Literature Review 

Privacy preservation is the major challenge of the mobile crowdsensing technique and 

various researchers actively proposed novel methodologies in preserving the privacy. 

Some of the notable research activities that act as the motivation for this proposed work 

is summarized in this section. B.Zhao et al. (2023) devised a secure aggregation 

algorithm (SecAgg) [11] that employs the threshold Paillier cryptosystem to combine 

training models in an encrypted format. The authors introduced a unique hybrid incentive 

mechanism that merges the reverse Vickrey auction and the posted pricing mechanism, 

which has been proven to be honest yet unsuccessful. Theoretical analysis and 

experimental evaluation in a practical MCS scenario (human activity recognition) 

demonstrate the effectiveness of CrowdFL in safeguarding the privacy of participants 

while maintaining operational efficiency. 

J.Zhang et al. (2023) addressed the privacy-preserving task assignment for 

heterogeneous users (PTAH) problem [12] in mobile crowdsensing. In this study, users 

are divided into two groups: private users with location privacy requirements and public 

users without such requirements. The authors developed a privacy-preserving 

mechanism to obfuscate the actual location of private users. Furthermore, they 

constructed a relationship graph based on the locations of users and tasks. J.Wang et al. 

(2023) introduced a personalized location privacy incentive in the form of a double MCS 

auction mechanism [13]. This innovative approach allows workers to determine the 

extent of location information they disclose to the platform, providing personalized 

location privacy protection. Additionally, workers are given the flexibility to submit 

multiple bids for tasks of interest and perform a subset of tasks if they emerge as winners. 

The auction mechanism enables the platform to select winning requesters and workers, 

thereby achieving optimal sensing service accuracy. 

Y.Jiang et al. (2023) proposed a learning-based mechanism [14] that comprises two 

components: 1) privacy-preserving task release and allocation, and 2) accurate and 

efficient task allocation. In the first part, the authors devised a location-based symmetric 

key generator that enables two parties to generate a symmetric key independently, 
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eliminating the need for fully trusted authorities. By leveraging this key generator and 

Proxy Re-encryption, a privacy-preserving protocol was developed to safeguard location 

information during task release and allocation. In the second part, a reinforcement 

learning-based task allocation algorithm was designed to optimize the selection of 

winners, ensuring high accuracy and efficiency. Y.Cheng et al. (2023) designed a 

lightweight privacy-preserving sensing task matching algorithm [15] that upholds 

location privacy, identity privacy, sensing data privacy, and reputation value privacy, 

while minimizing computation and communication overhead for sensing vehicles. To 

prevent reputation values from being tampered with and to select reliable sensing 

vehicles, the authors devised a privacy-preserving reputation value equality verification 

algorithm and a privacy-preserving reputation value range proof algorithm. 

Additionally, a three-factor reputation value update algorithm was constructed to 

efficiently and accurately update the reputation values of sensing vehicles. 

R.Ganjavi et al. (2023) introduced an efficient edge-assisted MCS scheme [16] that 

protects the privacy and anonymity of participants. This scheme effectively tackles the 

join-and-leave problem, demonstrating minimal computational cost and communication 

overhead that remains constant. B.Zhu et al. (2023) introduced an innovative approach 

to data aggregation, leveraging the Chinese remainder theorem [17] for privacy 

preservation. By incorporating blinding factor and Paillier homomorphic encryption 

technology, the system not only ensures the privacy of the collected data, but also 

enhances its robustness. The authors further enhanced the privacy aspect by introducing 

a secure multicast communication technology based on the Chinese remainder theorem, 

which allows only designated sensing nodes to access the task. Additionally, an efficient 

signature scheme was devised to ensure data integrity. 

S.Sangeetha et al. (2023) proposed a cutting-edge technique for preserving location 

privacy in a crowdsensing environment, utilizing blockchain technology [18]. This novel 

approach overcomes the limitations of traditional crowdsensing methods and safeguards 

the location information of workers through a privacy preserving algorithm. P.Chaudhari 

(2023) presented an innovative scheme for privacy-preserving and cost-effective work 

distribution, incorporating a fine-grained access control system [19]. The scheme 

employs a ciphertext-policy attribute-based encryption method with a hidden access 

policy, ensuring the privacy of both data requesters and data collectors. Y.Cheng et al. 

(2023) introduced a groundbreaking framework [20], named PRTD, which combines 

privacy preservation and reputation-based truth discovery. This framework accurately 

generates ground truths for sensing tasks while maintaining data privacy. The authors 

achieve this by utilizing the Paillier algorithm and Pedersen commitment to protect 

sensing data privacy, weight privacy, and reputation value privacy. Furthermore, they 

devised a privacy-preserving reputation verification algorithm, based on reputation 
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commitment and zero-knowledge proof, to detect tampered reputation values and select 

trustworthy mobile users based on a concept of reliability level. 

Based on the literature study performed in this section, related to the security of the 

mobile crowdsensing technology, the following challenges have been witnessed and act 

as the motivation factor for the objective framing of this proposed work. 

 The existing works relies on centralized storage, in which the level of trust is not 

to the acceptable level.  

 The quality of the data collected through the mobile devices are prune to the 

location and hence questions the guarantee of the location secrecy.  

The objectives of the proposed work are as follows.  

 To provide location based security to the data stored in centralized storage or 

distributed storage.  

 To employ blockchain technology for maintaining a registry of data and to 

preserve the privacy of the data gathered through the mobile crowdsensing. 
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Proposed Work 

Preliminaries 

The preliminaries used in this proposed work of blockchain based proactive defense 

mechanism in the mobile crowdsensing are as follows.  

• Bilinearity property: The close groups ‘a’ and ‘b’ are cyclic with prime  p, q to the 

generator G such that e: G*G=GT and is defined as if, ∀a, b ∈ G and x, y ∈ Z, then, 

𝑒(𝑎, 𝑏)𝑥𝑦 = 𝑒(𝑎𝑥 , 𝑏𝑦) = 1 

• Non-degeneracy property: e(G,G)≠1. 

Proposed blockchain based Proactive Defense Model 

The proposed system is composed of the blockchain technology which involves the 

contribution of entities namely, the task requester, task verifiers, workers and the 

blockchain registers for data storage and validation purposes. The task requesting node 

acts as the requester or a worker depending on the condition. As depicted in Figure 2, 

the node desiring to publish a task transforms into a task requester and disseminates the 

task information through the blockchain. The nodes yearning to undertake the task 

upload their operational data and present a deposit to establish a contract with the task 

requester. Following the completion of the preregistration process, the smart contract 

will be automatically triggered to select competent workers from the preregistering 

worker set for the specific task. The deposit will either be returned to the workers who 

were unsuccessful in preregistering or were not selected. Upon accomplishing the task, 

the workers upload the result metadata, while the tangible data is encrypted and stored 

in the distributed database, patiently awaiting the task requester's evaluation. Ultimately, 

the evaluation result will be submitted, and if deemed qualified, the workers shall receive 

their well-deserved reward. 
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Figure 2: Proposed Blockchain based Mobile Crowdsensing 

As illustrated in Figure 2, the innovative model introduced a decentralized system called 

Blockchain based Mobile Crowdsensing system (BMCS), portraying three central 

characters: a task seeker, laborers, and an examiner, all able to engage in a collaborative 

network. To enhance comprehension of the process of selecting workers, we have 

provided a list of symbols and their corresponding explanations in Table 1. 

Table 1: Parameter Nomenclature 

Notations Parameter Description 

Tr Task Requester 

Tw Task Worker 

Tv Task Verifier 

Ts Sub Target 

Nw Number of workers 

NTs Number of sub targets 

Lw Worker’s location 

Aw Area of the worker 

 

A task requester, known as Tr, has the ability to create its own identity and account on 

the blockchain in a secretive manner. Through this account, Tr can post tasks and 

conduct transactions. The account holds various properties related to the requester, 
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including tokens and reputation. Tr can utilize the blockchain to publish tasks and select 

suitable workers.  

 

Figure 3: Proposed Work- Flow process 

Similarly, a worker, referred to as Tw, is a user created anonymously on the blockchain. 

The worker's account contains their reputation and an acceptable travel budget, Tb, for 

completing tasks. Prior to receiving tasks, Tw must submit relevant working information 

to the blockchain and set aside a deposit for worker selection. The flow process of the 

proposed work is depicted in Figure 3. A verifier, known as Tv, plays a role in the 

verification and consensus process. Tv is a miner node selected through the proof of 

work and is responsible for managing transaction information on the blockchain. In order 

to protect the true location, a cloaked area is generated for a worker, Tw. This cloaked 

area is defined as (ai, fi), where ai represents a spatial anonymous area based on the 

worker's true location within our proposed algorithm, and fi represents the probability 

density function. To ensure maximum task coverage, the area required for the task is 

divided into multiple sub-areas. If the worker's working area is circular, the division 

interval is a multiple of the radius of the worker's working coverage area. Similarly, the 

entire target area is divided into multiple subtargets. This allows for the achievement of 

full coverage of the target area by focusing on the full coverage of the subtargets within 

the subareas.  
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To provide a more comprehensive explanation of the crowdsensing communication 

process, we have devised seven distinct stages within the BMCS framework as 

demonstrated in Figure 3. In the Initial Setup Phase, BMCS generates sets of public and 

private keys for the mobile users who participate in the crowdsensing activities. The 

users are responsible for safeguarding their private keys, which will be utilized during 

the signature process. During the Task Release Phase, the task requester R disseminates 

the specific task details along with its signature and public key to the blockchain. This 

ensures the authenticity and efficacy of the task. Simultaneously, the crowdsensing 

contract, containing the task information and the requirements for worker execution, is 

posted by the task requester as a transaction on the public blockchain. Any worker who 

fulfills the contract conditions can then sign the contract. To ensure fairness in trade, the 

requester creates a smart contract outlined in Algorithm 1. This contract encompasses 

information about the requester, the workers, and the task itself. It operates 

autonomously on the public blockchain according to a predefined protocol. 

In the Preregistration Phase, upon receiving the broadcasted task information, workers 

who wish to undertake the task may initiate a transaction. This transaction includes their 

work-related information as well as a certain deposit required to sign the contract. The 

deposit serves as a preventive measure against fraudulent activities and will be refunded 

if the worker fails during preregistration. Successful preregistration grants the worker 

participation in the final selection process. Due to the setting of P and Q, the final set of 

selected workers will be a subset of the preregistered worker set. Once the Preregistration 

Phase concludes, the smart contract responsible for the final worker selection is 

automatically triggered. If a worker is chosen as the final worker, their corresponding 

deposit will be returned. To ensure data quality and protect location privacy, the Worker 

Selection Methodology for Crowdsensing (WSMC) is employed to select suitable 

workers from the preregistered worker set. Moving on to the Upload Result Phase, after 

completing the sensing task, the worker must utilize a digital signature and public key 

to upload the sensory results and await evaluation from the task requester. Considering 

the limitation of storage space on the blockchain, only the metadata is uploaded, while 

the actual data is stored in a distributed database. Furthermore, due to the transparent 

nature of the blockchain, it is imperative to encrypt the result information using the task 

requester's public key to prevent plagiarism. 

During the Quality Evaluation Phase, once the task requester receives the result 

information, they proceed to evaluate its quality using a specific evaluation method. In 

our article, the task requester quantifies and normalizes the sensing data, subsequently 

dividing it into two sets: qualified and unqualified. These sets reflect the satisfaction 

levels of the results in relation to the task's requirements (Reqt). Finally, in payment 

phase. If the uploaded data is deemed qualified, the smart contract automatically initiates 

payment to the workers, in addition to returning their deposit. The number of workers 
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chosen to work in a particular area ai will be successful in signing the work contract and 

the increase in success rate of worker selection process is defined in equation 1. 

 

∀𝑖 = 𝑇𝑤 ∑ 𝑥𝑗 ≤ 𝑇𝑗; ∑ 𝑥𝑗𝑠𝑗 ≥ 𝑄𝑗𝑗=0𝑗=0                         ..(1) 

 

Where, Tw is the task workers, Tj is the threshold rate of process and the Qj is the total 

number of process in the crowdsensing. After the worker acquires the task information, 

the smart contract will be triggered. As each worker possesses self-awareness of their 

whereabouts, they can utilize their precise location to refine the outcomes achieved in 

the initial stage and deliberate whether or not to embrace the assigned tasks. In the event 

of refusal, in order to minimize the excessive workload, the system model will solely 

reevaluate workers within the specific subarea that the user declined. The second step's 

optimization objective is depicted by equation 2. 

𝑆 = {{𝑇𝑤1, 𝑇𝑤2, 𝑇𝑤3 … … 𝑇𝑤𝑛} ⊕ {𝑇𝑠1, 𝑇𝑠2, 𝑇𝑠3 … … 𝑇𝑠𝑛}}                     (2) 

 

The key generation by the entities for the creation of block and to access the data from 

the BMCS incorporates the public key cryptography, involving public key and the 

private key for encryption and decryption processes. The algorithm for the pre-

registration process is illustrated in Table 2. 

Table 2: Pre-Registration Process 

Algorithm 1: Pre-Registration process 

Input: TWr- Task work region; xixj- Task work matrix; Ta- Task coverage area; Tg- Task 

coverage goal; Nw- Number of Workers; Twt- Worker threshold region. 

Output: Rw- Contracted result of worker 

Processes: 

1: Initialize the parameters 

2: If ∑ 𝑥𝑖𝑠𝑖 < 𝑇𝑤𝑡𝑖∈𝑁 ; then 

3: If 𝑁𝑤 < 𝑇𝑤𝑡; then 

4: 𝑁𝑤 + += 1 

5: 𝑥𝑖×𝑗 ← 1 

6: Then, Initiate new register in blockchain 

7: Return Registration Success 

8: Else 

9: Return Registration Failed 

10: End if 

11: End if 

12: Return completed 

13: End process 

 

The Table 2 defines the pre-registration process of the BMCS and initiates the 

blockchain registration process. The algorithm 2 is based on the two vital parameters 
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namely the Tg- Task coverage goal; Twt- Worker threshold region. In the next phase, 

we implement a two-step process to carry out the selection of workers. This process 

involves the utilization of BMCSs and BMCSf. BMCSs refers to the initial screening of 

workers, while BMCSf denotes the subsequent refinement of selection results by the 

workers themselves. During the initial step of worker selection, our proposed approach 

introduces two effective techniques to address the uncertainty issue arising from location 

anonymity in the first stage. The latter approach is employed in this article. To tackle the 

optimization objectives for WSMCs, we then combine the efficient greedy algorithms 

that have been put forth based on the partial set cover problem. 

In our proposed model, the selection process replaces the exact location of the user with 

a cloaked area. This enables the workers to receive tasks. Additionally, a distance-based 

travel cost model is utilized, where the Euclidean distance serves as the measuring unit 

for the sensing cost between workers and subtargets. Moreover, we extensively examine 

the querying algorithms for uncertain spatiotemporal data. This involves the utilization 

of existing range query, nearest neighbors, top-k, and other methods to propose querying 

techniques. Within the cloaked area, denoted as z ∈ a, there exists a substantial number 

of evenly distributed location points. We calculate the geometric centroid of all these 

points to determine the expected location of the worker. This calculation is then used to 

establish the expected distance matrix, represented by equation 3. 

 

𝑑𝑖,𝑗 = 𝐷 (∫ 𝑧𝑓𝑖(𝑧)𝑑𝑧
𝑁

𝑖=𝑗=𝑇𝑎
)                                 (3) 

 

The initial step involves the calculation of the likelihood that worker i can access subarea j, 

represented as pi,j. To reduce the cloaked area ai, a simple pruning technique is employed, 

resulting in the coincident area ai, which is the intersection between ai and a circular area centered 

at target j with a radius of ri. By combining this with fi, the probability that ai contains worker i 

can be determined, which is equivalent to the probability pi,j that worker i's travel scope includes 

target j, as defined in equation 4. 

 

𝑝𝑖,𝑗 = (∫ 𝑧𝑓𝑖(𝑧)𝑑𝑧
𝑁

𝑖=𝑗=𝑇𝑤
)                        (4) 

 

Subsequently, using the probability pi,j, the expected distance di,j between the intersection area 

ai and the target can be calculated, as defined in equation 5. 

 

𝑑𝑖,𝑗 =
𝐷(∫ 𝑧𝑓𝑖(𝑧)𝑑𝑧

𝑁
𝑖=𝑗=𝑇𝑎 )

𝑝𝑖,𝑗
                         (5) 

 

The proposed model adopts a worker selection strategy that combines the greedy approach in 

the initial stage. Although this strategy may not be optimal, as it makes the best choice at each 

step, it can be refined through iterations of the algorithm. This allows for the selection of the most 

suitable worker for a subarea, resulting in cost-effective worker-target pairs and real-time updates 

to the coverage of subarea targets. The iteration process continues until the coverage goal is 
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achieved or the worker's travel budget is depleted. The cost effectiveness of a worker wi, where 

i ∈ N, and a target tj, where j ∈ M, is calculated according to equation 6. 

 

𝜑𝑖𝑗
𝑁 =

𝑑𝑖,𝑗

max(1−𝑥𝑖,
1

𝑥𝑗
)+∈

                        (6) 

 

In equation 6, di,j represents the expected distance, while the denominator represents the 

expected coverage contributed by worker wi. The matrix vector u denotes the currently covered 

portions of the subarea targets. If a subarea target is fully covered, its corresponding value in u 

will be set to 1, with a value range of [0,1]. The algorithm for worker selection is illustrated in 

Table 3. The worker selection is the vital algorithm, which determines the authentication of the 

incoming workers. 

 

Table 3: Algorithm- Worker Registration Phase 

Algorithm 2: Worker Authentication Phase 

Input: Tw- Total Mobile workers; Tst- Task sub target; Bv- Budget vector; IT- Threshold for 

iteration 

Output: xi*j- Worker selection matrix 

Processes: 

1: Initialize the parameters 

2: While (Tu< Tw and Bv< Tst) do 

3: If (Tu==Tu*), then  

4: If(Bv==Bv*), then 

5: 𝑥𝑖,𝑗 ← 1 

6: 𝑇𝑈 ← max (1 − 𝑥𝑖 ,
1

𝑥𝑗
) 

7: If (Uij==1), then 

8: 𝑇𝑈 ←
𝑇𝑈

𝑇𝑗
⁄  

9: End if 

10: 𝐵𝑣 ← 𝐵𝑣−1 − 𝑑𝑖𝑗 

11: If IT=0; then 

12: 𝑊 ← 𝑊/𝑤𝑖𝑗 

13: End if 

14: End if 

15: End while 

 

The method for estimating distance is proposed based on anticipated probabilities, and 

Algorithm 2 is introduced for the purpose of selecting the most cost-effective pair of 

worker–target (i, j) with probabilities pi,j. To achieve the desired convergence, an upper-

bound threshold R is set, serving as a convergence parameter, which allows the algorithm 

to be stopped in the expected probabilistic approach. This threshold is specifically 

designed for experimental purposes and enhanced efficiency. The first step involves 

updating the coverage proportion in u, which is known as the expected coverage vector 

and is later sent to the workers in the second step. Unlike traditional crowdsensing 

systems where there is a risk of user-sensitive information being leaked during the 

registration phase, BMCS utilizes pseudonymous Bitcoin-like addresses to represent 
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task requesters and workers. This innovative approach allows for privacy preservation 

without the need for revealing the true identity of individuals involved in completing a 

crowdsensing task. Additionally, we have developed a location-privacy-preserving 

approach based on spatial cloaked areas, which replaces the true location of a worker 

with a corresponding cloaked region when accepting task information. This prevents the 

true locations of workers from being exposed to the public. As a result, BMCS provides 

dual protection for identity privacy and location privacy. Assuming the number of 

workers is represented by n, the number of subtargets by m, and the number of 

continuous sampling points in each cloaked area by s, the time complexity of our 

proposed uncertain distance estimation method is O(nms). For the expected probabilistic 

method, the time complexity is O(nmR) due to the limitation imposed by the number of 

iterations R. Given the uncertainty of anonymous locations, it is possible that the selected 

worker may not have access to the subtargets. Therefore, the assignment results need to 

be fine-tuned in the second step using the workers' exact locations, while ensuring that 

the overall coverage is not affected. However, if each worker simply selects the closest 

target to save cost, it may result in the selected workers exceeding the need of the 

subarea, which can lead to overcoverage. To address this issue, we have proposed 

additional constraints to limit the overall changes resulting from fine-tuning in the 

second stage. The algorithm for fine tuning the task workers is illustrated in Table 4. 

Table 4: Alrogithm- Task Workers Fine Tuning 

Algorithm 3: Task workers fine tuning process 

Input: Wi – Present worker; Tst – Sub target; Tb- Budget for travel; v- Target covered 

vector; It – Iteration threshold. 

Output: Yw- Worker selection matrix 

Processes:  

1: Initializing the parameters 

2: For all Tst in Wi do 

3: 𝑥𝑖,𝑗 ← 𝑥𝑖𝑗
∗ −

𝑥𝑖,𝑗

𝐾𝑖,𝑗
  

4: End for 

5: While 𝑇𝑏(𝐿𝑇) < 𝑇𝑏(𝑆𝑇), do 

6: If 𝑇𝑠𝑡 < 𝑇𝑤, then 

7: If choosing i<j<v 

8: 𝑥𝑖,𝑗 ← 1 

9: 𝑇𝑏(𝐿𝑇) ← 𝑚𝑎𝑥 (1 −
𝑥𝑖,𝑗

𝐾𝑖,𝑗
) + 𝐿𝑇 

10: If 𝑇𝑏(𝐿𝑇) == 𝑇𝑏(𝐿𝑇)∗; then 

11: Return, Authenticated Task worker 

12: Else, abort process 

13: End if 

14: End if 

15: End processes 

Algorithm 4 presents the refined algorithm for the selection of workers during the 

second step. In a similar manner, it continuously chooses the appropriate worker wi for 

the subtarget, employing a certain probability to prevent excessive coverage. Unlike 

Algorithm 3, the proposed approach aims to fulfill the initial constraint, thus any 
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modifications to the selection in xi,j will incur a penalty. Consequently, the cost-

effective score for each choice can be determined using equation 7. 

𝜑𝑖,𝑗
2 =

𝑥𝑖,𝑗

𝑇𝑏
+1−𝑥𝑖𝑗

∗

min(1−
𝑥𝑖,𝑗

𝑇𝑏
)+∈

         (7) 

This score represents the ratio between the cost of the second step and the expected 

coverage provided by worker wi for the subtarget tj ∈ t, which is calculated using the 

same method as in the first step. The probabilities used to select workers for the task in 

the second step differ from those in the first step as well. Equation 8 is used to 

calculate pi,j for a given subtarget j. 

𝑝𝑖,𝑗 = 1 −
𝜑𝑖,𝑗

2

max (𝜑𝑖,𝑗
2 )

         (8) 

The objective with this probability is to prevent excessive coverage of the overall 

target while simultaneously reducing the likelihood of expensive tasks. Without it, 

workers would be chosen repeatedly for the subtargets until their travel budgets are 

depleted.  
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Results and Discussion 

This section describes the performance analysis and the discussion on the 

performance of the proposed Blockchain based Mobile CrowdSensing (BMCS) model. 

The section is initiated with the illustration of experimental settings for the proposed 

work and is preceded with the analysis of the work in terms of security, computational 

cost, task cost. To scrutinize the performance of the quality control model BMCS in this 

article, a devised experimental environment based on Ethereum is employed. The 

software environment is Python 3.5. The hardware environment comprises a 2.60 GHz 

Core(TM) i7 CPU, 20 GB, and Win10 system of 64bits. The simulation strictly adheres 

to the protocols and patterns that may be utilized in the real-life scenario of 

crowdsensing. The dataset utilized was introduced and the execution of performance 

analysis of the proposed work follows suit. The parameter settings for the proposed work 

are delineated in Table 5 along with the specification of default settings. For the sake of 

simplicity, the model is experimented with circular areas 

Table 5: Parameter definition for the proposed work 

Parameters Range of Specification Default 

Settings 

Total workers (Tw) 100-1000 200 

Total Sub-targets (Tst) 100-500 200 

Transfer limit (Tb) 50-200m 100m 

Cloaking Model Rectangular, Hexagon, 

circular 

Circular 

Cloaking radius (Cr) 10.5-40% of mapping area 25.5% 

Task Goal (Tg) 50-100% 90% 

 

For every worker, the cloaked region is randomly selected within the circular map, 

covering between 12.5% and 37.5% of the total area. Each subtarget aims for complete 

(100%) task coverage, though this target is not fully met because of the cloaked 

positions. The coverage goal (g) varies from 50% to 90%, with 90% set as the default. 

The parameters R and R* both range between 20 and 50. Every experiment is repeated 

100 times, and the average performance across these trials is reported as the final result. 

In the actual sensing process, the proposed model first takes into consideration the 
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running time of block generation. The ability of the model to swiftly generate blocks is 

deemed more crucial than the efficiency of task completion. The running time of 

generating a block encompasses the period of Merkle tree generation in the consensus 

and the production of a new block. The running time of the method that measures the 

proposed worker selection time is also taken into account for data analysis. 

Subsequently, the success rate and the time cost of the initial preregistration stage are 

contemplated, which can be influenced by the proposed data control parameters P and 

Q. Additionally, the task coverage (TU) and task cost (TC) are introduced. In many 

instances, due to the constraints of the number of workers and budget, the expected 

coverage g may not be accomplished assuming given worker locations. Thus, the 

proposed work comprehensively considers the task coverage and cost and suggests a 

novel evaluation indicator PI (penalized indicator), which is normalized within the range 

of [0,1] using the min–max method. A lower PI value implies higher coverage and lower 

cost, indicating a superior outcome. 

 

 

Figure 4(a): Average Execution time for 10 tasks 
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Figure 4(b): Average Execution time for 50 tasks 

 

Figure 4 (c): Average Execution time for 100 tasks 

As illustrated in Figure 4(a), the average block generation time increases as the number 

of workers grows, though it consistently remains within the millisecond range. The 

execution time for block generation is primarily influenced by the worker count involved 

in the task. This occurs because a larger number of workers results in a larger Merkle 

tree structure within the block. In order to analyze the performance of the two-stage 

worker selection approach WSMC proposed in this article, the other worker selection 

approaches like TaskMe (Y.Liu [21]) and ActiveCrowd (V.Agate [22]) were compared. 

Due to different experimental environments, we have retained its core ideas and adapted 
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it to fit our model. Fifty tasks were published to analyze average statistics. As shown in 

Fig. 4(b), and 4(c) among the three methods, the running time of ActiveCrowd is the 

longest, and the running time of TaskMe is slightly shorter than ActiveCrowd. The time 

of our proposed scheme is the shortest, and the magnitude of increase with the number 

of workers is not as sharp as the other two schemes. 

 

Figure 5: Comparison of Time coverage rate 

Figure 5 illustrates the influence of preregistration on both success rate and time cost. 

To evaluate the impact of the two control parameters, P and Q, one parameter is varied 

dynamically while keeping the other constant. As depicted in Figure 6(a), when Q = 2, 

the time cost increases with rising values of P. This occurs because a higher threshold P 

allows more workers to be accommodated within each subregion, resulting in an average 

contract success rate exceeding 90%. Conversely, when P = 6 is fixed and Q increases, 

fewer workers agree to sign contracts due to tighter restrictions on the number of workers 

per subregion, leading to a reduction in the average success rate. The effect of increasing 

the number of workers while maintaining fixed subregions on both task coverage and 

cost is depicted in Figure 6. 
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Figure 6: Comparison of Task coverage Rate 

Compared to one-step optimization methods (EPA1 and EPA2), our proposed two-step 

optimization method (EPA3) achieves better result in terms of both task coverage and 

task cost, which is closer to the result of NPA with no privacy constraint. Since the global 

optimization of the first stage was taken into account, EPA2 shows a significant 

improvement than EPA1 in terms of the task coverage rate and efficiency. Based on the 

fine-tuning optimization in the second stage, EPA3 shows the results closer to the 

coverage objective. Additional, as shown in Fig. 7(c), increasing the number of workers 

results in a lower penalized indicator, meaning that EPA3 outperforms the other two 

approaches, i.e., EPA1 and EPA2.  

Our proposed two-step optimization method, EPA3, achieves superior results compared 

to the one-step optimization methods (EPA1 and EPA2) in terms of task coverage, task 

cost, and a penalized indicator. Impact of Cloaking Radius: Figure 10 displays the impact 

of increasing the cloaked radius with a fixed number of workers and subregions on task 

coverage and cost. The task coverage of EPA1, EPA2, and EPA3 is affected to some 

extent with the increase in the cloaked radius, except for NPA. However, EPA3 exhibits 

greater resilience compared to EPA1 and EPA2, indicating that EPA3 is less affected by 

the cloaked radius. Moreover, EPA3 outperforms the other approaches across all cloaked 

sizes. 
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Conclusion 

In this article, a location-privacy-preserving MCS system called BMCS was proposed, 

which incorporates the concept of a blockchain into crowdsensing. This integration 

facilitates the decentralization of crowdsensing, effectively mitigating security risks such 

as repudiation and data tampering that are common in traditional centralized systems. 

Drawing inspiration from smart contracts, we propose a two-phase framework composed 

of a preregistration phase and a final selection phase. These phases employ spatial 

location privacy-preserving mechanisms and greedy optimization algorithms to 

safeguard workers’ location information, minimize task costs, and maintain data quality 

within a blockchain-based crowdsensing model. Moreover, we demonstrate that the 

optimization problems addressed in both phases are NP-hard. Comprehensive 

experiments were conducted to evaluate the average block generation time and to 

compare the proposed approach against two existing schemes. We also examined the 

influence of various conditions on success rate, execution time, efficiency, and 

robustness. The results confirm that our method outperforms alternative approaches in 

terms of operational efficiency, location privacy protection, and task coverage. In future 

work, we intend to further explore data quality assessment methods to enhance both data 

reliability and system robustness, thereby improving the model’s applicability to real-

world deployment scenarios. 
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