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Preface

Artificia Intelligence-native databases are currently at the forefront of the rapidly evolving data
management landscape. The book examines how database systems are changing to satisfy the
needs of real-time, intelligent decision-making in different industries. The transition from
traditional relational models to Al-driven architectures, cloud integration, optimization, and new
developments like automation, explainability, and security are all covered in the chapters.

This book's writing has involved both a thorough examination of contemporary data technology
and a contemplation of the field's continuing opportunities and challenges. | want professionals,
students, and anybody else interested in the future of databases to be able to understand both
basic and advanced topics. | hope it encourages readers to welcome innovation and investigate
the wise opportunities that lie ahead.

| want to express my gratitude to my parents for their unwavering support during my journey, as
well asto my peers, fellow researchers, and everyone else who has helped and inspired me. Their
guidance and collaboration have been invaluable in shaping this book.

Shashipurna K urapati
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Chapter 1: The Transfor mation of Database
Technologies. From Relational to Al-Enhanced
Systems

1. Introduction to Database Technologies

Database technologies are an integral part of the global economy. They present an attractive area
of investment for venture capitalists, are a fundamental component of most software projects,
and moderate our personal, social, and financia lives with their representations of individuals
and the everyday. However, the hype that surrounds them is afar cry from their humble roots as
a simple means of recording and querying progress on budget and hiring tasks. They eventually
were reinterpreted as the key to information management and enabling business administrations
to be competitive in increasingly digital economies.

THE TRANSFORMATION OF DATABASE TECHNOLOGIES:
FROM RELATIONAL TO Al-ENHANCED SYSTEMS

EVOLUTION FROM OVERVIEW OF VECTOR USE CASES
RELATIONAL TO DATABASES, GRAPH ACROSS
AI-AUGMENTEND DATABASES, AND INDUSTRIES

SYSTEMS HYBRID ENGINES

Fig 1. The Transformation of Database Technologies: From Relational to Al-Enhanced Systems



They were subsequently understood as the catalyst for creating better products and services in
almost every walk of life, culture, and pursuit.

2. Overview of Relational Database Systems

Relational Database Management Systems (RDBMS) have long been the foundation for storing
and retrieving data for businesses across al industries worldwide, having been introduced in the
1970s. These systems are based on a rigid structure—the data model, formally defined through
the relational model—that defines data objects and the relationship between them. This approach
offers great flexibility; data relationships can be created, updated, and deleted easily, queries are
built based on the data model rather than the physical model, and the databases are highly
scalable and fast. However, it also features many rigid characteristics, with inflexible schema,
less support for complex queries, and less support for other types of data (such as graph, spatial,
or object data). The relational model has provided a highly established and proven approach for
storing and retrieving data. Transactional systems largely use relational databases with OLTP for
applications such as core banking, manufacturing, billing, and so on.

2.1. History of Relational Databases

Database technologies have undergone dramatic transformations since the foundations of
relational databases were laid in the 1970s. In the early years, relational database management
systems (RDBMSs) completely overshadowed all other approaches to data management.
However, as modern applications became increasingly complex and database designs were
targeted to serve a broader range of services, the limitations of the relational technology started
to surface[1]. Two classes of non-relational database systems emerged at the beginning of the
new millennium as an aternative approach for data management in the cloud, for Big Data
analytics, and for large-scale data streaming. NoSQL systems enabled the manipulation of semi-
structured and structured databases, whereas NewSQL systems supported structured and
relational data.

Today, a new wave of database systems is on the rise. Next-generation systems, known
collectively as Al-Enhanced Database (Al-DB) Systems, are enriched with Al capabilities that
are designed to handle one or more stages of the data pipeline. These new systems leverage the
extensive use of Artificial Intelligence (Al) and Machine Learning (ML). Progress in ML has
aso led to an increased interest in the physical design of modern workloads, mainly because of
the impact that an optimal physical design and choice of configuration parameters can have on
the price and performance.

2.2. Key Features of Relational Databases

Relational databases organize data in tables composed of rows and columns. Each table has a key
column that uniquely identifies a relationship inside the table and acts as a key in other tables to
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form relationships across the database. Tables can be combined with operations like joins to
create new tables for query results. Referential integrity constraints control how tables can be
modified without breaking relationships. No-sgl databases do not enforce these constraints.
Relational databases use the SQL language for data query and programming. In the last decades,
non-relational database systems appeared with models like no-SQL and new-SQL. Non-
relational databases have an edge over relational databases in terms of scalability, availability,
and fault tolerance. However, non-relational databases should not be considered as an opposition
to the relational database model.

Rather, the emergence of non-relational database systems fills the gap of relational database
systems by addressing the current modern business requirements, such as the cloud, the large
size of data, and the intensive methods of extracting meaning from data, driven mainly by
artificial intelligence. The ability of XAl databases to explain their outputs results in a reduction
of the number of processing steps that are currently done outside the database and at a higher
level. Such ability also leads to the creation of new applications in areas where explainability of
Al is crucia, such as hedlthcare, financial services, manufacturing, telecommunications, and
retail.

2.3. Limitations of Relational Databases

Even though relational databases have served the world well, their atomic grouping of data into
rows is not always desirable. Relational databases store data at the atomic level in tables, a two-
dimensional structure of rows and columns. Each entry in a table must be atomic, indivisible.
This constraint prevents a single cell from holding more than one value. For instance, storing a
customer's phone numbers becomes challenging: each number requires a separate row, or a fixed
maximum number of columns must be alocated, though the actual number of phone numbers
varies between customers [1-3]. When the data model is not normalized to a third-normal form,
the data cannot be stored in an RDBMS. If the model is not normalized for a business report, a
NoSQL database with hierarchical storageisideal.

Postgres has overcome this limitation by allowing non-atomic groups to be stored in a cell.
Postgres is a great RDBMS for geospatial queries. Another disadvantage of RDBMSs is their
difficulty in scaling across distributed computing architectures like clusters or cloud-scale virtual
private servers that evolve and add more machines over time.

3. Emergence of Non-Relational Database Systems

Non-relational databases—based on so-called NoSQL (not only SQL) and NewSQL models—
have evolved to address many of the limitations embedded in the relational model. NoSQL
databases are characterized by flexible schemas, simplified design, and horizonta scaling, all of
which contribute to efficient handling of large volumes of diverse, semi-structured, and
unstructured data without the rigidity imposed by schemas and relations. Consequently, NoSQL
supports iterative and agile development, enabling rapid data extraction and querying.



On the other hand, NewSQL databases preserve the anterior relational models and SQL querying
standards, including ACID transactional properties, yet overcome drawbacks through non-
locking concurrency control mechanisms, distributed architectures, and elastic resource
alocation. Both NoSQL and NewSQL represent a response to the expansion of database-related
challenges not amenable to solutions offered by commercial relational systems.

3.1. NoSQL Databases

NoSQL, an abbreviation for “not only SQL,” designates a broad range of data management
models that do not adhere to the relational model and SQL query language. NoSQL models
acquired popularity in the first decade of the 2nd millennium thanks to their demonstrated
capability to manage Big Data and to scale on machine clusters.

Using adifferent terminology, one might state that NoSQL models typically relax one or more of
the ACID principles that underlie relational databases. The motivation behind such relaxationsis
their reconciliation with the CAP theorem, which establishes that a distributed database cannot
simultaneously provide strong consistency, availability, and high tolerance to network partitions
(due to node failures). NoSQL models sacrifice some degree of either consistency or availability
to preserve their ability to cope with node failures. The main NoSQL categories with
representative examples are as follows: document (MongoDB), key—vaue (Dynamo), column
(Big Table), and graph (Neo4J).

3.2. NewSQL Databases

The limitations of NoSQL databases have resulted in the emergence of various NewSQL
databases, exemplified by MemSQL (now SingleStore). As described bydesigner.io, MemSQL, a
distributed, scalable, relational database supporting SQL queries, combines the benefits of
traditional RDBMS and NoSQL. This fusion enables transactional applications while delivering
high performance, scalability, and simplicity for real-time analytics solutions. MemSQL
achieves this through a distributed, shared-nothing architecture, capturing SQL workflows and
ACID semantics of transactional databases, while providing NoSQL-like scalability and
operability. Consequently, it supports the command of SQL for data definition, manipulation,
query, and transaction, and offers comprehensive relational database services with consistent low
latency and high throughput. MemSQL delivers one unified database service for operational
analytics, delivering rich data insights on real-time transactional data.

Thus, the DBMS market has developed multiple alternative database models and technologies to
overcome the limitations of relational database systems. NoSQL databases represent a family of
nonrelational databases designed to address the challenges of managing large volumes of
distributed, semi-structured, and unstructured data while supporting the rigidity of relational
databases. The eight prominent NoSQL databases outlined above—from columnar CQL through
to graph Gremlin—offer drastically improved storage management and query processing
capabilities for novel application varieties, including web, 10T, and big data. Nevertheless,



limitations remain. NewSQL databases seek to reconcile the benefits of SQL support and ACID
semantics with the scalability and low latency of NoSQL, delivering a unified database service
for operational analytics.

3.3. Comparison with Relational Databases

Relational databases have been dominant since IBM published the paper by Codd (1970). Yet
certain shortcomings have limited their wide acceptance. First, they are generally not good at
handling very large amounts of unstructured data, such as images and video. Second, scaling up
relational databases is very costly, since it requires more powerful CPUs and large amounts of
RAM—a practice known as vertical scaling. Third, the dependency on the rigid schema tends to
complicate the ETL (Extract, Transform, Load) processes to feed the data into the database.
Finally, performing efficient large-scale analytics for data stored in relational databases tends to
be challenging.

Over the years, these limitations have resulted in the emergence of non-relational database
technologies, popularly labelled as NoSQL. Subsequently, the NoSQL approach was
complemented by NewSQL technologies. The term NoSQL was first coined in late 1998 for a
lightweight open-source relational database that did not expose the standard SQL interface found
in traditional databases. However, the term NoSQL gained wide popularity only in 2009, when
Johan Oskarsson used it for a meetup discussing open-source distributed databases. The meetup
included databases such as Redis, Cassandra, and Neodj. EM Codd's 1970 paper continues to
shape data management.

4. Introduction to Al-Enhanced Database Systems

The term “Al-enhanced database” and the concept of “Al in databases’ describe the growing
integration of artificial intelligence into database technologies and database management
systems. This development utilizes new technologies that support artificial intelligence to
enhance or supplement existing data management processes.

In recent years, severa industries—hesalthcare, financial services, retail, manufacturing, and
telecommunications—have augmented or replaced traditional databases with Al-enhanced
aternatives. These systems support new applications that incorporate artificia intelligence and
machine learning, enabling more rapid decision-making with access to a broader range of
unstructured data. The trend toward Al-enhanced systems aims to improve current machine-
learning capabilities by seamlessly integrating user intent into the database, thereby facilitating
advanced analytics and operational efficiency.

4.1. Definition and Scope

Database technologies are the backbone of modern data management; they enable organizations
to efficiently store, manage and analyze large amounts of information. This support of decision-



making processes is crucial in a digital environment where business success is often directly
linked to the quality of the decisions made.

Relational database management systems account for a large portion of industrial and
commercial deployments in the last three decades [3]. Commercia implementations such as
Oracle Database and Microsoft SQL Server are two of the twenty most powerful computer
programs of all time. However, relational databases also present limitations and therefore
NoSQL / NewSQL non-relational models have emerged to address these shortcomings.

4.2. Technologies Driving Al in Databases

The integration of Al in database technology encompasses a range of discrete yet interrelated
developments. For instance, Turbo-VCM combines probabilistic data models with machine-
learned components, automating the inference of group-by location for contextual visualizations.
Data requirements analysis, as performed by AlPlanner, utilizes Al planning to construct detailed
plans that match user-supplied questions. Additionally, machine-learned components comprising
Al-EDLC are designed to aleviate the complexity of datawrangling, cleaning, and integration.

Beyond Al-enhanced database systems, advancements in cloud computing have catalyzed the
rise of specialized data ecosystem services—including popular cloud analytics engines such as
Snowflake and BigQuery. The services encompass data-messaging, storage, security, and
governance. Furthermore, even within the domain of relationa database systems, interest in the
transformative impact of Al and machine learning has intensified.

5. Applications of Al-Enhanced Database Systems

A wide range of industries rank among the early Al adopters. As Al is embraced and applied, the
volume and scope of available data is rapidly increasing, triggering a rising-bar effect on the
underlying databases and database-management systems. This cause—effect relationship
highlights the potential of Al-enhanced database systems to contribute to innovative applications
across multiple traditional and new Al sectors.

The currently evolving applications of Al-enhanced database systems address emerging business
needs, as illustrated by examples across various industries. Enterprises in healthcare, financial
services, retail, manufacturing, and telecommunications face common challenges in using data
for increased revenue growth, cost reduction, and risk minimization. However, Al’s actual
impact goes much “deeper,” producing a transformational effect on the selected use-case
category, the corresponding sector, and, quite often,--amplified through the supply chain or
related sectors--the overall economy. Many of these applications echo the key trends identified in
other sectors, and their lessons and principles can be extended to other areas. Three examples
further illustrate the stage and breadth of Al application in database systems.



5.1. Healthcare

The healthcare industry, with its vast data volumes, faces clinical data management challenges
that traditional systems struggle to address. Al-enhanced healthcare systems offer solutions that
lower costs, improve patient safety, and deliver quality medical care. The advantages of an Al-
enhanced database can be seen in its ability to categorize, discriminate, transform, forecast, and
prescribe, assisting in decision-making processes. For example, associating disease patterns with
X-ray images aids in making accurate, quick decisions; banking fraud detection guards against
account hacking; customer income prediction supports financial consultancy; and manufacturing
winner selection guides marketing and manufacturing strategies. Although the key database
technology employs a Data Warehouse Engine, Artificia Intelligence is instrumental in ensuring
the safety and quality of human life.

5.2. Finance

Artificial intelligence (Al) applications are transforming banking and the broader financial
services industry. Al technologies are being deployed for a wide range of tasks, from setting
credit and insurance policy rates to determining which applications for loans, mortgages, and
insurance benefits to approve [2,4]. Al is aso highly beneficial for detecting credit card fraud,
with most major credit card providers employing machine learning algorithms specialized for
that purpose.

Al applications facilitate cross-selling for banks and hedge funds, analyze the effectiveness of
advertising campaigns in financial services, and recommend preferred shares and bonds for
individual investors based on their risk tolerance. Additionally, investment management firms
utilize Al-powered chatbot assistants and document analysis tools to help investors make
informed decisions. In treasury departments, interest rate forecasting applications employ Al
techniques to minimize risk. Before the pandemic, many financia services firms were already
deploying artificial intelligence. Enhanced customer experience, greater efficiency, reduced
costs, and improved operational control were the top benefits driving adoption. During the
COVID-19 crisis, these benefits became even more apparent, leading more institutions to
implement Al.

5.3. Retail

Al-enhanced database systems are deployed in the retail and e-commerce sectors to improve the
customer experience through real-time responses to questions or issues during the decision-
making process while shopping online, at home, on their phone or computer, or in the store. The
promise of Al isthat data can be analyzed in real-time and insights delivered to customers in the
form of personalized experiences and recommendations based on their spending habits. Real-
time targeted advertising can be presented in price-reduced coupons through emails or ads on
social media sites. Physical stores can reduce operating costs using Al to monitor security, loss
prevention, customer movement and products they pick up but don’t purchase.



Theretail industry uses the vast amount of customer data it collects to manage inventory, change
marketing strategies in real time, and identify products to suggest to each customer during their
shopping experience by leveraging Al technologies. The data as well as the predictions can be
accessed on mobile devices by the decision makers of the company. Both online and brick-and-
mortar stores have increased their use of robotics to replenish shelves, fetch items in the store
and fulfill online orders. Chatbots acting as virtual sales associates guide shoppers through the
stores, highlighting promotions and advising on complementary products while improved
geographic information systems (GIS) map customer shopping patterns for the retailer.

5.4. Manufacturing

The manufacturing sector is adopting Al-driven database technologies to achieve increased
production efficiency and production delivery. By integrating Al-driven systems with loT
equipment, real-time connection to production lines generates extensive data, which is then
cleaned, processed, stored, and analyzed continuously by Al-enhanced database systems. The
identified challenges in production process management can be addressed by Al-integrated
solutions; however, adequate data security is essential to mitigate potential |eakage during the
analysis phase.

Manufacturing enterprises seek continuous improvements in production efficiency, cost
reduction, and overall increased product quality and related services. Challenges involving the
complex interactions between physical and logical devices can have significant impacts when
overlooked [5-8]. An intelligent human-machine environment supported by Al enables
manufacturers to efficiently schedule production, dynamically manage the supply chain, and
assist in machine maintenance optimization. Real-time and effective management information
services for production lines are critical to the development of smart factories.

5.5. Telecommunications

The transformation of telecommunications is sustained if not enabled by advances in data
collection and data analysis. The Big Data challenge is considerable: A Cisco report forecasted
in 2017 a quadrupling of global mobile data traffic, underpinned by a 10-fold increase in the
number of mobile devices [53]; and a McKinsey analysis for the European Union concluded that
within Europe the telecom operators would be responsible for managing a share of Big Data
responsible for 50 to 80 exabytes of new data annually, and that they are well-positioned to help
other sectors manage their Big Data [54]. Public networks are evolving towards 5G, which for
the first time has been designed to deliver highly reliable and low latency connectivity that
supports flexible network slicing and an increasing number of devices per cell. This enables new
services aswell as new business and revenue models for the network operators.

Adoption of Al-enhanced database technology in telco markets requires a flexible platform that
can process large training sets, prepare and cleanse the data, and apply machine learning. In a
broad cross-industry McKinsey analysis, three applications for telcos were highlighted: real-time



multimedia translation and analysis, cybersecurity, and fraud detection [51]. Diapad, a provider
of cloud telephony and voice, video, and conferencing solutions, is using Al to create customer-
facing applications with speech performance and emotion recognition, in addition to assisting
support agents. In Hungary, Telekom is working with Accenture to reduce customer churn,
improve marketing campaign effectiveness, and enhance the overall customer experience using
Al.

6. Case Studies of Al-Enhanced Systems

Examples of Al-enhanced database systems are emerging in many industries, including health
care, financial services, and retail. Customer support in al industries is being transformed by Al
chatbots, including banking, airline travel, and supply chain management. Surveillance systems
in manufacturing, logistics, and telecommunications are enriched by image recognition systems.

Hedlth care institutions are increasing database performance and security with Al and
implementing Al applications. These include disease monitoring, remote patient monitoring,
image analysis, and prediction of potential epidemics. Banks and other financial companies are
using Al-based database services to improve power, performance, and risk analysis, as well as
fraud detection. Several companies use Al-driven database services to support vibration analysis,
image recognition, trash detection, facial recognition, and natural language processing.

6.1. Case Study 1: Al in Healthcare Databases

Al-enabled databases have begun to transform many real-world applications, including
healthcare, financial services, retail, manufacturing, and telecommunications. In each case,
incorporating Al capabilities into the database provides a competitive advantage. The following
examplesillustrate three of these applications.

An exponentially growing population, along with advancements in treatment methods and
healthcare facilities, is generating unprecedented volumes of healthcare-related data. This data
explosion renders the efficient assessment and diagnosis of patients more difficult. By utilizing
Al-enabled databases, healthcare organizations can support physicians with advanced decision
support systems. These systems analyze vast amounts of data to detect, interpret, and predict
trends in order to establish a connection between patient scenarios and known outcomes.
Hospitals can then apply these techniques to develop advanced Intelligent Patient Assessment
systems that rapidly analyze patient data and conditions for swift and accurate diagnosis.

6.2. Case Study 2: Al in Financial Services

Information is the foundation of every business. Companies that use their data effectively can
sharply improve decision-making and deliver faster turnaround times. The principle applies to
every individual in a company and at al levels—from entry-level agents to executives, from
providing answers for customers, to making the right call when investing, to managing a
company in a manner that achieves maximized value for its shareholders [6,9]. The growth of
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artificia-intelligence (Al) tools is accelerating. As these tools gain market penetration, the
impact on the database market is significant. Al-enhanced database systems are those that use
various database and other technologies in conjunction with Al technology. The term ‘*Al-
enhanced’’ refers to the fact the database is strengthened in some manner by the integration of Al
and associated technologies.

Chatbots are a foundational Al use case and continue to evolve toward smarter answers as
machine-learning and natural-language-processing techniques advance. Even relatively
unsophisticated Al applications can reduce costs and improve customer satisfaction significantly.
Major financia institutions depend on Al-assisted technologies such as optical character
recognition (OCR) for simple document handling and authentication tasks such as mortgage
applications and credit card applications. Al tools help regional banks and credit unions battle
fraud, comply with increasingly complex regulations, and generate more business from cross-
selling and up-selling. Other applications include virtual financial planners, analysis of
investment possibilities, and fraud detection, identification, and prevention. Case studies confirm
that Al, in large and small banks alike, delivers better efficiencies, improves quality, reduces
workload, and generates higher profits.

6.3. Case Study 3: Al in Retail Operations

Rapid developments in artificial intelligence (Al) have affected different levels of database
management systems (DBM Ss) and transformed applications through enhanced data intelligence
[10]. Al engines now contribute to closing the gap between data and value by enhancing
understanding and facilitating the extraction of value. Businesses adopting Al-enhanced DBM Ss
and exploiting the enhanced intelligence across DBMS components showcase significant
advantages across diverse sectors.

Retailing is a prime example of where Al has revolutionized corporate activities. Data from
internal vertical chains—suppliers, distributors, warehouses, retail stores—and historical
activities serve as amajor application area. Given the growing importance of retailing, especially
in developed countries, retail data analysis is increasingly recognized as a strategic element for
corporate success. Al's application in retailing is dedicated to making corporate activities more
responsive to end-user needs through data intelligence. It contributes to process innovation and
functional management, ultimately enhancing value to customers. Deployment areas include
sales forecasting, customer profiling, inventory planning and management, cloud resource
optimization, customer relationship management (CRM), and strike detection, illustrating the
broad integration of Al into retail operations.

7. Challenges and Ethical Considerations

Al-enhanced databases are increasingly addressing key issues faced by industry verticals,
including database security provisioning, real-time data insights, and regulatory compliance with
GDPR, Basel 111, among others. The management of access privilege is critical to ensure data
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confidentiality and prevent unauthorized access or data breaches. Automated database activity
monitoring and the application of Al can provide real-time aerts regarding abnormal or
suspicious database activities, particularly during events such as terrorist attacks or bank
robberies.

However, recent research has highlighted concerns regarding bias in Al agorithms. Examples
include facial recognition systems that predominantly identify white males and the targeting of
black men by online crime prediction tools. Accordingly, various institutions have issued ethical
guidelines for Al and related applications. Al-enhanced database systems are penetrating diverse
industry verticals, offering smarter and more efficient services. In healthcare, Al analyzes patient
data to determine disease susceptibility and optimize treatment recommendations. The financial
sector employs Al to detect suspicious transactions and prevent fraud. Retail companies utilize
Al agorithms to tailor products and services to customer preferences, while the manufacturing
industry leverages Al for quality control, fault prediction, and inventory management. Customer
churn prediction also benefits from these intelligent systems. Telecom service providers use Al
to detect fraudulent calls and spam.

7.1. Data Privacy Issues

Data security plays a vita role in establishing Al-enhanced database systems for industrial
applications. Privacy, confidentiality, integrity, and security remain the top concerns for data
repositories in both relational and non-relationa database management systems. The recent data
breaches at leading corporations such as Facebook and Amazon have highlighted the criticality
of protecting user data stored in Al-enhanced information systems. These risks can be addressed
by adopting a procedure of data anonymization or deidentification to ensure individual privacy
during the data analysis process [10-12]. The disclosure of sensitive data can generate potentially
devastating effects on the privacy of individuals during aretrieval or data-analysis process.

In the early 1970s, researchers at the Federal Trade Commission in the USA recognized that the
disclosure of sensitive and confidential information might lead to potentially devastating effects
onindividual privacy. One of the reasons for potential privacy |eakage is the association between
individual information in the published data and their identities. The release of personal
information of individuals for conducting data analysis has been acknowledged as a privacy
disclosure vulnerability. Credit card companies, governmental organisations, hospitals, banks,
and many other institutions collect alot of information about their customers, and their privacy is
vital for a safe and fair society. Indeed, most of the practices of the companies that handle the
data of their customers fall under data regulation. Organisations use the information of their
customers to support their business models and strategies. Sensitive and confidential data are
protected against unauthorised individuals or organisations; however, these data can, in principle,
be accessed by parties internal to the company for usein various activities. Thus, the exploitation
of these data did not balance privacy concerns and interests of the public.
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7.2. Biasin Al Algorithms

The emergence of powerful Al algorithms has led to the integration of cognitive capabilities into
traditional large-scale data management systems, giving rise to the Al-enhanced Database
Technology (Al-DB) research area. Databases serve as the backbone of many organizations,
underpinning critical business applications across sectors such as financial services, healthcare,
retail, manufacturing, telecommunications, and government agencies. Al-DB systems leverage
Al techniques to extract meaningful insights from vast and varied data repositories. Through the
inclusion of Al modules and components, these systems can analyze, interpret, infer, and even
make decisions based on their analysis.

Research has explored the deployment of Al-DB in severa application domains. Healthcare
organizations can employ Al-DB solutions to detect and prevent diseases using medical records;
for example, systems can monitor blood pressure data to identify health deterioration. Biasin Al
algorithms, however, poses significant concerns that cannot be overlooked. Pattern analysis in
the financia services industry can identify fraudulent transactions; bias may lead to either false
accusations or missed fraudulent activities. Retailers analyze POS and inventory data using Al-
DB to forecast sales trends that influence operational and promotional activities. Task scheduling
during production can be optimized to reduce manufacturing costs through pattern analysis.
Additionally, pattern analysis of network data plays a critical role in enhancing customer
satisfaction ratings in the telecommunications sector. The implementation of Al-enhanced
capabilities in modern database systems empowers organizations to optimally allocate resources.
Ethical issues warrant serious consideration, especialy when Al-DB assists in regulatory areas
such as child protection, teacher monitoring, debt management, credit control, and arrest warrant
decisions.

7.3. Regulatory Compliance

When an Al system makes a decision, the decision may be traceable to a database that is no
longer in compliance with the regulations in place at the time or place of the decision. For
example, a machine learning model trained on data obtained under GDPR may be used to enable
adecision that is always made outside the scope of GDPR, thereby creating potential liability for
the data controller. Probes emerge in the context of an audit and are designed to test the machine
learning model for compliance with GDPR principles and regulations. Regulatory compliance
probes are typically implemented using black-box testing techniques, which involve providing
inputs to a system and observing the outputs, without any knowledge of the internal structure,
logic, or handling of data.

Regulatory compliance is critical because an Al system that is either in or out of regulatory
compliance cannot be described as fair or ethical. Furthermore, regulatory compliance plays a
significant role since Al-related jobs are increasingly regulated and governed by entities such as
the EU, |IEEE Standards Association, the United Kingdom, the United States, and the
Organization for Economic Cooperation and Development (OECD). Financial regulatory bodies,
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while currently concentrated on the financial services sector, are beginning to investigate and
assess other industries that utilize Al, focusing on Al credit decisioning, Al recommendations,
and Al pricing.

8. Future Trends in Database Technologies

The ongoing integration of artificial intelligence (Al) and machine learning (ML) with advanced
database systems and the ever-expanding capabilities of cloud computing are expected to
transform the future of database technologies. Continuous research is focused on developing
more intelligent and highly automated database systems, including systems with DBM S-internal
Al capabilities. Driven by the hybrid edge cloud paradigm, the rise of geodistributed, multicloud,
and polymorphic database services aso points to a future of database services that are more
universally accessible, flexible, and elastic, thus catering to business and user needs more in
spirit with the meaning of Database-as-a-Service.

Interest in trend-setting new database technologies remains as strong as ever. Al- and ML-
enhanced (or empowered) database and data-intensive decision-making systems will play a key
role in the digital transformation of many industries. Recent extraordinary advances in Al,
powered by deep learning and large neural network models, point to the prospect of greatly
enhanced, semantically oriented natural language and multimodal (e.g., speech and vision)
capabilities that promise to address the persistent data management challenges of extracting rich
business intelligence and knowledge from unstructured data, as well as from structured and text
data combined. Demonstrating the cross-industry impact of Al-enabled data management, the
applications range from managing electronic health records and enabling COV1D-19 research for
improved patient diagnosis, treatments, and policy recommendations, to financial decision-
making, personalized retail, production plans in manufacturing, and network optimization in
telecommunications.

8.1. Integration of Al and Machine Learning

Over recent years, a host of novel types of database systems—often classified as NoSQL and
NewSQL models—have emerged to overcome some of the many limitations of traditiona
relational database systems. The addition of artificial intelligence (Al) and machine learning
(ML) technologies constitutes the most recent phase of this transformative evolution; the
resulting Al-enhanced systems are aready delivering advanced capabilities for data and
information management.

An Al-enhanced database system represents any database product that incorporates fundamental
Al elements—such as natural language processing, knowledge representation, automated
reasoning, machine learning, and computer vision—or relies on Al-based technologies to
provide support for its development and operational phases. The broad range of Al techniques
applied within database-supportive products continues to grow, and their applications span
multiple industries.
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8.2. The Role of Cloud Computing

Cloud computing is an architectural model for delivering shared pools of computing resources
scalable on-demand. Public cloud databases capitalise on the elasticity and scalability of their
underlying cloud computing environment. At the same time, cloud providers share the
responsibility of security with their customers and implement rigorous compliance controls and
regular independent audits. Cloud providers such as Amazon, Microsoft, and Google built data
centres in many countries to accommodate customer requests for legal boundaries on data.

8.3. Emerging Technologies

Subsections 8.3.1, Emerging technologies, and 8.3.2, Applications, focus on new approaches to
and uses of database technology. Database technology has come a long way since early systems
such as IBM's IMS and Relational Database Systems, notably Oracle. NoSQL and NewSQL
systems exploit different storage and processing models in order to meet the diverse
requirements of modern applications. Artificial Intelligence (Al)—more precisely, Deep
Learning combined with Cloud Computing—plays a leading role in the transformation of
database technologies into Al-Enhanced Database Systems, which are similarly being applied in
avariety of contexts.

8.3.1. Emerging technologies. Artificial Intelligence has long been a popular research topic.
Breakthroughs in Deep Learning, combined with the growth of Cloud Computing and Cloud
Storage, now enable practical applicationsin many fields. 8.3.2. Applications. The integration of
Artificia Intelligence technologies is transforming many industries. Recent studies and reviews
indicate that Al has achieved remarkable results in areas such as clinical healthcare, financial
services, and retail [7,13-15]. In the healthcare sector, Al tools enable doctors to analyse clinical
data for early identification of patients at risk of critical conditions, while equally important
applications include supporting clinical decisions. In the financial industry, Al-based algorithms
assist users with financial advice and offer services such as fraud detection. Other industries
seeking to optimize their operations with a digital transformation approach also increasingly rely
on Al technologies. Manufacturing businesses use Al for quality control and preventive
maintenance, whereas the telecom sector exploits Al to enhance the customer experience. The
integration of Artificial Intelligence technologies is thus transforming many aspects of everyday
life.

9. Conclusion

Database technologies have come along way since the early 1970s, when Edgar Frank Codd of
IBM proposed the relational database model. The proliferation of data sources, the increasing
demand for data storage associated with new emerging areas such as big data and the Internet of
Things, and the need for faster processing of read and write transactions have highlighted many
limiting characteristics of traditional relational database implementations. These limitations have
led to the development of non-relational (NoSQL) database management systems, which differ
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from traditional relational databases in various ways. NewSQL databases, which are fully
relational but implement different mechanisms to achieve scale-out, have also appeared, offering
solutions to the scale of certain databases. Artificial intelligence is beginning to have an impact
on the database world and may become one of the main strategic areas for the future of database
development.

Over the past decade, more and more industries have started to see how Al solutions can bring
value to their products and services. Al-enhanced database management technologies can
simplify the creation and maintenance of industrial databases, while intelligent data management
systems can improve both the quality of the stored information and the automatic generation of
business intelligence. Al can optimise manufacturing processes and detect fraudulent actions. As
avisionary research topic, the integration of Al and database technologiesis making great strides
and will have a profound impact in the coming years across al industrial domains, including
software development, healthcare, finance, retail, manufacturing and telecommunications.
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Chapter 2: Architectural Strategiesfor Managing
Databasesin Al Environments

1. Introduction to Al and Database Architecture

Artificial intelligence (Al) workloads differ markedly from those of traditional business
intelligence, primarily because they incorporate the use of non-structured data like images,
audio, and text. Furthermore, it demands real-time access to features that are feeding models for
inference, typically via a real-time feature store, in order to be able to respond to requests with
minimal latency. Databases have historically been considered non-natural hosts for machine
learning (ML) models, which was often solved by building architecture that extracts data from
the database and loads it on the serving infrastructure. However, certain techniques can be
leveraged such that ML models can reside natively within the database itself.

ARCHITECTURAL STRATEGIES FOR MANAGING
DATABASES IN Al ENVIRONMENTS

DATA LAKEHOUSES, SERVING ML MODELS REAL-TIME
MULTIMODAL STORAGE FROM WITHIN FEATURE STORES
AND UNSTRUCTURED DATABASE SYSTEMS AND STREAMING
DATA HANDLING ARCHITECTURES

Figl. Architectural Strategiesfor Managing Databasesin Al Environments
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The continuous integration of automation into everyday tasks hinges on the real-time extraction
of knowledge from data, a capability provided by ML models. These models, encapsulated in a
production-ready state, interact with external systems to deliver predictions. The external
systems, in turn, generate feature data based on live and historical events. While the data
retrieved is non-real-time, it must remain fresh and comply with stringent service-level
agreements. As Al workloads become widespread and address diverse use-cases, organizations
across sectors such as automotive, financial services, manufacturing, retail, and technology are
revisiting database architecture and design principles.

2. Architecting Databases for Al Workloads

Al (artificial intelligence) workloads pose distinctive challenges; these involve training ML
models on massive volumes of data or deploying previously trained models in live applications.
The insights generated are then presented alongside traditional data, in dashboards or standard
reports. Databases have long addressed the basic requirements of Al workloads [1-2]. Can they
do more? Perhaps a broader ecosystem is required, exploiting the efficiency and features of
databases where feasible, but going beyond when necessary.

The broad architecture of an Al system that exploits databases differs greatly from the more
familiar data warehouse or summary reporting environment. Three core capabilities are required.
First, a “real-time feature store” must make suitable inputs to a model available for querying
while respecting constraints on data freshness, low latency and consistency. Second, the
streaming architecture must efficiently forward events to one or more live models, observing the
varying tolerances of different use cases to dropped events. Third, ML models must be served to
live applications under strict performance requirements. Specific techniques for serving models
from the database kernel promise environmental benefits by consolidating infrastructure and a
compelling performance advantage for large-scale use.

2.1. Data L akehouses

Artificial Intelligence (Al) workloads consist of tasks that require algorithms to identify patterns
and generate forecasts from data, as well as to modify system behavior based on past experience.
Such workloads are typically categorized at a high level as being either predictive or mostly
automated. Predictive Al focuses on anticipating outcomes, while mostly automated Al
encompasses routine decisions made by autonomous systems. The complexity of Al workloads
has profound implications on the engineering and database infrastructure needed to support
them. Most notably, native Al is requiring enterprises to rethink their data management systems
and architectures.More generally, it is becoming a best practice to position Artificial Intelligence
as an independent workload within a company, supported by a speciaized branch of the
information technology (IT) organization that is distinct from business intelligence (Bl) and data
engineering.
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The advent of Al workloads has in turn created a set of new requirements for database
management systems (DBMSs). For one thing, Al workloads tend to require the handling of
much larger volumes and more diverse modalities of data than most business intelligence and
operational analytics workloads, many of which are in unstructured format or simply textual
format. This diverse corpus of unstructured data has to be stored and indexed inside the database
for efficient retrieval of relevant context during inference. The issues of scale latency and
performance also apply to operationalized model serving, real-time feature stores, and streaming
architectures [2]. Data management challenges arising from legal, regulatory, and business
governance frameworks also require attention. A prominent example is the demand for
explainability and fairness in model predictions, which underscores the importance of model
monitoring and validation in production. Security and privacy for Al datais a growing concern
for al organizations, especially during inferences involving sensitive persona information.
Broadly, optimizing DBMS performance, ensuring availability, scalability, and security for Al-
related data, models, and inference responses concurrently and at scale are critical architectural
considerations within modern DBM Ss and data platforms.

Due to mixed workloads, enterprises rarely adopt a single database approach. Instead, of the
different Al use-case categories, data lakehouses form a foundational capability because
organizations have the lowest degree of control over currently-existing data sources. Hence,
“many data scientists focus on building predictive Al applications on top of native Al
capabilities. These predictive Al applications have fairly lax latency requirements in terms of
inference response times, ranging from subsecond to afew minutes.”

2.2. Multimodal Storage

Al workloads require managing data of diverse types and modalities. Images, text, video, audio,
time series, and other unstructured sources constitute a growing share of the volume of data
ingested and processed by organizations, as well as of the features associated with use cases
supported by Al. In fact, a substantial number of Al use cases rely on principles of
multimodality. Consider, for instance, Alexa or Siri, which can synthesize speech and images.
Interpretations at the foundation of vision-language models are deeply multimodal and combine
images and text data. Consequently, multimodal storage capabilities represent another essential
requirement for an Al database architecture.

Because every use case relies on its own data types, it is impractical to craft custom pipelines to
convert a single feature store to support new target modalities when addressing a new scenario.
Instead, the ability to natively support all the relevant modalities within a single feature store
emerges as amore natural API to present to Al systems. The different components of data within
a single Al workload may have very different requirements. A database suitably architected for
these applications must be able to satisfy the specific needs of each data category. For that
reason, multimodal storage and processing are typically associated with specialized submodules
or subengines optimized for each task. For example, unstructured features—such as images, time
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series, or text—are mainly consumed by Al models and therefore exhibit much lower query rates
with very different access patterns and query types from the main relational table of the system,
which is optimized for fast, random reads and writes, focused mainly on serving enrichment
features for model queries.

2.3. Unstructured Data Handling

Artificial Intelligence workloads present new challenges for data management. Large-scale
pretrained models require query, analysis, and scanning of vast amounts of training data to
understand their behavior and bias. Online inference with these models requires retrieval of a
fresh set of features for each request. A second wave of Al adoption in enterprise applications
involves synthetic data generation and incorporating Al-generated content into transactions and
communications. The size and rarity of such Al-generated content inhibit traditional storing and
loading that large language models (LLMs) utilize. Conseguently, database management must
adapt to serve Al applications at scale.

Two core architectural aspects enable data management for these setting requirements. Firstly,
data lakehouses combine data warehouses with data lakes to support unstructured Al training
data while retaining enterprise capabilities such as governance and ACID consistency [2-4].
Secondly, multimodal storage, exemplified by rea-time feature-store and streaming
architectures, supports the time-sensitive nature of Al inference prediction. These approaches
influence strategies for serving machine learning (ML) models within database systems, where
tightly integrating a model's architecture with the database engine is crucia for efficient serving
and is orthogonal to the challenge of accessing features during prediction.

3. Serving Machine Learning Models from Database Systems

Artificial intelligence (Al) is transforming almost every aspect of life, and with that
transformation arise new requirements for many of the underlying systems that support the
technology. An increasing number of Al workloads are hitting database management systems,
but database management systems are not optimized for these kinds of Al workloads. The
storage of data of different types, including unstructured data, and the serving of machine
learning models for inference are two particular challenges.

Machine learning models are typically created with an ML framework such as TensorFlow or
PyTorch, but inference issues occur because the creation processes within the frameworks are
disconnected from the real-time processes needed for production. Feeding models at production
into a database system and serving them from that system might solve both the incompatibility
and performance issues, but doing so requires new techniques.

3.1. Integration of ML Models within Databases
Architectural Strategies for Managing Databases in Al Environments
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Artificial intelligence (Al) workloads present a profound challenge in designing the systems and
architectures of enterprises and software companies that provide Al services. The data involved
in Al workloads is diverse, often stored in various database management systems (DBMSs) in
use within the company. Data organizations must retrieve, integrate, clean, and prepare data from
al these different systems for executing model inferences and training, with structures capabl e of
responding to requests in real time; these architectures are often referred to a real-time feature
stores. Graphical information often accompanies data tables to support the Al inference or
training. Managing this information demands a streaming architecture, which can capture and
serve sequences of past events, enabling a machine learning model in production to access its
historical inputs and predictions.

Model inferences produce representations or embeddings that encode semantic information about
the concept the embedding captures (a joke, a human face, the meaning of a sentence, the
characteristics of an image, etc.). These embeddings represent the different entities involved in a
problem (the topics, the profile of a new product, or the preferences of a customer) [5-6]. The
role of databases, and how these are architected, lies not only in storing and managing the large
amounts of information used to train the models but aso in giving support to the operations
involved in the organization of inputs and outputs, both during the execution of inferences and of
model training.

3.2. Performance Optimization Techniques

Machine learning (ML) is considered a key technology for the new era of Artificia Intelligence
(Al). Databases have been central to business for many decades, providing capabilities such as
storage, access, management, protection, and security of company data. ML models form the
core of many Al applications, and these applications evolve with changes to the models
themselves.

ML models and their implementations are frequently deployed outside of data management
systems. However, serving ML models inside databases can yield significant benefits, including
efficiency gains, incremental model updating, execution of pipelines inside the database, and
seamless integration with existing pipelines. These advantages help reduce inference latency and
enable real-time loading of information into models. A major chalenge in performing ML
inference inside databases is the computationally expensive nature of matrix operations required
by neural networks. Existing work has demonstrated that hardware acceleration through GPUs
and FPGAs noticeably improves prediction speed. Nevertheless, to effectively support serving
ML models inside databases, further optimizations are essential.

4. Real-time Feature Stores and Streaming Architectures

Multi-model databases can play a pivotal role not only during model training but also at serving
time, when the ML model is used to perform inference. The straightforward approach is to
separate training and serving. When it's time to perform inference, the model is integrated into
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your service's source code, making queries to your main PSQL database to fetch all required
features. While this approach scales horizontally with the rest of the application, it requires
special code for logging features and model inferences, and burdens the main database with ML -
related traffic.

Real-time feature stores address this challenge by decoupling serving from feature creation and
model training. Features are generated and materialized within the feature store, a dedicated,
distributed, read-optimized storage layer that supports very low latency and up-to-date feature
retrieval, ensuring consistency among al features required by the model. To close the real-time
feature data pipeline, streaming architectures are used.

4.1. Designing Real-time Feature Stores

Feature stores are data structures that store the features that are consumed by machine-learning
(ML) models. Both Al and traditional ML models can benefit from feature stores. In batch-
model building, feature stores provide saved historical features. Many models support
transactions and require data windows; feature stores provide the data needed to support these
windows. In model life cycles, feature stores oversee both the development of new models and
the deployment of online (real-time) models — including fraud detection in banking, product
recommendation in e-commerce, and loan approval. The data that supports these models changes
asindividual s perform different actions on the bank or e-commerce platforms.

Although feature-store design applications cover a broad range of feature-store details, one key
component is a real-time serving capability: supporting low latency and consistently retrieved
featuresin live ML models. Supporting rea-time featuresis of minimal value unless a model can
immediately utilise these featuresin its inference process.

4.2. Implementing Streaming Architectures

Streaming architectures enable continuous data flow and processing, crucial for real-time Al
applications such as recommendation engines and anomaly detection. Different subsystems
involved in streaming architectures include data ingestion, data stream processing, and serving
ML models from streaming [7,8]. Data ingestion continuously captures events in the machine
learning workflow and the application. Data stream processing transforms these events and
calculations over historical data into useful real-time signals. Finally, a subsystem is responsible
for serving these ML models from streaming—making models available for consumption as part
of astream.

Data ingestion systems continuously capture signals generated in the application and ML
workflow—such as user profiles, real-time events like clicks, login timestamps, or ML closest
neighbours—at low latency. Historical sensors feed the batch systems but have high latency
(e.g., 24 hours). Real-time sensors can reduce latency to a few minutes or even seconds. As the
number and variety of signals grow, organizations investing in scalable real-time capabilities
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often adopt a standard data ingestion pipeline. However, this introduces significant complexity to
the streaming architecture.

5. Data Management Techniques for Al

Data management for Al methods covers database auditability, compliance, data quality, and
data-validation/generation methods. Auditability and compliance can be tackled with provenance
data management methods and cryptographic data verification schemes, both areas that have an
established literature with techniques now integrated into commercial-grade relational database
engines. Data quality for multimodal Al training data can be addressed with integration of data
profiling and data cleaning with ML theory so as to derive, for example, the best selection of
training datasets that minimizes downstream model error-index. Similarly, methods from
adversarial machine learning can be used to perform semantic data validation, for example, by
generating the sets of training data that make a given ML model achieve optimal performance.
Techniques in this area also look at the trade-off of data-quantity and data quality in noisy
training datasets in order to achieve optimized investment on data-generation and data-curation
for enhancing model quality.

Architecture principles to optimize machine-learning model serving inside the database engine
have been discussed in the previous section. Other complementary techniques in this space
involve (1) methods of model serving that achieve low latency while guaranteeing model
accuracy, (2) approaches that use data structures analogous to indexes to serve high-dimensional
data such as neural network embeddings, (3) real-time feature stores that provide the feature
vectors used during prediction by taking the value of the relevant attributes at the query time, (4)
streaming architectures that continuously feed events of real life into prediction framework for
near-real time responses, and (5) approaching model serving as an event streaming problem for
handling large influx of prediction requests. Database architecturesin Al aso present scalability-
related concerns, such as comparing the use case of horizontal versus vertical scaling as well as
investigating optimal load balancing strategies. Lastly, given the sensitivity of the data involved
in Al workloads, security concerns require methods and systems for encryption, access control,
and auditing.

5.1. Data Governance and Compliance

The quality and quantity of data used to train machine learning models determine model
performance. The training data must be minimally curated and rich in information, with atest set
accurately representing the real-world data distribution. Many organizations face obstacles such
as compliance and regulatory requirements, which are particularly challenging in scalable
training-data preparation. Training data often contains sensitive personal details that require
governance to comply with regulatory and corporate rules [9-12]. Large organizations sometimes
house training data in general-purpose data management systems. These industries project rapid
growth in training-data preparation, necessitating the addressing of the outlined challenges.
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Despite significant individual progress in data governance, data compliance, data-quality
checking, and training-data validation, there is a lack of synergy to redlize scaable, parallel
training-data-preparation pipelines. Optimal utilization of underlying big data frameworks is also
missing, resulting in subpar scalability and efficiency.

5.2. Data Quality and Validation

Data quality and validation comprise an active area of research and development within Al data
management. The myriad of techniques employed for quality management, primarily developed
for OLTP (Online Transaction Processing) systems, confront challenges when applied to Al data.
These challenges are especially evident with unstructured data, where the absence of a defined
schema hampers the enforcement of data quality assurances through traditional methods. The
sector of Al data management dedicated to these issues is poised for an increasingly prominent
role.

The issue of quality management has grown even more difficult due to the growing interest in
self-driving or autonomous systems. Within such environments, an Al model—such as an
autonomous car—constantly collects new data as it interacts with the physical world. The data
generated must then be used to retrain and update different models. As in a continuous
integration environment for software, the data produced must be checked to verify whether it
contains any anomalies, errors, or gaps that could potentially degrade the quality of the models
trained for the system.

6. Scalability Considerationsin Al Database Architectures

The rapidly growing volume of data is the primary cause for the evolution of the Al database
architecture. The ability to handle increasing amounts of data, both in terms of storage and
computational needs, is crucia for Al applications since large-scale datasets are essential for
training accurate models [7,13-15]. Databases designed for Al workloads must scale effectively,
ensuring consistent performance even as data volumes surge. Scalability is often categorized into
two dimensions: horizontal scaling, which involves adding more machines to a system through
sharding or replication to distribute load and increase capacity, and vertical scaling, which
focuses on enhancing a single machine's resources to manage more substantial workloads. Both
require efficient load balancing strategies to optimize resource utilization and minimize response
times.

In the future, databases tailored for sensitive Al applications will likely employ enhanced
security features, incorporating detailed encryption and access control mechanisms for stored
data. Such measures are indispensable for maintaining data privacy and protecting sensitive
information. Moreover, business or mission-critica Al workloads often include stringent
compliance requirements related to data governance, making comprehensive data management
an essential aspect for Al databases.
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6.1. Horizontal vs. Vertical Scaling

Modern databases for Al need to build an efficient execution framework and flexible data model
to process all the different data types without losing performance. Storage systems supporting Al
should store all the different data types together and should be integrated closely to the
processing engine. In this way, it is possible to quickly combine large amounts of meta-data and
unstructured data. Al database management systems should also provide real-time responses,
helping to get insights from specific events.

Traditional centralized data systems do not satisfy all these requirements, especially regarding
scalahility. Scaling up typically requires expensive and complex hardware upgrades, such as
faster CPUs, more RAM, or higher 1/0O disks, which can quickly deplete available resources.
Additionally, the processing capacity might be bounded by a sequential workflow, causing the
system to become a bottleneck that restricts overall performance. A distributed architecture
removes these constraints, allowing for seamless scalability by adding more machines with off-
the-shelf hardware. Furthermore, data can be partitioned across different nodes and processed
locally, combining the results to deliver aglobal answer efficiently.

6.2. Load Balancing Strategies

Al workloads are often distributed across fixed clusters, and balanced load distribution is crucial
to maximize resource utilization and maintain high throughput. Model serving engines adopt
various strategies to assign workloads among stored model replicas. One straightforward method
is the round robin approach, assigning requests to replicas sequentially in a loop. For stateful
streaming architectures, more sophisticated techniques ensure that all related events of a given
stream are directed to the same process, preserving state consistency. Recent work optimizes
model serving by dynamically adjusting the number of replicas at runtime based on the real-time
workload.

Real-time feature stores require low-latency feature retrieval to serve live model inference. Their
architecture resembles that of serving engines, necessitating mechanisms to distribute querying
load evenly across servers to achieve low latency and efficient resource use. A simple approach
employs round robin distribution [16]. Alternatively, assigning requests for the same entity key
to a specific replica enables that replica to cache features for the entity, boosting cache hit ratio.
These strategies parallel those applied in model serving engines.

7. Security and Privacy in Al Database Management

Security and privacy are paramount in managing databases for Al, particularly through
encryption and role-based access control. Underlying data for Al workloads can be highly
sensitive, such asindustrial sensor data in predictive maintenance scenarios or data sources prone
to attacks in autonomous vehicle systems. Sensitive information also emerges from stored
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embeddings used for similarity searches, semantics, and data retrieval. Data breaches have
driven the adoption of encryption methods applied to both data at rest and datain transit.

Data at rest can benefit from file-system encryption that protects static data on disk, but practical
considerations can lead to I T staff disabling this feature. Consequently, a more robust defense is
offered by database layer encryption. Datain transit requires an additional layer of encryption to
implement TLS between distributed systems and end users, securing data as it moves across
different nodes in the system. Implementing these measures alongside role-based access control
mechanisms ensures that unencrypted data, whether in storage or in motion, remains accessible
only to authorized personnel who require it for their work.

7.1. Data Encryption Techniques

Artificial Intelligence (Al) has been around for many decades but interest in the field has soared
recently, with new applications like ChatGPT using foundation models to enable systems that
can perform a variety of tasks, such as answering questions, summarizing texts, creating new
content and more, and doing so with high quality and low latency. This high demand for
interactive Al systems requires a rethinking of the underlying database architecture. Modern Al
systems impose new requirements on database management systems, such as support for data
lakehouses that combine the efficiency of data warehouses with the low-cost storage and
flexibility of data lakes, the ability to support multimodal storage of data in the same database,
support for unstructured data like images and text, and the ability to serve ML models inside the
database for low-latency, high-throughput processing.

In addition, a wide variety of techniques are necessary to support Al systems. Real-time feature
stores enable the retrieval of ML features in a consistent, low-latency, highly available manner,
and streaming architectures enable the continuous flow of events. Privacy, security, compliance,
data management and governance techniques help produce trustworthy Al systems. Finaly, the
scalability of the system ensures that low latency and high throughput are maintained, and
encryption techniques protect data both at rest and in flight.

7.2. Access Control Mechanisms

The management of databases used in artificial intelligence (Al) workloads benefits from the
general security measures used in conventional environments. In addition, Al data repositories
require privacy-preserving modeling techniques such as differential privacy. The latter protects
privacy during model training, ensuring that no subset of data samples—either as individuals or
as a group—can exert an outsized influence on the output of a model. Al databases that contain
information like names, addresses, and credit limits often have specific governance and
compliance requirements that must be enforced. The databases themselves must provide access
control policies, governance, auditing, and the ability to iterate on data (e.g., remove users) for
compliance reasons. It is crucial to build in fine-grained access control on data that undergoes
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heavy processing before final storage. Public data can be stored in cheaper tiers, whereas
sensitive data can be stored in expensive but encrypted storage.

Al databases often contain highly sensitive data that must be protected, either owing to the nature
of the data or the nature of the model training process. In traditional sensitive-data scenarios such
as financial and medical applications, encrypting the data is both an organizational and
regulatory requirement. One of the most expensive phases of machine learning is the training
phase, which needs to be repeated each time the underlying data changes by even a single record.
If such encrypted data is outsourced to the cloud for performing training, then the question
becomes: How much does the database knowledge that it is training on encrypted data provide
an advisory rolein strengthening model training privacy while simultaneously being cognizant of
the computational overhead? The standard input/output primitives of a database system support
privacy preservation during inference as well. For example, during the inference phase, the
database system can query atrained model over an encrypted dataset [9,16-18]. The output of the
model can aso be encrypted so that it provides inference without |eakage of information.

8. Case Studiesin Al Database Architectures

Several real-world case studies illustrate how database management tools have been scaled up to
meet the demands of artificial intelligence. Data lakehouses, combining data lakes and data
warehouses architectures, provide unified storage for historical, operational, and machine-
learning data. As Al databases must support multiple data types—'multimodal’ data including
structured tables, time series, images, videos, hypertext, speech, and audio—such companies as
UnifylD store the data in a single database instead of housing different data types in separate
repositories. The demand for speedy live inference (serving predictions in response to queriesin
real time) has led to the creation of dynamically updated feature tables containing the inputs for
meachine-learning models, together with streaming architectures that feed a flow of live datainto
the models.

Architectural aspects also influence the integration of machine-learning models within the
database engine by considering embeddings, transformers, bloom-filters, multiplexers, and
tokenizers. An architecture that performs horizontal scaling—distributing the models across
multiple nodes in a cluster—enables the serving of more model inferences in paralel. Vertical
scaling entails the selective allocation of model components to specialized hardware accelerators
such as GPUs. Furthermore, model inference serving can be accelerated by the deployment of
load balancers to distribute incoming HTTP inference requests efficiently, and by the
implementation of caching mechanisms to store and quickly retrieve results of frequently
accessed model inferences.

8.1. Industry Applications of Data L akehouses

The increased use of artificial intelligence in the industry is not new, but the team responsible for
designing database management systems that support Al workloads faces several new
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challenges. Storage engines commonly used in a data lake type architecture to store unstructured
data from text, images, and video are combined with the low latency, high throughput, and
efficient update and delete operations of the data warehouse storage engine in the so-called data
lakehouse architecture. As aresult, the database management system operation is up to an order
of magnitude more expensive because it was not designed for this scenario. For example, a
feature store that supports serving features for an ML model inferences at online prediction time
must scale horizontally to support thousands of requests per second and process events in real-
time for very low latency and consistent retrieval of features. Another example is the need to
perform real-time event streaming in a streaming architecture.

8.2. Real-world Examples of ML Model Serving

Databricks Lakehouse Platform embodies the data lakehouse architecture by merging the
scalahility of data lakes with the management and tuning capabilities of data warehouses to
provide a single source of truth for Al-driven analytics and decision-making. The platform
employs Apache Spark™ for distributed processing of large datasets and Delta Lake for reliable
streaming and batch data pipelines, delivering consistent high-quality data at scale on cloud
object storage. Its low-latency optical caching capability allows users to cache frequently
accessed data, significantly boosting performance. Databricks also supports a wide range of
machine learning models, from classification and regression to natural-language processing and
computer vision, enhancing security and governance across the platform’s extensive analytics
ecosystem.

EaseML offers a declarative abstraction system for rapid development and deployment of ML
services. Built on top of PostgreSQL, it allows users to easily implement ML services within the
popular open-source database, utilizing shared-disk elasticity for deploying models on fewer
machines and eliminating redundancy. Unlike typical Al databases, EaseML provides a
declarative interface that decouples ML services from the underlying implementation of storage
and model serving. Developers can quickly deploy state-of-the-art models with ease, and
graduate to more specialized tasks without abandoning the simplicity of the declarative model.
EaseML also serves as a reusable foundation for implementing ML-serving infrastructures
within a database[2,19-20].

9. Future Trends in Database Management for Al

Artificia Intelligence (Al) workloads differ significantly from traditional database workloads in
the direction, structure, and velocity of data movement. Consequently, databases supporting Al
applications require architectural features that depart from the organization of transactional and
traditional analytical processing. These architectural considerations have given rise to the
concepts of the data lakehouse and the serving of machine-learning models from the database.
Real-time feature stores further extend databases to support low-latency retrieval of training and
live inference datafor ML models.
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The data lakehouse architectural model combines the best features of data lakes and data
warehouses in a single database and is particularly suitable for Al workloads. Data |akes provide
highly scalable, low-cost multimodal storage that supports structured, semi-structured, and
unstructured data in their native formats. However, the schema-on-read approach of a data lake
often complicates data governance, performance, and compliance. Data warehouses, by contrast,
improve governance and performance through the imposition of a structured, relational schema
on highly curated data, but they only support a limited number of data modalities. The tightly
bound transport, schema, and storage of the data warehouse also inhibit the performance
achievable for much higher data velocities demanded by Al that operate in al directions —
training, validation, and live inference.

9.1. Emerging Technologies and Innovations

Artificial Intelligence is giving rise to various emerging technologies that require data
management and back-end infrastructures at scale. Artificial Intelligence Interactive Applications
like ChatGPT demonstrate the complex and partialy unresolved challenges encountered when
managing databases. While feature stores and real-time data streams support lightning-fast Al
inference for interactive applications, scaling the training set for the entire underlying Al
model(s) poses immense challengesin arapidly evolving environment.

Several emerging areas illustrate the challenges of managing Al databases. First, database
architectures must scale effectively—horizontally, vertically, or both across clusters—while also
incorporating load balancing strategies to optimize operational performance. Second,
governance, compliance, and data quality processes are essential to ensure appropriate data use
a scale. Third, the management of sensitive data requires privacy mechanisms, such as
encryption and access control models. New cutting-edge architectures are evolving to address
these challenges.

9.2. Predictions for Al Database Architectures

The architecture of future data management systems will be driven by Artificial Intelligence.
What is special about Al workloads? While training large neural networks requires tensors
encompassing both model parameters and their corresponding gradients, Al is about more than
just tensors. As Al continues to advance, unstructured data in the form of images, audio, video,
and text gain significance. Therefore, Al databases need to be multimodal universities that
support multiple types of data and enable machinesto learn. Since Al models operate on data but
cannot generate predictions in a vacuum, Al databases must support real-time feature stores—
repositories where we can look up key-based, high-dimensional feature vectors for live inference
requests. Additionally, real-time event streaming architectures are essential to channel streaming
events into the models. Furthermore, Al models operate on data. Given the dependence of Al
model predictions on input data, enhancement models are necessary to improve Al data quality
and support auditing and compliance related to Al models and their predictions. The diverse
requirements of the data trandlate to a multitude of design aternatives.
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Currently, two architectures dominate: lakehouse architectures aimed solely at training, and
serving models from database systems that support both training and serving. The future likely
holds a convergence of these architectures to deliver the best of both worlds.

10. Conclusion

Data management plays an important role in artificial intelligence (Al) workloads. Al generates
large amounts of data, such as the objects that a self-driving car passes on the street or a patient’s
color image database for cancer diagnosis. This data can be either structured or unstructured.
Structured data can be organized into rows and columns within a database, while unstructured
data can take forms such as text, color images, and videos. Due to the large size of unstructured
data, storing it in SQL databases can lead to very large tables. Another important part of Al data
is the model and its weights, which are critical components of any Al application. New
techniques aim to store machine-learning models, their weights, and inferencing functions within
database systems.

Al datais quickly becoming one of the largest data domains. Databases are moving the goal post
by supporting new Al workloads. Among the different types of Al databases, data lakehouses
offer the ability to manage data of different modalities and provide data management services
such as governance, compliance, security, privacy, data validation, and data quality—all
essential components for handling Al data. Models can be stored in a multimodal database along
with features from different data modes and the data lakehouse that stores the ground-truth data.
Real-time machine-learning inferencing requires features to be retrieved with exceptionally low
latency, while online machine-learning training demands consistency. Both needs can be
addressed by implementing feature stores either as part of or closely integrated with the URI.
Moreover, streaming architectures are necessary to deliver upstream events to the online
machine-learning training pipeline.
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Chapter 3: Exploring the Impact of Al on Query
Optimization and Database Performance Tuning

1. Introduction to Al in Database Management

Artificial intelligence (Al), defined as computer agorithms that undertake tasks normally
requiring human intelligence, is an enabler for self-tuning databases and improvements in query
optimization. By drawing on specialized machine learning techniques such as reinforcement
learning and deep learning, database management systems can incorporate Al to optimize
critical-performance-determining features. With query plan selection having such a significant
impact on performance, the prospect of being able to dynamically choose plans within a single
query provides exciting possibilities for query optimization.

EXPLORING THE IMPACT OF Al ON QUERY
OPTIMIZATION AND DATABASE PERFORMENT
TUNING

REINFORCEMENT COST MODELS SELF-TUNING
LEARNING IN QUERY DRIVEN BY DATABASES:
PLANNING MACHINE LEARNING  ORACLE, AZURE SQL
HYPERSCALE
SNOWFLAKE'S Al

Figl. Exploring the Impact of Al on Query Optimization and Database Performance Tuning

Databases have aways needed to be tuned, and in response, engineers have created tools that
assist with or automate the tuning process. Oracle, Azure SQL Hyperscale, and Snowflake offer
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feature sets that are self-tuning in varying degrees. Self-tuning involves eliminating, removing,
or at least reducing the amount of manual intervention required to tune the database, by
incorporating Al techniques. Tuning operations that are particularly painful or difficult from a
human perspective are usually the primary candidates for Al-driven self-tuning.

2. Fundamental s of Query Optimization

To optimize a query, a database system must decide on an efficient plan for executing the query.
The database does so by first deriving an algebraic representation of the query and then creating
a tree representation for it. The system transforms the tree and assigns data access methods to
create different query plans[1]. Cost models estimate the execution costs of these different plans,
determining an apparently optimal query plan. In some implementations, these models are driven
by machine learning, which predicts query execution costs. Its focus is on reinforcement
learning, which can be used to create dynamic query plans.

In the earliest phases of the database revolution, development teams created specialized
engineering tools. As technologies matured, the team could build self-scaling and self-healing
mechanisms, incorporating more automated algorithms. Businesses soon demanded self-tuning
technologies, which could address performance bottlenecks—such as long-duration queries—
without human intervention. Self-tuning is now recognized as an indispensable component of a
database environment as data drain increases. Certain modern databases, including Oracle, Azure
SQL Hyperscale, and Snowflake, collect query execution data and proactively tune the system to
improve performance for repetitive queries, thereby minimizing customer pain points.

3. Al-Powered Query Optimization and Tuning

Common query optimization strategies adopted in database management system
implementations can be supplemented with reinforcement learning to enable dynamic query
planning decisions. Because cost models constitute the core of query optimization, machine
learning methods can be employed to enhance the accuracy of predicted query execution costs.
However, there are also ways in which databases can be made largely self-tuning through the
application of Al techniques.

Several mgjor database vendors offer cloud-based databases that harness artificial intelligence
for this purpose. Oracle, for example, provides a self-tuning feature for its autonomous database.
Microsoft Azure offers a self-tuning capability for the hyperscale tier on Azure SQL Database,
while Snowflake has incorporated features that render its service largely self-tuning. Each of
these implementations leverages aspects of Al to automate and optimize performance tuning
tasks.
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3.1. Reinforcement Learning in Query Planning

Advanced technologies employ Al techniques, such as reinforcement learning, to generate
optimized query plans dynamically. Strategies using reinforcement learning demonstrate the
resulting potential of such an approach.

Reinforcement learning provides a foundationa approach to self-tuning databases that can be
extended successfully by including cost models based on machine learning. These advanced cost
models are also implemented using machine learning techniques.

3.2. Cost Models Driven by Machine Learning

Cost models can be transparently enhanced by leveraging Machine Learning techniques, as they
excel in uncovering and leveraging hidden correlations within datasets. Models driven by
Machine Learning are capable of adapting to a myriad of objectives, including query execution
duration, resource consumption, monetary expenditures, and the number of input/output requests.
They adeptly accommodate diverse implementations of identical data operations. Unlike
traditional cost models anchored in database statistics, estimations generated through Machine
Learning are resilient to the pitfalls of cardinality estimation errors, given that stock cost
parameters inherently absorb errors across preceding processing stages. Incorporating the cost of
the reward function itself remains a non-trivial endeavor, as certain cost entities might not be
pertinent to all queries; for instance, the CPU cost of an index scan is zero.

Machine Learning techniques excel at discovering hidden correlations within diverse datasets.
Models erected on the foundations of Machine Learning can adapt to various targets, such as the
duration of query execution, consumption of resources, monetary costs, or the tally of
input/output requests [1-2]. They gracefully accommodate implementations of the same data
operation in its different achievable variants and are less vulnerable to the effects of cardinality
estimation mistakes. This robustness stems from the fact that, contrary to cost models relying on
conventional database statistics, cost model parameters are frequently integrated within the
Machine Learning data annotations. The estimation procedure for the reward function remains
challenging, as not all cost categories are relevant to every query; for example, the CPU cost
associated with an index scan does not apply.

3.3. Self-Tuning Databases

Databases incorporate self-tuning features to enhance query performance and adapt to evolving
workloads. Operators can configure these mechanisms to allocate more resources to heavy
workloads or query groups, reducing execution time. In query planning, plans can be
dynamically adjusted using feedback during execution or runtime information. Cost models may
rely on machine learning predictions of query performance, improving over heuristics.
Operational tuning leverages activity and timing metrics to rebalance workloads and manage
resources, with alternatives including the addition of virtual nodes for scalability.
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Recent trends also show major database vendors incorporating artificial intelligence (Al) into
their products. Self-tuning through machine learning lowers administration costs and enhances
user-friendliness by reducing the need for manual parameter settings and role assignments. It is
anticipated that Al automates all tuning operations in the future, leading to fully autonomous
databases. Such developments are pixelating the traditional roles of DBA and race analyst, as Al
in the cloud handles the bulk of operational decisions. Making operations smart is nearly
synonymous with incorporating Al at some level.

4. Case Study: Oracle's Al Capabilities

Artificial intelligence (Al) plays an increasingly important role in database management and
optimization. Database vendors integrate Al automation into self-tuning features, aiming to
remove tedious and error-prone manual interventions in query optimization. Oracle, for example,
refersto its Autonomous Database features as the " Future of Databases.”

The following examples demonstrate the benefits of Oracle Autonomous Database for the user,
highlighting how Al autobot businesses are revolutionizing database management. As Al-based
optimization algorithms mature, more advanced approaches appear beyond traditional
optimization heuristics and query planning strategies. Reinforcement learning, for instance, can
optimize live query plans. It adapts the query planning strategy dynamically to limit execution
times and enhance user experience. Other approaches employ cost models driven by machine
learning to estimate query costs better. Clear advantages over traditional cost modes enable
model-driven optimizers that estimate costs based on richer representations than individual plan
operator costs.

5. Case Study: Azure SQL Hyperscale

Al-enabled tools for database performance optimization—specifically quasi self-tuning
databases—have now been introduced at al of the major database vendors. The following case
study on Azure SQL Hyperscale highlights how Microsoft incorporates Al to tune performance.

The Hyperscale service tier for Azure SQL Database enables rapid scaling to hundreds of
terabytes for single databases in the cloud. The datais stored in page servers and transaction logs
are stored and managed separately by the log service. Another component, the Log Replay
Service, is responsible for applying transaction log records to page servers. It plays a key rolein
database creation, scaling, backup, and restoring [3-5]. Log Replay must be highly performant to
meet scaled-out logging requirements. Recently, artificial intelligence techniques have been
applied to optimize Log Replay. By automating tuning of configuration parameters and
improving the commit rate, Al integration has markedly enhanced update performance of Log

Replay.

In SQL Server 2019, a new, lightweight, and scalable architecture for batch-mode query
processing was introduced. Operating on a columnar batch of rows, this new engine now lets
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more data-processing tasks benefit from the performance of batch mode. Al Red Opimizer
technology extends the benefits of the batch-mode processing engine to rowstore data—without
requiring any indexes or materialized query tables to be created. By predicting the efficiency of
various batch-mode query plans with greater accuracy, and guiding SQL Server to choose better
batch-mode plans, Al Red Optimizer enables better plan selection for both rowstore and
columnstore data formats. An experiment on TPC-H Q9 using Al Red Optimizer yields a 4x
improvement in overall query runtime, and a TPC-DS Q67 workload with joins between narrow
rowstore, wide rowstore, and columnstore tables runs 3.5x faster with Al Red Optimizer
enabled.

6. Case Study: Snowflake's Al Features

Modern database systems are incorporating increasing degrees of self-tuning query optimization.
Snowflake's cloud data warehouse has recently launched a range of features leveraging machine
learning to recognize operational patterns on their platform and optimize customer workloads
accordingly. Their Query Acceleration Service dynamically determines the number of resources
utilized to process a query, impacting both response time and run-time cost. Machine learning is
employed to identify and deliver the optimal provisioning for a given query that offers the best
trade-off for the user, taking into account user preferences. The service supports various query
types, such as SDR pre-provisioned queues and ad hoc queries.

Snowflake also uses artificial intelligence in their automatic clustering service. Each table is
examined to find the single best key to re-cluster on, alocating the compute cluster in
accordance with the recommended system cost for such re-clustering. The metadata is analyzed
to monitor and detect performance degradation caused by existing clustering keys, while
workload information is incorporated to assign benefit scores to partition-level activity within
current keys. By examining the distribution of data access by clustering key, it ensures that only
required partitions are reclustered, thereby minimizing additional costs.

7. Comparative Analysis of Database Systems

Artificial intelligence enables databases to automate or partially automate complex operations
across the entire data lifecycle, encompassing collection, storage, analysis, and protection.
Additionally, Al optimizes cost-effectiveness by dynamically allocating resources in support of
an organization's digital transformation. Prominent cloud vendors such as Oracle, Microsoft, and
Snowflake are currently advancing these capabilities, offering clients products that facilitate the
processing of increasingly complex and demanding workloads with minimal supervision and
reduced tuning overhead.

Al-powered query optimization emerges as a fundamental element in the development of cost-
effective and scalable database systems. The application of reinforcement learning to dynamic
query planning enhances scalability and adaptability, while the incorporation of machine
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learning augments the optimizer's cost model, resulting in more accurate query cost estimations.
Fully automated tuning remains one of the most captivating aspects of query optimization; for
instance, Oracle provides an autonomous cloud that leverages Al to administer workload
management, resource allocation, and tuning decisions. Similarly, Azure SQL Database
Hyperscale exploits Al in its autoscaling mechanisms to support highly scalable and flexible
workloads. Snowflake integrates Al-driven elastic scaling to address the demands of compute-
intensive workloads, enabling clients to perform analyses with greater efficiency and speed.

8. Challengesin Al-Driven Query Optimization

Al techniques, particularly those making database management systems self-tuning, hold great
promise. They can transform operations. as less human intervention is required, fewer errors
occur, flexibility increases, workloads scale more easily, and data-driven decision making and
pattern recognition become quicker and more reliable. Nevertheless, numerous technical
difficulties remain as the technology matures.

The size, complexity and sophistication of modern database management systems call for
machine learning that can scale and adapt. Most engine components already adjust themselves
automatically, but these systems mimic adjustment by means of thresholds applied to
meticulously crafted metrics [6-8]. As workloads constantly evolve, these thresholds must be
recalibrated—preferably in an automated way, with as little human input as possible. Adapting to
new and changing configurations requires learned models to consider operations that lie beyond
their current experience—such as adding, removing or relocating indexes, changing memory
parameters or updating the concurrency control agorithm.

9. Future Trends in Al and Database Performance

Machine learning (ML) techniques are becoming increasingly popular within the database
community. For example, reinforcement learning has recently been applied to query planning,
alowing for the dynamic selection of optimal query plans as the plan executes. Moreover, ML
can be used to build enhancements that leverage the latest cloud technology. Given the central
importance of cost models in traditional query optimizers, ML models trained to provide
accurate query cost estimates also hold great promise for adapting query processing to evolving
hardware architectures.

One obvious candidate for ML techniques is self-tuning databases, which have been a research
focus since the 1990s. Database vendors are beginning to incorporate these concepts into
commercia platforms. For instance, Oracle has branded part of its Autonomous Database as self-
driving. Self-scaling and self-tuning features are central to Azure SQL Hyperscale and
Snowflake. Specifically, two key aspects of self-tuning—the ability to automatically scale virtual
machines (VMs) or compute nodes and the use of Al techniques to optimize query
performance—are expected to become ubiquitous in cloud databases. Self Scaling has been
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addressed previously. Self Optimization, the application of Al and ML techniques to improve
query optimization, is outlined below.

Recent research demonstrates that query optimization can be improved by caching the execution
of sub-plans within the same query and using this information to produce better query plans for
subsequent sub-plans. In addition, a dynamic query optimization approach based on
reinforcement learning adapts the execution strategy based on the current resource availability of
the distributed system and the progress of the query execution, significantly reducing query
latency and optimizing resource consumption across multiple nodes.

10. Ethical Considerationsin Al Implementation

Ethics becomes paramount when Al query optimization functions are deployed in production, as
the stakes are high. Not only can they vastly influence the monthly operating costs of a company,
but wrongful implementations can cause catastrophic outages or even seriously damage a
company’s reputation. Consequently, companies internally demand the highest level of
confidence in those systems, partly because the opaque nature of Al makes its predictions less
explainable than those of rule-based heuristics. The costs associated with manual validation,
however, often complicate matters.

Moreover, problems of fairness and bias appear in similar polymorphic forms. It is not
reassuring, for example, if a subgroup of users receives a less-efficient query plan because of
socioeconomic or racia data inferred from the query or users’ historical query patterns. Despite
the challenge—since certain kinds of optimizations are specifically targeted in boosting
performance in high-frequency queries—such considerations must be taken into account in
future developments. These are just a few of the many ethical concerns that arise and intensify as
the research field movesin the direction of Al-powered database management [9].

11. Performance Metrics for Al-Driven Systems

Appropriate metrics guide Al tools and quickly assess gains. Performance metrics include 11.1
Average Query Runtime (seconds) and 11.2 Average Cost Metric as an Abstract Value.

Query runtime is the prime performance indicator, the one for which database optimization
exists. What else is? Al and machine learning typicaly evaluate and compare performance
improvements in terms of cost functions. While the cost function is a value in the optimization
model, it does not always trandlate directly into a scalable, measurable unit like seconds or
milliseconds. The cost metric is an abstract, dimensionless value, designed to serve as a proxy
for cost or run time. Query planning aims to minimize the cost metric.
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12. User Experience and Al in Databases

Experiences differ between setups and scale. For data warehouses, a simple query to read a
million rows from a basic table should run flawlessly in any vendor’s ecosystem. Y et, anomalies
often arise that confuse even seasoned developers. These disruptions stem from which
optimization features are toggled, affecting plan search strategies, index selection, auto-
parallelization, distributed query plans, and many other aspects. The issue’ sroot is that automatic
parameter setting is necessary but not sufficient. Autonomous systems must accurately
understand the workload. Achieving 100% reliable SQL plan stability remains improbable—and
might never be attainable—due to the unpredictability of future queries.

Data warehouses represent the low-hanging fruit for Al in automation. Yet, similar self-tuning
capabilities are emerging in OLTP database engines. Oracle Autonomous, for instance,
incorporates self-tuning features, while the Azure Hyperscale variant introduces a horizontally
scaled SQL Server engine. Snowflake leverages Al to optimize data handling within CSV and
JSON semi-structured files.

13. Integration of Al with Traditional Optimization Techniques

Artificial Intelligence and machine learning have received increasing attention in database query
optimization and tuning. A recent line of research exploits diverse Al techniques, including
reinforcement learning, deep learning, and learned cost models, to complement and overcome
the limitations of traditional query optimizers. Following this trend, the focus here is on their
application to self-tuning mechanisms.

Protecting Database Performance with Al—Why It Matters While SQL performance is
determined by several factors—such as thin client speed, network condition, latency, query
execution plan, and database resources—the consistency of query performance especially
depends upon the database part. As the volume of data grows exponentially and the workload
varies dynamically, the database execution plans keep starving for new information in order to
come up with an effective query plan. This makes Al models well-suited to query optimization.
Further three cases examine how Artificial Intelligence integrates with traditional optimization
techniquesin Oracle Database, Azure SQL Hyperscale, and Snowflake.

14. Impact of Cloud Computing on Database Performance

Cloud providers use many techniques to improve the performance of cloud database services.
One example is the hyperscaler database architectures used by Microsoft and Oracle. These are
different from atraditional database.

The hyperscale architecture is primarily designed to support very large database sizes (petabytes
of data). The unique feature of the hyperscale architecture is the separation of the compute layer
from the storage layer. The compute layer is a database engine that supports classic database
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operations (queries, data manipulation/statements) and a remote cloud storage layer (e.g. Azure
Storage or Oracle Autonomous Data), which is a fully managed, tabular, auto-scaling, highly
reliable, and performant distributed storage service for structured relational datain the cloud.

15. Al for Predictive Analytics in Databases

Just as Al has been incorporated into a variety of different database management functions,
query optimization is another database operation that is highly influenced by Al technology.
Traditionally, a query optimizer calculated the best access path to the raw data for a query being
processed. Query plan optimization techniques such as cost-based optimization attempt to find
the query plan with the lowest cost to return the results from a query. Al such as reinforcement
learning has been used to dynamically generate a query plan as the query fetches its results. Al
can also be used to create a cost model with machine learning that is used by the optimizer to
calculate the cost of a query plan and choose the plan with the best cost. Self-tuning technologies
can also be embedded in a database. Oracle or Azure SQL Hyperscale SQL Server are two
examples [7,9-10]. Wisdom gained from tuning procedures used by DBAS or the engine can be
introduced as heuristics to be applied when working on a potential slowdown, scaling or
concurrency problem. Snowflake can also be added to these as some of the aspects of its public
API address predictive analytics at scale.

In the most demanding cases for DBMSs, some queries start clogging the system. Al is ready to
use its knowledge to prevent this scenario coming from resources saturations such as CPU, RAM
or IOPS. One DBA's first reaction is to run either a tuning stored procedure or a dynamic
management view (DMV) SQL Server query. These queries will usually bring the most
expensive items within the system. Al goes further by creating a baseline of historic performance
metrics on the main resources, linked also to factors behind the user workload. If it is out of
norm, Al can react and use the information that it had collected earlier to address the on-going
demand. The Al procedure can aso warn about an excessive number of concurrent usersfor a T-
SQL or stored procedure compiled object. Scalability issues can be tackled proactively during a
peak time for OLTP or OLAP work. For recent cloud-connected databases such as Snowflake, a
SQL API can be triggered to provide additional scalable resources, followed by a subsequent
API call to remove it once the activity is back to normal.

16. Real-World Applications of Al in Database Management

Artificial intelligence (Al) enhances modern database management by automating performance
tuning and query optimization, areas traditionally addressed through manual configuration and
heuristics. Emerging techniques in reinforcement learning, machine learning, and deep learning
enable the creation of Al-augmented tools that optimize query plans dynamically and generate
more effective physical design strategies.
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Al-powered tuning features have become a core component of many cloud database services and
hyperscale architectures, providing automated workload-aware scalability and self-tuning
capabilities. For example, Oracle’'s self-driving database leverages machine learning to
recommend optimal configurations and analyze query performance across operationa
workloads. Azure SQL Hyperscale introduces an architecture capable of auto-scaling and auto-
tuning to maximize performance. Snowflake employs Al-driven optimization to adjust its
internal structures continually, enhancing query execution speed automatically.

17. The Role of Data Quality in Al Optimization

Credit costs for a given query during the process of trade-off interaction. Expedia partnered with
Snowflake to develop an ML-based cost model for its SQL queries within Snowflake. In the
domain of self-tuning, automated or semi-automated tuning of database parameters and
structures is a well-known and desired concept in database management systems. Oracle,
Microsoft, and Snowflake incorporate such technologies to enhance query optimization and
database performance.

Trading-off last-level-cache (LLC) misses against prefetching opportunities can substantially
influence query performance, which can be addressed by dynamically choosing the best tuning
operation. Controlling the large scale of databases in the cloud is challenging, yet Azure
Hyperscale enables dynamic scaling of compute and storage independently [1,11-14]. While
cgroups can assign a profile to each database container, finding the best profile is non-trivial,
especially when workload patterns change over time. Snowflake developed a controller that
dynamically scales the resources of a virtual warehouse to optimize performance during periods
of peak workload intensity. The achieved return on investment ranges from 20 to 40%,
depending on the current workload. Credit costs for queries change during these trade-off
adjustments.

18. Security Implications of Al in Databases

Al-powered SQL generation also implies the Al can perform queries that might compromise
security. Any machine learning system still fails if trained with bad data. Even when trained
properly, training data can always be hacked through poisoning and backdoors. Thus if care is
not taken, Al can output hard-to-explain queries that will execute on the database. To overcome
this limitation, any practitioner would therefore narrow down the amount of access the Al can do
to just asmall part of the database [13,15-17].

In general, the use of Al in databases introduces new security concerns, such as data privacy
risks from automated indexing and schema management, the risk of data leaks via generated
queries, and vulnerabilities to data poisoning and model backdoors. Addressing these challenges
is both necessary and difficult, requiring a balanced approach between the benefits of Al-driven
optimization and the imperative of maintaining robust security.
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19. Regulatory Compliance in Al-Enhanced Systems

Regulatory compliance represents a crucial consideration in the implementation of serviceslike a
Self-tuning Azure SQL Database that employs Al and machine learning techniques for auto-
scaling. Such organizations must comply with relevant laws and regulations regarding software
application development and delivery, the collection, processing, storage, and transfer of
personal data, consumer protection, and contractual and tort liability. The level of compliance
responsibility will depend on the nature and location of the organization's operations, the data
managed, and how the service is designed and delivered. It is the organization's responsibility to
ensure that the use of Azure SQL Database complies with al relevant laws and regulations.
Additionally, national security regulations might also apply.

The organization must adopt any measures necessary to prevent the unauthorized transfer of
services or data outside regions or countries where their residence or operation may trigger
additional compliance requirements. Microsoft is positioned to provide the Artificial Intelligence
capability needed to support the Self-tuning Azure SQL Database, yet it is currently the
organization's responsibility to comply with all relevant laws and regulations concerning the use
of Azure SQL Database. These considerations extend beyond compliance alone, encompassing
the perceived impact that outsourcing core components of an organization's business operations
to third-party providers may have on external reputation and investor confidence[18-20].

20. User Training and Al Systems

A particularly novel application of reinforcement learning to query optimization is the resulting
prospect of a self-tuning database. Major database vendors have been applying machine learning
(ML) methods to automation in self-tuning. Google demonstrated the value of ML in a DBMS
Autotuner. Oracle has applied ML methods in a self-tuning version of its database. Azure SQL
Hyperscal e supports a self-tuning feature that scales compute nodes up and down based on actual
workload demands. Snowflake added support for Al-powered tuning.

Self-tuning involves applying Al in the broader context of query optimization and query
planning. During query planning, the DBMS breaks complex queries into simpler steps and
structures the plan to execute steps in an order tailored to the size and clustering of input query
results. Reinforcement learning may guide the database system to choose an execution strategy at
each step.

21. Collaboration Between IT and Data Science Teams

The rapid growth of unstructured data, such as images, documents, and sensor recordings, is
transforming data-driven applications in modern trade and commerce. This has led to an
increasing focus on Al technologies that allow databases to understand and process unstructured
information. Despite the recognized benefits of integrating Al with databases, practitioners face
severa challenges in implementing and adopting these capabilities within real-world databases.
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Given the complexity and diversity of database systems across various domains, a one-size-fits-
all approach is impractical. Instead, targeted community efforts should consider the needs of
different groups of users and database engines [19,21-22].

Effective collaboration between IT professionals and data scientists is critical to realizing Al's
full potential in query tuning and database performance optimization. To build trust in Al-
powered solutions, vendors have developed systems that are not only powerful but also easy to
use. For example, Oracle Database's self-tuning technologies leverage Al at various levels,
enabling automatic tuning and workload management in single-node and multi-node settings, as
well as seamless workload scale-up and scale-down in the Autonomous Data Warehouse.
Similarly, Al-driven features in Azure SQL Hyperscale and Snowflake are significantly
changing the way organi zations optimize query performance [23,25].

22. Cost-Benefit Analysis of Al Implementation

The challenges faced by human experts attempting to manually optimize the query plan can be
highlighted by considering the growth of the search space for an SQL query as described by
Surgjit Chaudhuri and Gerhard Weikum. Queries can be joined in different orders, creating a
complex space of hundreds of millions of logically equivalent plans for just a few tables. The
problem arises when the cost model is inaccurate for the specific hardware and workload being
run. This inaccuracy causes the query optimizer to pick a local optimal plan when a globally
optimal plan exists but cannot be detected due to the cost model, thus causing performance
degradation. Recently, the reinforcement learning technique has been used to optimize the query
planning stage itself, finding the optimal sequence of join operations without using a cost model
[26,27].

Machine learning has made a significant impact on the database community. Traditionally,
machine learning has improved the cost model of query optimization using classification,
regression, and learning to rank, which still use, at their core, a cost model but train it with real
query data. With the increased interest shown in database tuning, vendors have been developing
self-tuning databases that enable automated database tuning. Although database management
systems such as Microsoft SQL Server, Google Cloud Spanner, and SAP HANA offer automated
tuning capabilities, Oracle, Azure SQL Hyperscale, and Snowflake have pushed the concept of
an autonomous, self-tuning database furthest.

23. Conclusion

Al plays an important role in modern database management systems. Query optimization aims to
change a SQL statement into an efficient execution plan that accesses the data and computes the
result more quickly. In a self-tuning database, machine learning is used in various tuning areas,
including indexing, resource provisioning, and concurrency control. Reinforcement learning can
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help improve query performance by selecting different query plan operations. A cost model
powered by machine learning offers more accurate query optimization.

Oracle databases incorporate artificial intelligence to automate query optimization and
performance tuning. Azure SQL Hyperscale leverages machine learning to automatically
optimize resources and services for extreme scalability in the cloud. Snowflake aso applies Al
techniques for query optimization and performance tuning.
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Chapter 4: Embedding Intelligence into Data
Pipelines. Exploring the Inter section of ML Ops and
DataOpsfor Enhanced Automation and Quality
Assessment

1. Introduction to ML Ops and DataOps

MLOps—the intersection of Machine Learning, DevOps, and Data Engineering—introduces
continuous creation and operationalization of machine learning workflows. MLOps enables rapid
experimentation and model leveraging for business enhancement. DataOps improves automation,
monitoring, and quality of data. Embedding intelligence into data pipelines allows automation of
many steps in ETL/ELT workflows beyond what is achievable with traditional DevOps.
Artificial Intelligence methods can enhance data quality assessment and anomaly detection in
data pipelines.

ETL (Extract, Transform, Load) operations are among the most manualy intensive business
processes. Organizations strive to operationalize and automate ETL steps with continuous
monitoring and alerting for breaks or delays, but monitoring data quality is usualy not
implemented. As data volumes grow powerfully, they deliver greater value in rapid analyses but
also generate actions requiring control for possible risks. Ensuring high quality is critical for
making business decisions. The intersections between MLOps and DataOps enable this
intelligent layer within data pipelines, providing mechanisms to connect data quality assessment
and anomaly detection with monitoring, alerting, and auditing systems, supporting feedback
loops and continuous development.

2. The Convergence of ML Ops and DataOps

The DevOps revolution has paved the way for modern transformations in the fields of machine
learning (Machine Learning Operations, MLOps) and data (Data Operations, DataOps). MLOps
is a set of cultural and technical practices that enables the deployment and maintenance of
machine learning models in production reliably and efficiently. Its aim is to increase automation
and improve the quality of production models while focusing on business and regulatory
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requirements. DataOps is a collaborative data management practice focused on improving the
communication, integration, and automation of data flows between data managers and data
consumers across an organization. These practices address against the pitfalls of building and
maintaining a data pipeline.

When MLOps meets DataOps, the potentials for a fully automated, adaptable, and scalable
integrated data pipeline solution arise. Today, business needs require combining data-driven
decision services, ML predictive services, and forecasting services into a single product. The
convergence stimulates the automation of ETL/ELT pipelines through Al techniques and models,
thus giving birth to a new research and technology domain. These issues are discussed in section
3, where the focus is mainly on the automation of ETL/ELT pipelines using Al techniques, and
the associated products that can be developed and delivered [1-3].

2.1. Historical Context

Both DataOps and MLOps appeared amost simultaneously and succeeded DevOps principles,
long established. DataOps appeared in 2014 as the new practice of Agile analytics, aiming to
reduce the cycle time of data analytics. MLOps appeared in 2015 as a variant of DevOps
necessary to deploy and maintain machine learning applications in production. The continuous
integration and continuous delivery/deployment (CI/CD) in the ML Ops approach are extended to
the integration of machine learning models. Both disciplines focus on bringing teams working
with data closer by shortening feedback cycles, but they emphasize different dimensions.
DataOps managers are responsible for the complete data lifecycle in an enterprise, including data
preparation and governance functions, as well as data delivery. ML Ops managers focus primarily
on the phases around training machine learning models and deploying them in production,
including business metrics and key performance indicators evaluation.

2.2. Key Principles of MLOps

The key principles of MLOps are cross-functional collaboration and automation. Cross-
functional collaboration ensures that teams across different departments work together, use
common tools, and share a unified purpose. Automation leverages recurring processes and
patterns to establish a trustworthy, repeatable, and disaster-resilient deployment pipeline. Such
pipelines not only deploy trained models to production but also handle big data traffic flows
serving the data related to these models[2].

Given the scale of data processed by operations, DataOps practices are crucial for assuring data
quality. Machine learning and deep learning techniques, which are themselves data-driven,
depend heavily on data quality. Recent research explores how DataOps and MLOps can
complement each other in providing automated quality assessment for data transformations in
extract, transform, and load operations (ETL). MLOps tools and mechanisms can learn from
DataOps anomalies and error patterns, fueling automation in data pipelines. Although Electrical,
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Electronics and Communication Engineering was not originally centered on Machine Learning
and Artificial Intelligence, advancesin these fields have naturally steered them in that direction.

2.3. Key Principles of DataOps

DataOps emerged from experiences at companies such as Netflix, Facebook, and Spotify,
evolving over time and drawing inspiration from the principles of Agile, Scrum, and DevOps.
Adgile introduced Developer Operations to continuous software development and deployment,
Scrum provided a framework for continuous team collaboration and sprint structuring, and
DevOps integrated development and operations teams to rapidly deploy executable software
code to production. These concepts directly influenced the birth of DataOps, which extends the
same DevOps principles to manage and maintain stable and scalable data pipelines.

Scrum, Agile, and DevOps were integrated through automation and collaboration, bringing
together cultural and organizational philosophies that supported their principles. DataOps shares
these foundational elements, guided by a set of automation and collaboration practices as
reflected in "The DataOps Manifesto." The resulting continuous cycle advances collaboration
between users, developers, and operations personnel, cutting across disparate workflows from
various companies and increasing the automation rate of data pipeline phases.

2.4. Benefits of I ntegration

About a decade ago, the ground broke and a growing community of machine learning (ML)
engineers came together to form a new discipline called MLOps, or machine learning operations
[2,4,5]. The premise is simple: embedding machine learning intelligence into the data pipeline. It
works with data operations and management because it focuses on the data used by machine
learning, especially for predictions and ranking. Industry analysts proposed the complementary
term DataOps, emphasizing the need for a culture change that brings data-first thinking with
automation and processes like continuous integration/continuous delivery (CI/CD) for data
pipelines.

Embedding intelligence into the data pipeline enables a new level of automation allowing
organizations to work faster, develop more pipelines and models and ultimately derive more
value from their data. This new level of automation optimizes operations by blending Al with the
operational aspect of data management. It helps businesses avoid the risks and compliance issues
caused by problems in the underlying data structures by analyzing metadata and engine logs
from all components. A meta machine learning system effectively enables Artificial ETL
(extract, transform and load): an Al system that automatically performsthe ETL/ELT embedding
intelligence into the data pipeline.

3. Automating ETL/ELT with Al

Modern MLOps pipelines increasingly feature ELT (Extract, Load, Transform) operations to
organize data for Al model training, testing, and validation. Similarly, DataOps pipelines rely on
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ETL (Extract, Transform, Load) steps that prepare data before analytics and visualization.
Especially in DataOps, these workflows process data related to the business, the product, pricing,
or the resultant revenue. Most of the time, organizations develop these processes based on
business decisions and data-management staff placed in two separate silos. At least in principle,
Al can help handle some of this organizational complexity but also provide guidance about the
potential impact of decisions related to these processes.

Recent trends in machine-learning operations deliver new business values based on managing
business metadata, business metrics, and data quality/observability. These advances open a
completely new perspective for DataOps approaches [6-8]. The General Data Protection
Regulation (GDPR)—related requirements for data transparency, and the general data-protection
and data-governance objectives of enterprises, are additional drivers for accelerating the
automation of metadata management and data quality assessment. Another trend in automating
data-preparation pipelinesis using ML techniques to detect data anomalies.

3.1. Overview of ETL/ELT Processes

ML Ops meets DataOps: Embedding intelligence into the data pipeline Automation in the extract,
transform and load (ETL) or extract, load and transform (ELT) process plays an important rolein
order to provide timely, consistent and accurate data for business intelligence. MLOps meets
DataOps. Embedding intelligence into the data pipeline Automation in the extract, transform and
load (ETL) or extract, load and transform (ELT) process plays an important role in order to
provide timely, consistent and accurate data for business intelligence. Extract, transform and load
(ETL) describes the process of extracting the data from the source systems, applying
transformations to the data and loading the transformed data into its destination table in the target
system. Extract, load and transform (ELT), on the other hand, loads the extracted data into
dedicated tables in the target system without applying any transformations. Subsequently, the
transformations are applied on the data in the target system and the data is moved into its final
destination table. This principle allows the database engine of the target system to perform the
transformations more efficiently by using native commands and parallel processing.

Both ETL and ELT processes are usually constructed manually. For instance, in the case of the
Zeppelin Movet project, team members are required to design the workflows in Apache Zeppelin
and continue with a manual follow-up and maintenance. The ETL/ELT automation, however,
aso includes the automatic inferral of dependencies for workflows used to extract the data from
the source, transform the data and load the data into the warehouse. For most businesses, data is
akey asset and it is essential that data quality is assured and continuously monitored in order to
provide consistent, accurate preferably up-to-date data for the business intelligence analysts,
business users and company executives. Anomalies in the data can indicate potential problems
and appropriate actions can be taken to reduce the likelihood of having wrong data in the data
warehouse. Data quality functions have become a standard feature of demand management
systems and most vendors offer a number of predefined data quality functions. Artificial
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intelligence (Al) can play a decisive role in the assessment of the data quality of the ETL/ELT
process.

3.2. Role of Al in Automation

Modern software development is undergoing a transition towards the Automation Age. Rapid
growth in software, data generated by applications, and the development of artificial intelligence
(Al) methods and tools present software engineers with abundant automation options. Indeed,
new Al tools related to Software Engineering (SE) tasks appear rapidly, often disseminated
through social media. Owing to the availability and ease of use of Al tools—particularly code
generative large language models (LLMs) such as Copilot and ChatGPT—developers are
beginning to adopt Al-generated code. These Al tools can be integrated into existing software
development automation practices (e.g., DevOps, MLOps) to address other aspects of the SDLC
[9,10]. For example, incorporating Al-generated code, automated analysis methods, and Al-
augmented tools can accelerate and automate aspects of Data Engineering in DataOps pipelines.
DataOps, an emerging discipline that combines Agile software development methods with
continuous delivery aspects from DevOps, focuses on data pipelines—particularly the move,
process, and transformation of data. Controlling the quality and consistency of data in these
pipelines remains a significant challenge.

3.3. Toolsand Technologiesfor Automation

A variety of existing tools integrate artificial intelligence with ELT and ETL processes.
Knowledge Graphs and Knowledge Bases form an intelligent layer above ETL technologies by
extracting, structuring, enriching, storing, reusing, and sharing enterprise semantics and related
knowledge. Machine Learning Operations ecosystem addresses the automation of data pre-
processing and quality assessment [11-13]. Quality assurance tools allow the user to define ETL
quality rules and monitor data quality, while data anomaly detection solutions are based on
Machine Learning. Finaly, executing analysis models in an online environment involves
orchestrating different components with an automatic scheduler.

Embedding intelligence into the data pipeline is an emerging area of artificial intelligence. It is
leveraged by MLOps and DataOps integration. Applying artificial intelligence to automation
breaks simple data ingestion processes into microservices within the larger mutation phase of a
typical ELT workflow—Extract, Load, and Transform. Integrating MLOps and DataOps
transforms the traditional Extract, Transform, and Load data pipeline, establishing governance,
orchestration, monitoring, and quality controls across the full data lifecycle, from ingestion to
reporting. The confluence of MLOps and DataOps facilitates embedding intelligent capabilities
into ETL/ELT processes. In particular, artificial intelligence supports automation at three levels:
automating ETL workflow construction, automating data quality assessment, and automating
data anomaly detection.
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3.4. Case Studies of Al-Driven ETL/ELT

The automation of data extraction, transformation, and loading processes can be achieved by
harnessing different artificia intelligence methods. The following cases illustrate the effective
integration of machine learning and Al methodologiesin ETL/ELT pipelines.

There's one specific DataOps pipeline that is focused on data quality (DQ) verification using
machine learning to analyze records as they enter the data lake. Low quality is detected,
triggering a quick reaction from data engineers and reducing reprocessing costs [2,14-17].
Machine learning based anomaly detection and predictive data validation is used by big fintech
companies to identify root causes of data quality issues there are more accurate and earlier in the
ETL process. These are just a few examples of how the intelligence built in to DataOps
workflows drive automation and improve data quality.

4. Data Quality Assessment

ChecKing as an Analytical Reasoning Tool for Data Quality Assessment Decision making is
important task in decision life cycle of any organization particularly when organizations want to
have competitive edge through business intelligent. Preprocessing and manipulating the data is
thus critical. Various methods are designed for automatically assessing data quality through
artificial intelligence which deal with problems of practical applications to automate Al. A joint
solution of both supervised and unsupervised learning isin the direction with good potential. The
right algorithm or ensemble algorithm to use is important and also related with the business
context. Signs, such as vessel size or ETA that may influence container release and payment
process should be constantly monitored. According to the model of European Foundation for
Quality Management (EFQM) with "radicalism"”, a customer-oriented, process driven, and
integrated approach is intensified toward excellence and continuous improvement. Data quality
is a vital part of the EFQM model and contributes to a business's reputation for achieving
business excellence.

Machine learning offers robust forecasts of vessel arrivals, supports the identification of
anomalies, and highlights where data quality should be prioritized. Machine learning techniques
can identify and compute the anomalies detected within a dataset. Subsequently, decision trees
can categorize these anomalies into clusters within the vicinity of the anomaly. Anomalies can be
categorized as organisational, catastrophical, or suspected anomalies, and labeled with the
associated cause in the dataset. This annotated dataset then serves as a foundation for further
classification tasks. In these projects, assessment was performed within a DataOps culture, where
DataOps tools and workflows are integrated into the actual work culture of the organization
[9,18-21].
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4.1. Importance of Data Quality

Modern data pipelines do more than collect, transform, and pre-select data—they also monitor
and analyze incoming and output data to assess its overall trustworthiness and suitability for
intended downstream tasks. Data quality evaluation remains critical, with data subjected to
comprehensive validation before use in models, reports, or dashboards. Moreover, data quality
assessment demands continuous temporal monitoring to detect and address technical glitches or
natural business fluctuations and seasonality.

Today, organisations can leverage artificial intelligence to enhance the automation and quality of
traditional extract, transform, and load (ETL), or more recently, extract, load, and transform
(ELT) processes. Organizations have developed MLOps and DataOps methodologies to assist
data practitioners in confronting cultural, organizational, and technical challenges associated
with adopting and operationalizing these new Al tools across the enterprise.

4.2. Traditional vs. Al-Driven Approaches

The growth of data economies promotes the recognition that data is a product represented by its
Quality, and Data Quality is recognized as a critical element. Data quality and associated control
procedures have been developed, like Six Sigma and Analytical Quality Control, to manage the
Quiality of the Product.

Data quality assessment can be designed in various ways depending on the use case.
Nevertheless, data quality gates or rules can be automatically built with Al methods that augment
data engineers' skills. It is common to start by implementing quality checks for source data. Data
quality gates can then be established for each step in the ETL/ELT process. These gates perform
control checks to ensure that the data transform performed on a dataset is as expected and does
not create unexpected data anomalies or biases.

4.3. Frameworksfor Quality Assessment

Notable efforts have been made to approach data quality assessment systematically.1-5
Although the techniques differ, the mgjority fuse scored indicator metrics to provide an overall
data quality assessment and visualization. Machine learning has been recent applied to assess
data quality,6 but unsupervised anomaly detection has proven more effective — in essence,
training an ML model on fresh data for discovering data anomalies or outliers should reflect
most data-quality issues, rather than relying on atraditional trained model.

Data quality assessment is intimately related to anomaly detection. Implementation
considerations arise, however, for organizations that have yet to establish a complete MLOps
environment. Since DataOps and MLOps are mutually dependent, the integration challenge
deserves particular attention. Therefore, the preceding methods maximize automation for ETL
workflows, work in both supervised and unsupervised scenarios, and require only a minimal
level of MLOps support.
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5. Anomaly Detection with Machine L earning

Data anomalies represent deviations or inconsistencies in data that diverge from an expected or
typical state, presenting challenges to proper data handling and business operations. Detecting
these anomalies is crucia for preserving data quality and enhancing security. Machine Learning
techniques provide robust means for identifying unusual samples within datasets, applicable
across diverse domains such as credit card fraud, network intrusion, product defect identification,
and disease diagnosis. Typica approaches include Clustering, Neural Networks, Support Vector
Machines (SVMs), Statistical methods, and Ensemble Learning. Clustering assesses groupings
and detects points distant from defined clusters as anomalies. Neural Networks, particularly Self-
Organizing Maps, leverage clustering and visualization to identify atypical samples. SVMs
employ hyperplanes to segregate normal from abnormal data, assigning labels accordingly.
Statistical methods analyze attribute distributions to flag data points faling outside normal
boundary values [22,23]. Ensemble Learning techniques integrate multiple models to compute
anomaly scores, facilitating outlier detection.

Anomaly detection—considering temporal, spatial, relational, and other contexts—is a
fundamental application in domains including Cyber-Physical Systems, Environment,
Transportation, Finance, and Healthcare. Evaluation metrics such as the F1 score, Accuracy,
Precision, and Recall quantify the performance of detection systems.

5.1. Understanding Anomaliesin Data

ML Ops and DataOps can be viewed as ways to environmentalize Al or, in other words, as ways
to operationalize Al-based workflows that either actively make use of Al or represent a
necessary prerequisite for successfully applying Al in other stages of the data flow. Once the
underlying processes of the data flow have been environmentalized and automated, the
integration of Al is a natural next step to embed intelligence into the different steps of the data
flow. In the context of DataOps, this can be seen as a means to transition from merely managing
the data flow to enabling a self-managing data flow. The overall benefits of this integration are
clear: it leverages the potential of Al for existing tasks, improves the efficiency of data flows,
and reduces the manual workload of DataOps teams.

Extract—Transform—Load (ETL) or Extract-Load—Transform (ELT) serve as crucial methods for
automatising data transformation and preparation Apart from the other dimensions, automatic
ways of determining and evaluating quality of the transformed data are equally important. A
potential application for artificia intelligence in this domain would be to assist a company’s
DataOps team when data quality is assessed, for example, by detecting anomalies within
transformed data tables [24-26]. Anomalies can be in the forms of anomalies, collective data
distribution and lost periods in short. By using machine learning methods, a data-driven anomaly
detection method is developed that provides significantly higher capability versus traditionally
defined rule-based approaches.
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5.2. Machine L earning Techniquesfor Anomaly Detection

The discipline of Operations in Machine Learning (MLOps)—also called Automatic Machine
Learning or Tools of Artificial Intelligence—consists of tools and techniques that introduce
automation into building Machine Learning models.

Data pipelines consist of sequences of processes that extract and load information into other
systems. Traditionally, these pipelines have served as the backbone of Modern Data Engineering,
enabling the generation of reports and business intelligence. They have become the need of the
hour for data-driven companies that drive growth and compete better in the market.

The rich and varied family of Artificia Intelligence techniques could also be exploited to
automate other steps of the conventional Data pipeline (such as the extract-transform-load step,
or operations related to Data Quality Assessment, such as these performed in DataOps
operations).

The parallel presence of Machine Learning oriented pipelines and the classical data pipeline
paves a way for an Operational Model for Data. This model would combine aspects of MLOps
and DataOps, incorporating intelligence into data pipelines for improved automation and quality
assurance.

5.3. Implementation Strategies

Implementing Data Quality Control in Production Once the phase of Data Quality Control
Design is completed, the entire working regime, including monitoring, alerting and
troubleshooting, must be implemented, preferably in an automated and integrated way. Partial or
primitive forms of automation can be supported by popular workflow managers such as Apache
Airflow, but full automation is frequently attained through the employment of MLOps tools,
which enable the integration of ML workflows into broader data pipelines. Automation Code
Once data quality KPIs and Anomaly Detection models become operational, the corresponding
monitoring and alerting processes are systematically automated to achieve full automation of
data quality control. [27,28] Given the mature DevOps infrastructure that supports ETL/ELT
tooling, including CI/CD pipelines, containerization and orchestration, the deployment of new
data quality workflows on prem or in the cloud can be accomplished with minimal effort and
maximal reliability in the shortest possible timeframe. Monitoring Integration into various
dashboards is also straightforward through Loggers, Cerberus, etc. Culture and Mindset The
effective implementation of the concept of embedding intelligence into data pipelines
necessitates concerted efforts to harmonize MLOps and DataOps both culturally and
organizationally. A common understanding of the objectives must be established, along with a
clear recognition that the creation and maintenance of Al elements in al processes is an
everyday job that demands continuous attention and adjustment.
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5.4. Real-World Applications

Implementations of machine-learning techniques for data-quality assessment and anomaly
detection are steadily growing in number and increasingly apply to various real-world data sets.
Companies such as Hume and Soda revolve these concepts around the more modern DataOps
discipline, which is evolving into the MLOps framework successfully used within artificial
intelligence (Al) teams. Many tools and integrations support this evolution and alow for the use
of data-quality checkers built on Al methods, such as Deepchecks, Great Expectations, or
Datafold. These data-quality checkers offer automated, intelligent support in writing
expectations, analyzing data, and detecting anomalies, thus not only ensuring clean data but also
assisting in model selection and the definition of model boundaries.

Within the AWS ecosystem, a service named Deequ automates data-quality checks using ML
methods. Deequ processes raw data and computes metrics and constraint checks, which it then
evaluates. The results determine whether a data row passes or fails the quality criteria, enabling
the definition of guard rails. Deequ’s automated support facilitates the generation of constraints
by analyzing historical data and identifying anomalies. Combining the functionality of guard
rails with the automatic generation of constraints inspired by Concerns-Less Data Engineering
fosters cooperative evolution between ML Ops and DataOps, thereby embedding intelligence in
data pipelines.

6. Challenges and Solutions in MLOps and DataOps
Integration

The fields of MLOps and DataOps are growing very fast but there are several cultural,
organizational and technical challenges to overcome. Fairly distinct skills are required to tackle
MLOps and DataOps, with DataOps engineers being typically skilled more on synthetic
languages like Python or Scala and MLOps engineers focusing more on system or shells
programming languages like C or GO. Both actions are performed by completely separate teams
with very little crossover in high level strategic technical decisions [19,29-31].

Where we most need to shift is the operationalization of machine learning There are some big
barriers there, such as lack of architecture and methodologies integrated with operations systems
and parts From there on out it is all about data AND not enough people that can combine those
skills, roles, responsibilities etc.getSelected quotes:1) In reality (and common sense), without
data you cannot feed any intelligence at al. DevOps automation system is more slowly being
adopted because of lacking the common MLOps architecture and guidance and lack of cross
skilled manpower. Organizations move at different paces in synchronizing DevOps traditional
stream with new MLOps stream and police forcefulness towards the latter can hinder progress.
To overcome the challenges and realize the benefits requires an approach that embeds
intelligence into existing data pipelines, i.e., an approach where ML Ops meets DataOps.
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6.1. Cultural and Organizational Barriers

Aswith any new methodology, there are several challenges when applying ML Ops and DataOps
conceptualy. First, DataOps emphasizes an iterative and continuous approach to the design and
development of data analytics, which requires supervision motivation and business support, al of
which may be lacking in traditional siloed organizations. Second, DataOps calls for the
automation of a multitude of steps and activities associated with data analytics, not only the
retrieval and storage of data but also profiling, cleansing, integration, and transformation. The
lack of end-to-end automation and data pipelines often i nterferes with the ability to address
changing market demands.

These problems have been solved in the cloud business intelligence (Bl) area, offering easy
access from anywhere and alow level of knowledge to exploit their capabilities. However, it still
remains a considerable challenge to construct DataOps that can automate the entire process of
web presentation, periodical use, and scripts scheduling along with data visualization.

6.2. Technical Challenges

MLOps and DataOps together ensure the maintainability, replicability, reliability, security, and
quality control of data pipelines with embedded intelligence. Technical challenges in integration
arise from the nature of these two disciplines. DataOps encompasses technical practice,
particularly Julia Language web development, data transformation pipelines, and Apache Kafka
data streaming. MLOps focuses more on machine-learning topics such as hyperparameter
searching, architecture evaluation, and model training/rendering. Designing, implementing, and
maintaining extensive pipelines that rely on MLOps and DataOps live in practice within two
development teams with distinct primary skills and tools.

The different goals of DataOps and MLOps represent an additional obstacle. While DataOps
aims to create quality data in a reliable and automated manner, any machine-learning method
introduced must act as an assistant. Consequently, MLOps techniques should provide robust
quality assessment and anomaly detection support that supports domain expert decisions, enable
data-preparation automation that improves efficiency, and ensure a seamless, fail-proof train-
predict-iterate circle.

6.3. Best Practices for Overcoming Challenges

The convergence of data and machine-learning pipelines brings intelligence to well-known
DataOps problems such as ETL automation, data-quality assessment, and anomaly detection.
Typicdly, these problems are tackled by dedicated teams with a DataOps mindset. The
emergence of MLOps establishes a similar mindset, organization, culture, and tools for machine-
learning pipelines. Combining DataOps and MLOps practices is a logical evolution that can
significantly increase automation and intelligence in production data and machine-learning
pipelines.
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Surveyed practitioners have observed that for effective collaboration between DataOps and
MLOps teams on end-to-end data pipelines, "a cultural shift and organizational mindset
supported by a conducive structure” is essential. Realizing the vision of data and machine-
learning pipelines as a single intelligence embedding pipeline reveals several challenges,
including knowledge gaps, duplicated tasks, poor pipeline quality, conflicting objectives, focused
projects over shared outcomes, and siloed domain knowledge. Practitioners have shared
recommended practice patterns to address these issues and capitalize on the benefits of integrated
operations.

7. Future Trendsin ML Ops and DataOps

MLOps and DataOps have followed an analogous trajectory, shaped by analogous forces and
driven by analogous forces—first the cloud, followed by containers and orchestration, and now
Al. For the same reasons, the two domains will also converge and merge into a single practice,
drawing upon complementary core competencies.

The automation of ETL and ELT workflows, data quality assessment, and data anomaly
detection has traditionally been carried out using rule-based algorithms and heuristics. The
incorporation of Al can produce better results and enable the automation of more aspects of an
anayst’s or a data engineer’'s work. Indeed, the differentiation of the future Al orchestration
platforms currently under development will be their focus on automation or Al-first support for
these critical processes.

7.1. Emerging Technologies

The integration of MLOps and DataOps supports the deployment of machine learning models
into production and engineering workflows for analytics, reporting and decision making. Cloud
providers as well as open-source projects have produced numerous supporting tools and
managed services. For example, Amazon Web Services has announced the general availability of
code, notebooks, pipelines, evaluation reports and templates for training, tuning, endpoint
deployment and data capture alongside an orchestrating workflow for monitoring data drift and
report generation. Data quality frameworks augment batch and streaming data pipelines to
produce detailed reports. Services such as Amazon SageMaker Model Monitor support baseline
creation and data profile monitor deployment for batch and real-time inference within active
endpoints.

Embedded intelligence in data pipelines offers clear benefits through improved monitoring,
decision-making, quality and automation. Further, decision-making automation has been brought
out even to traditional ETL/ELT workflows which are aimost fully automated based on Al and
have expert users empowered with or replaced by the value of Al. Data quality assessment
models use validations based on rules (RBV's), which can be improved integrating Al techniques
to avoid the drawbacks of fixed schemas and plain heuristics. Just as classification-based
approaches are replacing rule and threshold-based methods that analyze data anomalies through
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machine learning, anomaly detection based on supervised models is subsuming classica
anomaly scoring techniques.

7.2. Predictionsfor the Next Decade

Automatic of ETL/ELT workflows with Al is a hot area in research. The basic idea is to push
intelligence into the data pipelines to improve efficiency and reduce human effort to handle data,
especialy in anomaly detection which may be present in machine learning models. These
activities have found new forms in the recently introduced paradigms of MLOps-from-the-Data-
Quiality-Perspective and DataOps-paradigms, working to bring DevOps into data-science-and
respectively data-engineering-operations.

The integration of machine-learning methods addresses two main challenges. There is a demand
for deploying machine-learning models that determine the possible causes of quality failures and
for implementing models that anticipate these causes. This dual capability would enable data-
engineering and data-science teams to be proactive, providing them with triggers for data failure
and difficulties, and to respond promptly to data failures. However, attempts to meet this demand
have failed because many of the more mature MLOps and DataOps frameworks and tools
emphasize the operationaization of the MLOps lifecycle only after release or focus on
establishing Continuous Integration and Continuous Delivery pipelines for machine-learning
projects. Typically, MLOps and DataOps do not explicitly consider the operationalization of the
data-preparation pipelines that make datasets appropriate for training machine-learning models.

8. Conclusion

ML Ops and DataOps are the two faces of the automated data process cycle. While MLOps deals
with exposing and automating the intelligence of the data in the pipeline, DataOps focuses on the
pipeline itself. The two are seldom considered together, but many can benefit from the synergies
of embracing both philosophies. Having intelligence embedded inside the pipeline can help in
automating much of the ETL/ELT process as well as providing a quality assessment of the data.

Embedding intelligence inside the pipeline automates much of the ETL/ELT process and
provides a quality assessment of the data. A specific popular aspect of quality assessment—
anomaly detection—is chosen to demonstrate the potential of introducing Machine Learning
models into the data pipeline. An overview of how MLOps and DataOps complement each other
is presented, followed by the various types of data pipelines. Finaly, using univariate forecasting
of data-behaviour as an example, an end-to-end deployment is conducted to reveal one approach
to combining these two philosophies for acommon purpose.
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Chapter 5: The Age of Vector and Graph Databases:
Foundationsfor Advanced Information Retrieval and
Reasoning

1 Introduction

The explosive growth of unstructured data and the escalating complexity of Al applications have
begun to reveal fundamental flaws in traditional relational database systems. These systems are
intended to be used with structured data and predefined schemas, making them ill-equipped to
handle the kinds of semantic relationships and complex interdependencies that now frequently
crop up in today’s modern types of data: text, images, knowledge graphs. This technology
mismatch has encouraged several special-purpose database paradigms that work well for certain
types of data and operations.

Two such complementary approaches are vector and graph databases. Vector-based databases
store items as mathematical vectors in a high-dimensional space which permits to perform
efficient retrieval based on similarity that captures semantics, instead of exact equivalence. In
contrast, graph databases use node-edge-node structures to directly express relationships between
entities on the data keeping level allowing for advanced processing and analysis of linked data.
The combination of these technologies with more advanced Al methods has led to powerful
knowledge-based application frameworks.

This chapter explores how these database technologies underpin today’s Al systems. In the
following, we first compare vector and graph databases focusing on their different data model,
queries as well as potential usage. We also wak through the foundational idea of vector
embeddings and how they support semantic search, as well as an investigation into how retrieval
systems are combined with large language models using Retrieval-Augmented Generation
(RAG) architectures. Finally, we are considering knowledge graphs and reasoning engines,
bringing explainable inference to Al systems. We highlight throughout the practica applications
of these technologies and their synergistic effects in fostering advanced, efficient, and
transparent intelligent systems..
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2 The Age of Vector and Graph Databases

The abstraction between vector and graph databases is the underlying data model and what kinds
of relationships are most important. The aim of this review is to highlight these differences and
show the reasons for choosing the right technology, and also to understand their complimentary
potentialsin hybrid architectures [1-3].

2.1 Data Representation Models

Vector databases convert raw data of any sort — text, images, audio — into a numerical
representation in high-dimensional space called the embedding. These embeddings map the data
points into a continuous vector space in which distances correspond to degrees of semantic
similarity. For instance, in an e-commerce use case like online shopping items descriptions are
converted to vectors so that similar items falls on same set of points(not only close but also
harder for recommendation system to find interested items if different vendors decide to offer the
same item under a dlightly different name/ description) [2].

In contrast, graph databases explicitly model complex networks using a structure formed of
nodes (entities or concepts) and edges (relations). This model is a natural representation for
connected domains such as social networks, where the vertices are users and edges represent
connecting pair of them or fraud detection systems, where patterns of relationships among
entities can indicate to anomalous activities.

Table 1: Comparative Analysis of Vector and Graph Databases

Feature Vector Databases Graph Databases

Data Points in multi-dimensional space | Nodes  (entities) and  edges

Representation based on semantic similarity (relationships) forming

interconnected networks

Primary  Query | Similarity search using metrics like | Graph traversa algorithms (eg.,

Method cosine similarity or Euclidean | breadth-first search) to navigate
distance relationships

Optimal Use | Recommendation systems, semantic | Social  network analysis, fraud

Cases search, anomaly detection detection, knowledge representation

Scalahility Generally handle large-scale | Can face performance challenges

Considerations similarity searches well  with | with highly complex queries over
horizontal scaling massive graphs
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2.2 Complementary Strengths and Convergence

Despite their different modeling approaches, vector and graph databases are strong in different
types of scenarios. Vector-based systems are useful for similarity search in unstructured data,
while graph-based databases can address the complicated relationships and paths from proximal
data.

Curioudly, these paradigms are now more and more merging in modern Al systems. Vector-like
capabilities are being integrated to graph databases endowing them with the ability to perform
similarity searches on node properties and not just an nested relationship traversal. Conversely,
some vector databases are integrating graph-like relationships to enhance their similarity metrics
with contextual information [2,4,5]. This Now the intersected items of two facets represent an
entity’ s both semantic attributes and its position relations in a knowledge graph.

3 Vector Embeddings and Semantic Search

Vector embeddings are the mathematical basis for making sense of meaning between words in
Al systems. These techniques alow automatic derivation of continuous vector space
representations of discrete data, in which the similarity between elements can be queried to
retrieve semantically related information.

3.1 The Embedding Generation Process

Vector embeddings are compact numerical representations that encode relevant properties and
semantics of data into vectors in a very high-dimensional space. This is based on the
fundamental framework of neura networks, in particular specialized paradigms such as
Word2Vec for text variations or Convolutional Neural Networks (CNNs) for images, that learn
to translate raw data into vectors through representation learning. In training, these networks try
to move semantically similar items to places close together in the vector [6-8]. For example,
words that have similar meanings (e.g. king and queen) have very close vector representationsin
the semantic space, whereas unrelated words like car are placed further.

The high dimensionality of these embeddings (usualy a few hundred to a thousand dimensions)
affords the capacity necessary to encode such complex semantic relationships. Modern
embedding models such as OpenAl's text-embedding-ada-002 convert variable-length text into
fixed-dimensional vectors, providing a uniform input size for processing. This transformation
opens the door to al kinds of data, from text and images, through audio and other sensations up
to molecular structures, being processed in one single mathematical space where dependencies
between any kinds of inputs might be quantified systematically.

3.2 Similarity Metrics and Search |mplementation
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In a simplex embedding, query and document representations are projected into this embedded
space and their cosine similarity in such a space is measured. Unlike keyword-based search,
which uses exact matches, semantic search grasps the meaning of context, and is able to serve up
relevant results despite variations in terminology across queries and documents.

The performance of semantic search is tightly bound to similarity metric selected. Some of the
widely used measures are as follows:

Cosine similarity: Computes the cosine of the angle between vectors a and b (the vectors must
have length 1 for this to be a proper distance metric). That makes it especially useful for text
tasks where we need frequency-independent semantic similarity [9,10] .

The (dis)similarity measure is euclidean distance, which measures the straight-line distance
between pointsin avector space; it is easy to interpret in terms of absolute separation.

In practice, semantic search systems use Approximate Nearest Neighbor (ANN) algorithms (e.g.,
Facebook’s FAISS and Google's ScaNN), to perform efficient searches in high-dimensional
vector spaces. These methods allow fast similarity search over even billion-scale vector
databases, so semantic search is possibly for real-time scenarios.

4 Integrating with LLMsfor Retrieval-Augmented Generation
(RAG)

Cross-linking retrieval systems and Large Language Models (LLMs) via Retrieval-Augmented
Generation (RAG) is a crucial step towards addressing the limitations of LLMs such as static
knowledge truncation, hallucination and non-expertise in domain. RAG architectures effectively
bridge the gap between the generative capabilities of LLMs and the dynamic, verifiable
knowledge stored in external databases.

4.1 RAG Architecture and Workflow

A typica RAG system follows a structured pipeline that combines information retrieval with
contextual generation [11-13]. The process begins with anindexing phase, where domain-
specific documents are chunked into manageable segments, converted into vector embeddings,
and stored in a vector database. At inference time, when a user submits a query, the system
embeds this query using the same model and performs asimilarity search against the vector
database to retrieve the most relevant contextual documents .

These retrieved documents are then concatenated with the original query and fed to an LLM,
which generates a response grounded in the provided context. This approach significantly
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enhances the factuality, accuracy, and timeliness of LLM outputs while
providing explainability through source attribution. For example, a customer support chatbot
utilizing RAG can retrieve relevant information from a constantly updated knowledge base and
generate responses that reflect the most current policies and procedures .

4.2 Evolution of RAG Frameworks

RAG designs have moved from simplistic naive implementations to abstract and modular
structures. Naive RAG Naive R-eir-e v-al- g-en -eration techniques extracting replies by simply
retrieving a candidate context and estimating its likelihood as a reply to the current turn have
been already evaluated using metrics like retriever precision, in which was found naiv e New
state-of-the-art results on how AdvRAG New SOTA Applying improved pre-retrieval
optimization (e.g. better chunking strategies, the enrichment of metadata), enhanced retrieval
techniques (e.g. fine-tuned embeddings) and post-retrieval refinements (e.g. reranking or prompt
compression may improve these results ) addresses this~":"{}" This is aso brought to question
by new experiments with SingleSeqStruc with more suitable architecture and a better pre-
training method [2,14-17].

The most adaptable position, which accepts additional functional blocks, is Modular RAG that
includes search modules, memory mechanisms and routers that adapt the retrieval policy
according to the query. This modularity facilitates the use of advanced methods as recursive
retrieval, that begins with smaller semantic chunks and goes higher with respect to larger context
semantics, or query Decomposition which decomposes complex questions relative to simple sub-
queries able to address different sources of data.

5 Knowledge Graphs and Reasoning Engines

Although vector databases are efficient at similarity-driven retrieval, KGs and their reasoning
capabilities offer complementary strengths for representing structured knowledge and conducting
logical inference. Such technologies add explainability, relational understanding and deductive
power to Al systems, especidly in the setting of complex decision making based on facts
interconnected [9,18-21].

5.1 Knowledge Representation and Inference Mechanisms

A knowledge graph is an architectural way of representing knowledge as a linked-network of
entities, where the nodes are concepts or objects and the links are their relationships. This
framework fitly contains complex relationship (i.e., hierarchical classification, spatial relations
and temporal order). Contrast to vector representation where semantic closeness is encoded in a
continuous space implicitly, Knowledge graphs encode relationship in an explicit and symbolic
fashion
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Logical reasoning engines apply logical rules on these explicit representations to derive new
knowledge (1). For instance, given facts "Person X works for Company Y" & "Company Y is
headquartered in City Z", it should be possible to provide RSETs with a reasoning engine which
can deduce the implicit fact that Person X is based on City Z. The techniques which advanced
reasoning engines such as RDFox use are incremental in the sense that real-time inferences can
be updated when new data comes in without having to recompute the entire knowledge base.
They also support negation as failure (by being able to infer based on the lack of some data), and
aggregation, permitting numerical calculations over groups of datain the graph [22,23].

5.2 Applications and Integration with Al Systems

Domain-specific regulatory requirements and the ability of knowledge graphs to represent
relationships explicitly and perform logical inference, which makes them particularly promising
in regulated industries and complex decision-making domains. On health, knowledge graphs
could depict relations among symptoms and diseases or treatments (thereby allowing reasoning
engines to propose the most probably diagnosis according to a symptom pattern). For examplein
finance, they can discover complex fraud cases that have uncommon relations between entities
and do not get discovered through isolated similarity searches[24-26].

Integrated with LLMs, KGs serve as sources of structured knowledge grounding, which
contributes to improved factual and relational correctness in the generated responses. Such
integration can operate in both directions: knowledge graphs may provide verifiable information
to LLMs, and in reverse, LLMs may help fill out and update knowledge graphs by filling it with
structured information extracted from free-form text. This nexus of statistical learning from
LLMs and symboalic reasoning with knowledge graphs offers a promising route to more powerful
and reliable Al systems

6 Synthesisand Future Directions

The technologies that we have seen in this chapter—vector and graph databases, semantic
search, RAG, and knowledge graph reasoning—are additional pieces of a modern Al stack.
Instead of just being its own separate choice, they form the integrated parts in an advanced Al
design. There is a need to understand the synergies between these views and their possible
trgjectories for future intelligent systems.

6.1 Hybrid Architectures and Emerging Convergences

The most critical trend impacting database infrastructure for Al is the merging of vector and
graph techniques. Graph databases are adding vector capabilities in their systems, allowing for
similarity searches on node properties, whereas vector databases are embracing the addition of
graph-like relationships to improve its semantic matching with surrounding contexts. This
hybridization makes for powerful synergies: for example, a recommendation system could use
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vector similarity to find similar products and graph traversals to discover items liked by users
with similar network profiles.

For RAG architectures, such convergence enables advanced retrieval strategies [27,28]. Hybrid
search The hybrid search approaches fuse the semantic vector search with traditional keyword-
based as well graph-based retrieval in order to handle different query types and information
requirements. For multi-perspective questions, taking different point of view systems can break
down the question into suitable sub-queries in which each sub-query is posed to a different
database system and by combining the returned information they attempt to produce a coherent
answer. This multi-modality retrieval method leads to much stronger and richer Al systems..

6.2 Research Challenges and Future Outlook

Although much progress has been made, many challenges in scaling and improving these
techniques still puzzle researchers. Computational efficiency remains an issue as the size of
datasets increase to billions of vectors and trillions of graph relationships. This scaling is being
challenged considerably by more efficient indexing structures, approximate algorithms and
hardware acceleration. Moreover, biasin embeddingmitigation is a continuning reminder before
em- beddings that comes with continuing neglect as the pre-trained vectors may amplify social
biasesin training data.

In the future, we expect greater emphasis to be put on the real-time reasoning capabilities that
could leverage the strengths of the pattern recognition in neural methods and other forms with
explainability from symbolic Al [19,29-31]. Such technologies can unleash edge-based
implementations that will make Al applications more responsive as well as more privacy-
conscious. Moreover, when Al systems come to play an increasingly important role in high-
stakes decisions (e.g., about my health or wealth), the accountability and explainability provided
by tools like knowledge graphs will be necessary rather than just highly desirable [32].

7 Conclusion

In this chapter, we discussed the role of vector database systems and graph database systems as
well as technologies related to these newfound types in transforming Al. We showed how these
dedicated data management systems overcome basic limits in managing unstructured information
and relationships, making it possible to support more advanced Al applications.

The era of vector and graph databases is a time when “one size fits all” data management is
replaced by specialized offerings developed for certain variety of the data and the universe of use
cases that surround it. Vector databases are especially effective to capture semantic similarities
and deliver context-sensitive retrieval due to the embedded-based approach. Graph databases are
extremely powerful at modelling and querying for complex relationships. When incorporated via
interfaces such as RAG, they enrich large language models with external knowledge to reduce
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halucinations and support domain task applications. In addition, knowledge graphs and
reasoning engines deliver explainable, logic-based inference to Al systems — critica in
regulated sectors and in complex decision scenarios.

As these technologies merge and progress, they promise to become ever more central in the
construction of Al systems that are but not only, capable, but also transparent, trustworthy and
aligned with human modes of reasoning. The future is not to decide between these paradigms but
to exploit the complementary strengths of each other with hybrid approaches that combine a
statistical power of neural methods and structured reasoning in symbolic Al.
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Chapter 6: Exploring Security, Gover nance, and
Explainability in Al Systems

1. Introduction

There are numerous hurdles in Al Systems too ranging from security of the models to model
governance to model explainability. Anomaly Detection of Al Systems, Data Lineage of Al
Systems and Compliance with eXplainable Al. Each challenge comes with a specific problem
statement, solutions and references to real world use cases along with libraries, tools or services.

Al is the science and engineering of making intelligent machines (intelligence in such sense,
enables learning,based on experience,user provided knowledge reasoning, andadapting to new
environment s). Al learns training data to address similar problems. The veracity of predictions
or classifications is dependent on the assimilation and learning procedure. The Al world divides
into—narrow Al labs building systems for very specific tasks; artificial superintelligence work
aiming to exceed human intelligence; and artificial general intelligence trying to match the
human ability to reason in a variety of domains. It is safe to say that end-use Al applications are
limitless, encompassing from disease diagnosis in medicine to intelligent gaming models, voice-
activated assistants or self-driving cars and the application of machine created art.

2. Understanding Al Systems

Foundations Artificial Intelligence (Al) is the science and engineering of making intelligent
machines. Weak Al does specific tasks (think Siri or Alexa), Strong Al hopes to do al that
humans can as we wander our ways through the world. Applications of Al include Decision tree
regression, AdaBoost, Support Vector Machines (SVM), Naive Bayesian classification, K-
nearest neighbours (KNN), Neural Networks and others. IBM’s Deep Blue (Chess) are some of
the Al applications which shows how we can apply Al to wide variety of areas. For example,
Liquibase is a database schema change management tool which designs to keep track of the
schema change history so as to detect anomaly based on data lineage[1].

Anomaly Mining for Al Systems The security considerations in Al systems are not mature and
are likely to evolve with the increase of risk exploiting data and model, when being sourced
through multi-party collaborations, e.g., data annotation & training. Sensitive applications,
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especialy in law enforcement, financial analytics, or credit risk analysis, require corporate
governance policies for Al systems to satisfy regulations like the General Data Protection
Regulation or the Equal Credit Opportunity Act (ECOA). Regulatory bodies such as the
Consumer Financial Protection Bureau oversee these areas, highlighting the importance of
comprehensible models for outcome explanation. Best practice governance policies therefore
leverage anomaly detection to ensure Al models perform as anticipated.

2.1. Definition of Al

A working definition of artificial intelligence (Al) can be constructed by considering several
aspects. Firstly, Al isintelligence exhibited by machines. Secondly, considering the distinctions
between artificial and natural, absent and existent, nonbiological and biological, inorganic and
organic, unnatural and natural, Al is also unnatural intelligence that may be manifested naturally
or artificially [1-2]. Thirdly, considering distinctions between machines and organisms, unnatural
intelligence exhibited by machines is artificial. Fourthly, considering different types of
intelligence, Al corresponds to the performance of activities associated with human thinking or
intelligent behaviour. Finally, considering that designing machines with Al consists of making
them perform activities requiring experiences associated with human intelligence, Al can be
defined as the discipline of designing machines that exhibit unnatural intelligence.

The definition, in its broadest sense, does not account for the major differences between various
levels of Al. For example, Al may merely emulate human behaviour, as is the case in the game
of chess, or it may emulate the human mind, producing behaviour that is hardly distinguishable
from human behaviour, such as determining a diagnosis or recommending a course of action.
Four types of Al have been proposed: reactive Al (such as Deep Blue); limited-memory Al (such
as Siri); theory of mind Al (advanced psychological systems under development); and self-aware
Al (capable of self-awareness). Understanding Al solely as a discipline of designing machines
capable of exhibiting unnatural intelligence greatly broadens its scope and application, enabling
it to penetrate virtually every aspect of daily life.

2.2. Typesof Al Systems

Al systems currently in use may be categorized into narrow Al, also called weak Al, and AGl,
also called strong Al, human-level Al or deep Al. Narrow Al is designed and trained to perform
specific tasks . Voice recognition systems, image recognition software, recommendation engines
and self-driving cars are al examples of narrow Al applications. Artificial General Intelligenceis
an Al system with general-purpose understanding and reasoning abilities that is similar to or
exceeds those of humans. AGI research is evolving rapidly and includes applications in gaming,
voice recognition, image recognition, robotics, text generation and many others.

Within the Al category, there are several sub-areas including Machine Learning, a technique that
enables computers to learn from new data inputs or experiences; Machine Reasoning, focused on
reasoning processes; Robotic Process Automation; Supervised Learning, using labeled data to

71



train models, Unsupervised Learning, processing information without labeled examples, and
Natural Language Processing, which deals with text and voice recognition. Although each
subfield serves different purposes, they are all focused on using machines to simulate elements
of higher intelligence for specific tasks [3-5]. Examples of Al applications include
recommendation systems, healthcare diagnostics, autonomous vehicles, social media, and smart
manufacturing.

2.3. Applications of Al

The ability of Al to learn operations or strategies from training data or an environment means it
can perform a wide range of tasks, as long as the task can be described well and input data are
available. Modern Al systems use deep learning to mimic the human brain, enabling them to
create associations and |learnable patterns between any kind of data. Reinforcement learning is an
iterative method in which an Al agent learns to solve a task by exploring different steps in a
potentially very complex landscape. In the following subsection, some important use cases of Al
are listed, which help in understanding the scope of Al systems.

Personal assistants like Siri, Google Now, and Cortana provide users with help by sending
messages, searching for information, providing traffic information, and so on. Few mobile
phones currently offer Al features as an upgrade, aiming to assist the user even more. Many
games utilize Al to provide players with believable and challenging opponents. Al bots can be
used in these games for social media marketing purposes, to send automatically generated
messages to a large amount of users with the same content or topic or to provide answers to
frequently asked questions. Al systems also play a major role in other industries. In the banking
sector, credit scoring is applied to assess a customer’s creditworthiness. Al is aso present in
fraud detection. Data of new customers are matched with the crime data to see if there is
coincidence between the two. Audit trails could be analyzed by Al technology, the data in
contractor forwarding and generation of reports that could detect discrepancies.

3. Security in Al Systems

Al Security studies how Al systems react to arbitrary inputs that induce incorrect behavior and
investigates mechanisms of attacks or vandalism on these systems. It includes the identification,
resitance and recovery from such adversarial events. Critical threats include model extraction,
evasion and poisoning [6-8]. Model stealing attacks want to copy the model's capabilities
perfectly or just approximately and do so without authorization; they can result in proprietary
models leak or service integrity compromise. Evasion attacks utilize perturbed data that is true
under normal evaluations and cause a misclassification during runtime (adversarial example)
which have been demonstrated to fool real-world systems including self-driving cars. Backdoor
attacks consist in poisoning training or testing data with perturbed examples, or abusing the
feature extraction pipeline in those phases, for degrading model performance, biasing inputs
toward certain classes or facilitating target evasion at inference time.
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Credit allayance tactics range from regulatory participation, platform design to model-level
resuscitation. These regulations aspire to create normative security model, compare with existing
standards and clarify who is responsible and liable. In terms of platform, their concerns are about
defensing against attacks on process and data — e.g., by sanitizing the training data to prevent
poisoning or filtering at runtime to resist evasion — so that they can enforce model
confidentiality, integrity and availability with as low operational overhead [9]. However, The
practical use of these methods is very limited, especially in the evasion attacks. Formulating
model defense methods aim at achieving recovery of origina performance by excluding
backdoor functionality or improving resistance with respect to input perturbation. Examples of
incidents that make this point include the 2016 trainwreck when Microsoft's Tay chatbot was
manipulated to create racist and obscene content; a 2017 Amazon Echo proof-of-concept
procedure shattered so-called cryptographically secure secrets where signals could be sent out
from an in-pocket device to record what supposed-to-be-private sounds were around; and the
latest Capital One data breach which occurred because of a AWS cloud computing vulnerability,
which wound up exposing more than 100 million customer accounts and credit card applications

3.1. Threatsto Al Security

Artificial intelligence comes with security issues like other computing technologies, which can
lead to very undesirable consequences. In recent years deep-learning models have been exposed
to attacks such as data poisoning, evasion, or model-inversion attacks. These actions are
addressed by adversarial machine-learning techniques. There is a need to identify other probable
threats across the various parts of the system (Al model, training dataset, results, and underlying
infrastructure), determine how these can be carried out, and develop mitigating controls.

Malicious hackers can take several approaches either individually or in combination to breach an
ML system. They may perform a data poisoning attack by corrupting the training data, which
will result in faulty training. They might attempt an inference attack on the training model to
gain information about the training data or the model. The adversaries may also try to launch a
reverse engineering attack to build a model similar to the training model. A successful system
breach may alow them to alter or destroy the training model or its results[7,9-10]. External
entities may breach the underlying infrastructure which hosts the ML system, initiate a denial -of-
service attack, or take control of the system for command and control. They may also possess
legitimate access rights to the model’s output and attempt to encrypt or sell it to untrusted
parties.

3.2. Mitigation Strategies

While holistic security of capitals remains a demanding task, mitigating known attack types
helps minimize the attack surface. Each attack category can be assessed based on damage,
implementation level, target target capital, and attack direction. Although some attacks can have
catastrophic damage, others allow limited inferences on sensitive information. User profiling
data at the inference level can lead to a range of attacks if disclosed. Automatized Privacy
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Setting Attack and the Feature Reconstruction Attack typically impact Symbiotic Capital, while
the Hard Label Attack at the inference level affects all four indentified capitals (Data, Model,
Users, and Services). Model Extraction attacks generally bear high damage as they rely on
compromised sensitive information.

Implementing mitigation strategies at the affected level(s) significantly curbs attack capabilities.
For example, attacks taking place at the training data level are limited if no privileged access is
granted to the model. Conversely, substantial damage emerges if attacks commence at the
training privileges level or at the training model level. Similarly, the Sneaky Metadata
Attribution attack requires metadata access to evade detection. Most model-level attacks interact
directly with the user, necessitating their implementation within the user'sinteraction level. More
broadly, three fundamental strategies underpin most mitigation measures:

* Feature/Model Hardening: during ML/AI training phase, data sanitization is conducted to
remove noise from data or strengthen the ML/Al model against manipulation. * Detection:
implemented on the ML/AI system to identify anomalous model responses (testing/inference
phase) or recognize manipulated data. * Response: upon detection of anomalies, a specialized
response mechanism is triggered to counter the threat.

3.3. Case Studiesin Al Security Breaches

Information exchange-no request and response relationship breaches involve sharing sensitive
data with unauthorized parties [1,11-14]. Examples include a return flight booking email sent to
an incorrect recipient, an investment risk evaluation questionnaire filled by an uninvolved
participant, and disclosure of a confidential secure meeting notice to external vendors.

Denial-of-service (DOS) breaches can render network services useless, for instance, when an
attack blocks a trading system, an irrecoverable error arises due to no reserve price data, or a
shortage of seats results.

4. Governance of Al Systems

The growing adoption of artificial intelligence (Al) in awide array of applications has created a
number of concerns that have an impact on the decision-making process.

Al governance can be designed around the threats to and risks of an Al system, to the roles and
responsibilities of those involved in the Al lifecycle, and to the policies, practices, and
arrangement of controls for effectively directing and managing Al systems in order to achieve
the organization’s strategies and business objectives. Al governance addresses the management
of the organization's Al by providing direction and continuous monitoring through the
evauation of Al models, parameters, sources, and targets, as well as through the clear
assignment of roles and responsibilities. Ensuring holistic Al governance requires a mechanism
to provide transparency into Al systems through explainability, security, compliance, fairness,
and performance.
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4.1. Frameworks for Al Governance

Artificial intelligence continues to advance and shape society For when Al models are employed
in decision-making, it is important to be able to get a sense of how they use data on an ongoing
basis during their several-year lifecycle as a means of detecting abnormal behavior and as
feedback mechanism for Al governance policies. Various approaches exist to secure and govern
Al systems, including anomaly detection, data lineage and explainable Al. [13,15-17].

Al anomaly detection can be used to detect abnormal activities throughout the entire Al lifecycle
Anomaly-based approaches help users discover unusual behaviors related with a model or
training data— some attacks that fall under this category are poisoning the input data, and
identifying an unanticipated surge in the number of training records from a particular city. Data
lineage enables to track the flow of information across the Al lifecycle. It provides traceability
between the input sources, the operations executed upon them and its result. Data lineage allows
for ensuring that Al governance policies are accomplished and it constitutes an important factor
when it comes to explainable Al. Regulations such as the GDPR demand that humans execute
decisions rather than relying fully on Al, thus when making Al-supported decisions it is
fundamental to understand how Al arrives at a certain conclusion or recommendation.

4.2. Roles and Responsibilities

Al Governance is the process and policies used to govern an Al system. Its purpose is to assign
clear and unambiguous responsibility for the tasks involved in designing, training, tuning,
testing, deploying, monitoring, maintaining, updating, and decommissioning an Al system. The
roles involved in governing an Al system and the associated policies differ for each phase and
thus are described separately.

The testing procedure determines who is responsible for development and execution and what
the expected outcome is by defining the governance test objectives, governance test setup, source
of data, and pass/fail criteria or assessment methods. The monitoring process specifies who is
responsible for the monitoring, when to monitor, and how to monitor the Al system and evolving
operating environment; what to monitor (including measurement of KPIs and detection of
anomalies in model and/or operating environment); what are the thresholds indicating an
anomaly; and how to respond in case of an anomaly (e.g., raise a warning, launch an
investigation, retrain or adjust the model, or deactivate the Al system). Operational procedures
state the required governance aspects for the deployment, maintenance, and decommissioning of
an Al system. These include the labeling requirements for the human consumers, limitations in
web and/or mobile usage, frequency and amount of carbon footprint allowed, cost of service
(subscription or per use), and any other policy—rule—process—regulation applicable in each phase.

The governance policies generate requirements for the verification, validation, and test activities
for the Al system. In addition, they contribute to the configuration management of the Al System
Artifacts — the documented and implemented information for each phase of the life cycle.
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4.3. Policy Development and Implementation

Following the assignment of roles and responsihilities, the process of developing and publishing
Al policies begins. The Al governance tool provides support with templates to accelerate policies
creation, for example, from top-level rules to operational policies and procedures. The
publication of policies signals the initial step toward formal Al governance. When policies are
enacted on an Al system, governance controls, opinions, and anomaly detection become
operational. Subsequently, the governance capability analyzes the policy content to identify
obligations and prohibitions, and it determines the artefacts within the Al system to which these
policies correspond. Finaly, it enforces control mechanisms to verify that the policy
regquirements are properly addressed.

Operational Roles consolidate the Al security role, providing a comprehensive service
framework for addressing all security-related requirements. A police Detection verifies that the
final outcomes of an Al system, when combined with anomaly detection, can be used to measure
the accuracy of the Al system results. Policy compliance policing checks how much the policies
are satisfied and detects violations for further investigation [18-20].

5. Explainability in Al

Explainability isacritical design factor to make Al systems trustworthy and is closely associated
with the capability to detect abnormal events by Al systems and to establish data lineage.
4Reliable Al develops trust in an autonomous system and enables human understanding, contral,
prediction and response to the behaviour of adversarial or unforeseen Als. Explainability also
refers to ethical and societal impacts of Al decision-making, and is useful for stakeholders who
want to know: what the system aims to do; why it comes to a certain conclusion or prediction..

Explainable Artificia Intelligence (XAl) is important for various reasons: it enables the end-
users and the stakeholders to comprehend the outputs of an Al, mitigates any worries on errors or
biases that might occur in an Al prediction, builds Trust on decision-making by Al, satisfies
legal and regulatory requirements such as GDPR, harness ethical implementation and fairness of
Al-powered applications; finally helps detecting anomalous events driven by attacks.
Explainable Al techniques have been separated into data, design, and post-hoc interpretability
methods, and challenges for achieving explainability in the context of Al are data quality issues,
agorithmic complexity high-level methods such as decision trees solving problems through
analogue grey-box models under difficult conditions and negative consequences associated with
over-interpretation. Moreover, the requirement of explainability is critical for compliance in Al
environments which can help organizations comply with regulations like GDPR and inject
transparency in Al results.
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= Whatis the overall logic of a system? Overall review of the model

*  Whatis the objective function and What is the logic behind the decisions
learning algorithm of a model? Is privacy of a user protected? made?

+  What are various parameters and Is data privacy ensured? How my data is being protected and
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Fig. 1. Stakeholdersin XAl

5.1. Importance of Explainability

It iswell known that many artificial intelligence (Al) systems are being used to assist data-based
decision-making and knowledge discovery in diverse domains. Yet a lack of knowledge about
how their predictions are arrived at has limited the range of scenarios in which Al's can be
deployed [19,21-22]. Al anomaly detection deals with unstructured data that is distinct from
training data. Data lineage involves tracking the flow, changes, and possible challenges affecting
the data. Compliance with explainable Al meets the requirements defined for deploying models
within organizations and projects.

Al can assist in detecting security threats to Al systems and alert the appropriate personnel.
Responsible Al governance encompasses the policies and practices for managing, monitoring,
governing, and maintaining Al models. The increasing use of Al in areas such as education,
healthcare, enterprise network security, financial fraud detection, self-driving cars, supply chain
management, and customer analytics underscores the significance of "explainable Al," which
offers the rationale behind prediction decisions, enhancing human trust in Al models.

5.2. Techniques for Explainable Al

Explainability techniques can be categorized by scope within a system, stage in the systems
lifecycle, the time-frame in which the explanation is delivered and, relatedly, the "target" or
intended audience. A useful taxonomy distinguishes pre-model, in-model and post-model
explainability. Pre-model explainability methods seek to clarify input data and the mechanics of
the model building process in order to help users understand the inner workings of the prediction
model, for example by explaining why certain training data was selected, visualizing data inputs
or even elucidating the technical steps in the model building phase. In-model explainability is
achievable with some types of models — in particular white-box approaches such as rule-based
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learning, use of decision trees or logistic regression — where the resulting model is sufficiently
simple that some transparency can be achieved.

In contrast, black-box models such as deep neural networks do not admit an inherent explanation
of logic. Post-model explainability methods seek to shed light on predictions made by such
black-box models, at alocal (i.e., a single prediction) or global level. Typical examples include:
visudizations, explanations by example, feature relevance, and outcome explanations.
Explainability is a cornerstone of many governance strategies, however, recent work has
established a strong relationship between explainability and security. Moreover, the ongoing
development of perturbation-based explainability methods has demonstrated the utility of such
techniques as an anomaly detection approach in their own right.

5.3. Challenges in Achieving Explainability

Producing adequate and appropriate explanations in Al systems is not straightforward. Current
techniques support only specific array of activities, roles, filtering, etc., resulting in only partial
coverage of the framework requirements [11,23-25]. Transparent or interpretable methods are
explainable by design; however, this characteristic often tends to negatively impact the
predictive performance of the model. Furthermore, the explainability of a method is sometimes
subjective; that is, what one particular stakeholder finds acceptable may not satisfy another. For
example, customers use different types of explanations to justify and assign responsibility for Al
decisions. Several explanations that accompany models are precise and accurate but not always
understandable, given the cognitive limitations and mental models of human users.

6. Anomaly Detection in Al Systems

In the Al and machine learning landscapes, anomaly detection denotes the process wherein Al
systems automatically classify and identify suspicious activities. The term "anomaly detection”
arises from the nature of the data being analyzed; some types of data, such as medical images,
bank transactions, and time series, can be used to detect abnormal situations. A prevailing
category of Al security threats are the adversarial data attacks that can deceive or deceive
production-trained Al models. Over the last two decades, multiple defense techniques have been
presented to successfully build robust Al models through al gorithmic adaptation.

Anomaly detection aso involves recognizing abnormal operations and behaviors within Al
systems themselves. Al auditing aims to detect Al-related issues and risks within production Al
systems by examining system behaviors and accessing Al system operation logs. An Al system
breach, by definition, undermines the goal and reliability of an Al system, which is to generate
trustworthy outputs and intelligence. Anomaly detection models continuously monitor Al system
conditions as an ongoing defensive procedure, analyzing Al system operational data using
Al/ML techniques. Intrusion-detection techniques and existing anomaly detection models can be
applied. Alerts generated by the anomaly detection model can serve as early-warning indicators
to preempt potential Al security breaches.
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6.1. Methods of Anomaly Detection

Al systems face an array of anomalies, ranging from attacks and system faults to policy
violations and unexpected business events. While anomalies such as attacks and faults
compromise the Al system's security, privacy, or safety, other types of anomalies underscore the
importance of governance. Regardless of an anomaly's nature, prompt detection and explanation
are crucial. Anomaly detection techniques identify instances or sequences of Al operation
deviating from expected normal behavior, while anomalous event prediction methods forecast
pairs of time points that may mark the ranging boundaries of potentially anomal ous operation.

In Al systems governance, anomaly detection methods contribute across al roles and activities.
They verify the adequate operational status of policy controls defined for implemented policies;
penalize violators; derive model adjustment actions when necessary to ensure policy adherence;
explain anomalies; and report the state of Al system operation to responsible parties.

6.2. Applications of Anomaly Detection

Anomaly detection can help harden Al systems against failure and data breaches. Examples
illustrate how Al anomaly detection constraints result in specific use cases. A company trained a
language model on their technical architecture documents. The service used production data to
generate diagrams if the user input syntax was correct and contained only entities present in the
architecture design documents. The data contained no sensitive information. The system failed
when users asked for diagrams that required entity relationships independent of the company
data, because the language model produced diagrams without those relationships. Another
company used a Bayesian model to assign confidence scores for a sensitive classification use
case. The service returned only high-confidence labels. However, a side-channel attack revealed
sensitive data. Bayesian labels minimized |eakage but did not mitigate the threat as awhole.

Anomaly detection in Al systems enables broader risk-detection frameworks. Detecting Al
anomalies can prevent or reduce consequences of Al failures, data breaches, and misuse.
Examine practices for anomaly detection. Languages for rule-based detection can express
metrics governing Al in production. Operators can specify and evaluate Al constraints and detect
possible anomalies. Practices for constraint programming in Al systems are outlined, exploring
reasons for constraint creation and the impact of missing constraints.

6.3. Impact on Security and Governance

While developers and business managers of Al have security objectives, Al systems are also
increasingly exploited as vectors of attack. Anomaly detection in input data, logic, and output
both enables sophisticated new systems and mitigates threats and misuse. In addition, the
explosion in Al system design components, styles, and vendors has created a “composition
problem” in that it is difficult to specify and enforce control policies for each component of a
complex Al system. Data lineage enables the tracking and tracing of Al data through its
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lifecycle, so that governance policies can be developed and executed on the data being used at
each point.

Security and governance objectives are heavily influenced by the trend toward higher levels of
explainability for Al systems. Explainable Al (XAl) isthe third pillar of responsible Al together
with bias reduction and robustness. Techniques for achieving XAl provide real -time detection of
Al attacks and result in governance policies that accelerate audit support and exploit lesson
learning. Explainability mitigates liability threats by revealing bias and gaps in Al training and
inference data. Regulatory requirement with XAl is very important in finance, health and public
sector domain. Balancing between how well you are governed, secured, and explained will
ultimately maximize productivity and minimize costs..

7. DataLineage in Al Systems

In particular, tracing the input data that pass through an Al process can offer significant
knowledge of the decision made by Al systems. The outputs of the Al system are typically
influenced by two sources: the current input to which the system gives a reference and makes a
decision, and the dataset on which it was trained. Each of the input and training data sets yields
elements vital to establish the 'right' qualityliness and reliability of the decision.

Data lineage is aterm familiar to anyone involved in data management, and it is concerned with
exposing the original source of a dataset, as well as tracking how that dataset has changed or
been moved around over time. Data Lineage in an Al Environment In the context of Al, data
lineage is the ability to track and trace how both training and input data change over time. The
capability to record and explain the data within Al processes as it changes over timeis akey part
of any governance framework, which in turn enables adherence to local regulations for use of Al
or internal corporate policies.”.

7.1. Understanding Data Lineage

Data lineage is the life cycle of data: from where it came, how it moves through an organization
and what becomes of it. Which is all cataloging, curating and visualizing flows of data. Data
lineage is used to track the movement of data around an Al infrastructure, following it from its
raw source location al the way through pre-processing, analysis and modelling to reports
produced [26-28].. The information recorded in a data lineage can contain many details; for
example, the time when the model or report was generated, the geographical origin of a dataset
or model, the physical and organisational environment in which the Al system has been trained
and executed, or the range of phenomena represented in the data.

The increasing reliance of businesses on Al systems has led managers and regulators to pay
special attention to the explainability and governance of Al. Severa regulations for the
Explainable Al highlight the need to record and supervise the flows of data from and to both the
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Al models and reports. Ensuring the availability of detailed data lineage information becomes
then the first step towards the compliance with the ExAI regulations.

7.2. Toolsfor Tracking Data Lineage

Tools for tracking data lineage are software systems that maintain, trace, and manage the origin
and path of data assets throughout an enterprise environment. Data lineage focuses on the flow of
data on a more granular level than data provenance, yet it remains a closely related use case that
involves tracking the exact source of data sets. In the context of Al, it is important to trace and
explain the lineage of data fed into, flowing inside, and powering data-driven models. Defining
explainability in terms of the data utilized by Al systems emerges as a promising approach.
However, responsible Al practices demand more comprehensive governance that covers all
components of an Al pipeline.

Data architectures and job scheduling are fundamental for constructing data pipelines, and
related open source tools like Apache Nifi provide data lineage tracking. Many open source
libraries, such as Pandera and OpenLineage, can aso provide end-to-end data lineage for Al
pipelines. Enterprise-level data warehouses often build data lineage frameworks upon
OpenLineage. Additionally, data flow modes within Al systems can be uncovered through
general dependency analysis—controlling data flow and usage is a key security practice
associated with Artificial Intelligence of Things Compliance (AloTC). Tools that allow querying
data dependencies within Al pipelines can thus bolster overall security and governance.

7.3. Importance for Compliance and Governance

Explainability has become a critical governance requirement, with severa jurisdictions
mandating organizations capable of making automated decisions to provide meaningful
information about how those decisions were made. Currently, emerging regulations include the
European Al Act, the European GDPR, and the New York City Automated Decision Systems
Law. Datalineage is a core practice for broader governance, where it is used to trace the flow of
data from decision output back through the transformation steps and ultimately to the origin of
the data. By combining data lineage, governance, and anomaly detection, organizations can
address a powerful use case for compliance and governance with data.

The European Al Act: The future of Al applications and opportunities in Europe (and globally)
The European Commission has recently released the potential regulatory act on Al, known as a
prop ASS.On 21st April 2021. The hill, which was released in 2021, examines how A.l.
algorithms are created and deployed in detail. In particular, it categorizes Al uses based on the
risk to rights and freedoms which they may entail and imposes specific obligations and
requirements in relation to high-risk Al applications with a view to ensuring trustworthiness. The
nyc automated decision systems law: It applies to all city agencies, including those in control of
a contract with the city or created by government entities. It sets responsibilities for how
automated decision systems (ADS) are used, including public policy applications, human
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overrule, primary and secondary use.. Similarly, The US Federal Trade Commission has
recommended that organizations employ explainable Al to avoid risks associated with non-
explainability. It also suggests that using explainable Al can improve agorithmic auditability,
assist with bias detection, and support ongoing compliance.

8. Compliance with Explainable Al

Explainability Al tools are critical to meeting governance principles as well as requirements for
responsible and ethical Al. Explainability methods allow compliance by making transparent and
revealing how an Al system comes to a decision. In areas where explainable Al is required by
law, such as credit risk assessment, explainability is a regulatory compliance enabler that can be
apart of Al governance [29].

Explainability can be selected as a governance focus for an Al workflow or a governance profile
can specify a focus on explainability. Compliance patterns for explainability determine the
explainability techniques and modes to be used periodically throughout the Al lifecycle.
Explainability is commonly discussed in the context of a specific use case, for example, in a
healthcare application or assessing credit risk. These use case-specific compliance patterns can
create an audit trail with the activitiesin an Al lifecycle.

8.1. Regulatory Requirements

Explainability is an increasingly important subject as Al systems are regulated. This section
looks at the regulatory environment for Al, the requirements of explainability in Al compliance,
and considerations for the development of a compliance program.

The global regulatory landscape comprises many regulations and initiatives that impose varying
forms of governance requirements on the development and implementation of Al systems.
Although the regulations are for the most part different, they all contain similar fundamental
principles that encourage principles of transparency, fairness, ethics, explicability, mitigation of
implicit bias, protection of fundamental rights, the ability to challenge decisions, consideration of
health and safety, data protection and privacy, and data quality and well-being. These principles,
which are also among Al principles defined in the IEEE Standard, should be incorporated within
an organization's overarching Al governance program, which will typically be developed at an
organizational level and then applied per jurisdiction.

8.2. Best Practices for Compliance

Under various compliance regulations, organizations that use artificial intelligence technologies
must demonstrate integral explainability during the development and implementation phases.
Considerable thought and attention are therefore required when designing explainability
capabilities for these organizations. Organizations can begin by establishing specific objectives
for the Explainable Al (XAl) capabilities most pertinent to their Al solutions, noting that the
objectives chosen directly influence the selection of suitable XAl techniques.
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For example, if the primary concern is for security and governance staff to receive information
that aids in the identification and analysis of anomalous Al behaviour, then they are likely to
require different explanations than if their interest lies in ensuring the Al systems are fair,
ethical, and compliant with internal and external regulations. In these latter cases, the explanation
information needs to be suitable for business stakehol ders (perhaps even the customers impacted
by the decisions) rather than focusing solely on the technical description of the Al systems. The
explainability framework proposed by Moore and Anderson presents one approach that
organizations can adopt to integrate XAl objectives into the broader governance controls
associated with Al deployment.

8.3. Case Studies on Compliance Issues

Several compliance issues encountered while developing real-world explainability frameworks
call for attention. Adversarial scenarios must be considered, and countermeasures integrated into
deployable systems. For example, a framework that detects anomalous data inputs entering Al
models governing crime rates aleviates the risk of spurious predictions. Correlated anomaly
scores also help in tracking the lineage of the suspicious data back to the responsible data
source/operator, and thus assist in enforcing policies for trusted Al.

More compliance-centric questions arise in context of datasets and their distributions, such as
"how trustworthy is the policy explanation for a particular request?' Regulations like GDPR
mandate the use of only non-sensitive or anonymized data during model development. When a
policy is requested for sensitive information, either within the training dataset or the data
distributions underpinning the dataset, it is essentia to verify whether the model predictions are
indeed reliable for the specific policy generated [30]. Likewise, when a set of rules explaining a
policy are generated for a sub-region of the data distribution, the trustworthiness of those rules
should be confirmed. Existing tools like the Health Learner Angle (healthLENS) enable such
compliance evaluations on an Adverse Impact analysis basis.

9. Integration of Security, Governance, and Explainability

Al isacomplex of technologies that allows computers and software to imitate human intellectual
abilities electronically. Depending on its functionality, it can be divided into reactive machines,
limited memory, theory of mind, and self-conscious. The bedrock domains of Al are computer
vision, speech recognition and synthesis, natural language processing, robotics, machine
learning, and deep learning. The potential of Al can be deployed in the fields of education,
military, finance, governments, healthcare, and so on. Al needs proper safeguards. Ignorance or
lack of Al foresight can lead the world into a dystopian future.

The design and development of Al technologies has a severe impact on modern society in the
form of security, governance, explainability, and ethics. Governing Al is concerned with how
society decides what its development should look like in light of its broader societal implications
for progress and development. Al policy is the practice of developing appropriate rules and
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regulations for Al development and deployment. Anomaly detection, the identification of
unexpected items or events in datasets. Data lineage is the ability to track where data comes
from, what becomes of it and where it goes. Explainability is interested in the dataexplain and
descent ology explain levels. Compliance tackles the how, why, what, when and who of Al
decision making.

9.1. Holistic Approach to Al Management

Rise of Al-generated content has created a need for tools that can control origin (provenance)
and application rules (classification) ruling out the usage for training Al systems copyrighted or
sensitive data. With the escalating use of Al around the world, governments around the world
have published an array of Al governance policies to mitigate risks such as bias, opacity, job
displacement, disinformation and more. Al Explainability (XAl) isan emerging field that aimsto
let Al decision be explainable to different stakeholders in order to mitigate risks in various
domains.

Deep learning models are susceptible to different attacks, and the diverse behaviors of deep-
learning models lead them into being challenging to be trusted in the context of security for their
deployment. To solve these challenges, the Al community is concentrating on Anomaly
Detection in Al Systems, Data Lineage in Al Systems and Compliant Explainable Al.

9.2. Interdependencies Among Security, Governance, and Explainability

The aforementioned three pillars are all about the discipline of making it work and successfully
managing and running Al powered systems. Each of these pillars is designed to advance a
particular aspect in order to equip Al practitioners with the requisite means to address the
associated challenges. Hence, an ambitious approach that integrates all three perspectives will
naturally contribute significantly to the advancement of Al aswell.

10. Future Directionsin Al Systems

Governance: It needs to be the hot topic in Al if researchers want to diminish blackbox models
Let’ s talk about roles and duties, governance policies, anomalies (e.g. anomaly detection in deep
neural networks) etc. Besides, the explainability in Al requires attention to compliance
considerations thus leading us to explore regulations, guidelines for ensuring compliance and
how lineage can help with AAI compliance. It isimportant that integrating of these new topicsin
the Al literature can be achieved.

Al scrutiny has stepped up as use case deployments have pushed into virtually every industry.
“Al technologies are a set of techniques, tools and methods that can enable you to do the sort of
things that we would normally associate with human intelligence. In the last decade a fast-
growing process was observed in this field due to deep learning methods, that make possible
work directly with raw data from physical world and also to train highly complex systems while
simulating human-brain mechanisms. Nowadays, Al can categorize objects, make sense of
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images or text without relying on people at al and it's a break from Artificia Narrow
Intelligence followers. The extreme level of automation and decision-making inherent in Al
systems amplifies the importance of security; even minor faults, errors, or attacks can produce
significant impact, jeopardizing Al projects and their alignment with business objectives.

10.1. Emerging Trends

With the growing intertwining of artificial intelligence (Al) in our daily lives, new trends emerge
that raises hopes and concerns for the current governance levels. Recent work Reimers and
Gurevych (2019) on large language models donors ability to mimic truthfulness of human
behavior, with LLMs pretrained using large amounts of natural language. LLMs are multimodal
models, which have the ability to comprehend and generate text, they encode human-like fine-
grained meaning of written language by binding with image or code. What's more, an active
research direction concerns adapting base LLMs to the interests of users. Reinforcement learning
with human feedback (RLHF) optimizes LLMs for human preferences; then models harness their
language generation abilities to provide self-collected feedback in future iterations. But other
than that there are some worrying signs. data breaches, attacks via prompts, malicious jailbreaks
and politicking chatbot responses.

Future research must address trustworthy Al, focusing on governance, control, and alignment.
Emerging trends in Al continue to facilitate control over the model's generated content. For
example, textual inversion enables the embedding of synthesized subjects in text-to-image
diffusion models. Finegrained captioning and grounding generate detailed captions with spatial
relationships, while textual guidance establishes spatia properties for generated images.
Moreover, developments in generative Al and explainable Al enhance model transparency and
user understanding. Notwithstanding these innovations, comprehensive actions and guidance for
trustworthy Al remain limited, and research community interest in governance and control risks
diminishing if subsequent issues remain unaddressed.

10.2. Research Opportunities

Anomaly detection techniques are very useful in many applications, and severa studies show
that no one method or model can detect al kinds of anomalies. Although currently non-
explainable Al techniques, such as deep learning models, achieve very accurate results, the main
drawback is that such models hide the internal decision-making process and cannot explain why
asample is marked as an anomaly. Thisis why explainable Al techniques for anomaly detection
should be further explored. In particular, methods should be developed to not only explain the
reasons why a model detects anomalies but also explain why samples are classified as specific
types of anomalies. This level of explanation would significantly assist practitioners and analysts
during the denoising and cleansing process, helping them identify the root causes behind
abnormal instances. Data lineage is one of the most important aspects surrounding Al
governance. It offers detailed information about the flow of data, including details about the
transformation or creation of data, data science models, and software items along pipelines. The
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literature does not address data lineage and its use in Al governance, although it does describe
how to trace data elements or explain different levels of lineage. Therefore, lineage information
across different pipeline components should be maintained and used for governance, supervision,
and control purposes. Supporting full tracing across pipelines would help the auditing process of
Al systems by granting control, supervision, and anomaly detection of all pipeline elements.
These Al security, governance and explainable Al research fields have tremendous potential to
be deployed in real advanced Al systems.

10.3. Ethical Considerations

Ethical challenges are emerging in the Al era and rapid growth of artificial intelligence (Al)
make these concerns even more urgent to govern for potential harm to prevent. Three major
issues are the spread of bogus news and bias or disinformation — such as the notorious
‘*deepfakes’: highly realistic images, sound, video or text generated by Al techniques that can
be used to produce lies and defamation; the automation of warfare through lethal autonomous
machines and other weapons systems;, and how human work will be displaced by Al as
employment is lost to automation [31]. Policy makers also must anticipate and address risks of
this kind, along with more familiar dangers such as bias amplified by Al decision-making.

Yet in all these areas, Al, when used judiciously, can offer substantial advantages. For example,
it can make a contribution to solving the problems caused by climate changes: new materia or
energy systems using Al eventually called Tfl (Technology for the Imagination), improve
people’s health as a result of accurate medical diagnosis and therapy, human rights in terms of
detecting contemporary slavery by processing visual information concerning hate risk attack.
Regulating Al thus necessitates us to take a nuanced approach and actively monitor for
potentially positive outcomes while regulating to moderate and prevent negative outcomes.

11. Conclusion

We believe that governance, security, and explainability of Al systems are key to shaping an
enduring Al economy. With Al systems taking over decision making for various firms and
organizations, the issue of governance becomes apparent. Re-imagine the types of harms that an
Al system can incur in cases where it is biased, or vulnerable to manipulation and attack.
Maintaining governance in Al systems demands the ability to query and interrogate the provided
results and decisions of an Al system. They use their approach for anomaly detection to
scrutinize an Al system in operation, determining if the outcomes are based largely on biases or
adversaria attacks. The data lineage of a Al system, including queries on training data to train an
model, the model that is trained and the resulting decision provides important aspects at different
levels of the how its processed by an Al system. Anomalies can then be reported for critical parts
as disturbances, etc. Moreover, compliance with explainable Al, such as the EU directive for Al
and other proposed legislation, requires explainability of Al. Explainable Al techniques can
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explain how an Al system came to a decision or result, thereby enabling scrutiny, fault detection,
and correction of Al systems.

References:

[1] HUSSAIN, Fatima; HUSSAIN, Rasheed; HOSSAIN, Ekram. Explainable artificia intelligence (XAl): An
engineering perspective. arXiv preprint arXiv:2101.03613, 2021.

[2] Koneti SB. Artificia Intelligence in Financial Systems: Digital Transformation, and Machine Learning
Applications. Available at SSRN 5401202. 2025 Aug 12.

[3] Muppala M. SQL Database Mastery: Relational Architectures, Optimization Techniques, and Cloud-Based
Applications. Deep Science Publishing; 2025 Jul 27.

[4] Muppala M. Artificial Intelligence, 10T, and Sensor Technologies for Marine Monitoring and Climate
Resilience. Digital Oceans: Artificia Intelligence, 10T, and Sensor Technologies for Marine Monitoring and
Climate Resilience| Deep Science Publishing. 2025 Jul 8.

[5] Panda SP, Koneti SB, Muppala M. Benefits of Site Reliability Engineering (SRE) in Modern Technology
Environments. Available at SSRN 5285768. 2025 May 1.

[6] Koneti SB. Artificia intelligence Applications in Retail and Investment Banking: Personalization, Robo-
Advisory and Behavioral Analytics. Artificial Intelligence-Powered Finance: Algorithms, Analytics, and
Automation for the Next Financial Revolution. 2025;4:72.

[7] Muppaa M. Architectures in relational databases: An analytical study of SQL-based data models and ACID
principles. database.;2:4.

[8] Bentahar J. A Survey on Explainable Artificia Intelligence for Network Cybersecurity. arXiv (Cornell
University). 2023 Mar 7.

[9] Gadde H. Al-Assisted Decision-Making in Database Normalization and Optimization. International Journal of
Machine Learning Research in Cybersecurity and Artificial Intelligence. 2020;11(1):230-59.

[10] Koneti SB. Algorithmic Trading and Quantitative Finance Strategies: High-Frequency Trading, Market
Microstructure, and Risk Optimization Models. Artificial Intelligence-Powered Finance: Algorithms, Analytics,
and Automation for the Next Financial Revolution. 2025;4:17.

[11] Panda SP. The Evolution and Defense Against Social Engineering and Phishing Attacks. International Journal of
Science and Research (1JSR). 2025 Jan 1.

[12] Mohapatra PS. Artificia Intelligence and Machine Learning for Test Engineers: Concepts in Software Quality
Assurance. Intelligent Assurance: Artificial Intelligence-Powered Software Testing in the Modern Development
Lifecycle. 2025 Jul 27:17.

[13] Koneti SB. Analysis, Predictive Analytics, and Macroeconomic. Artificia Intelligence-Powered Finance:
Algorithms, Analytics, and Automation for the Next Financial Revolution. 2025 Aug 12:90.

[14] Panda S. Scalable Avrtificial Intelligence Systems: Cloud-Native, Edge-Al, MLOps, and Governance for Real-
World Deployment. Deep Science Publishing; 2025 Jul 28.

[15] Shivadekar S, Halem M, Yeah Y, Vibhute S. Edge Al cosmos blockchain distributed network for precise ablh
detection. Multimediatools and applications. 2024 Aug;83(27):69083-109

[16] Reis J, Housley M. Fundamentals of data engineering. " O'Reilly Media, Inc."; 2022 Jun 22.

[17] Ivanov SH, Webster C. Adoption of robots, artificia intelligence and service automation by travel, tourism and
hospitality companies—a cost-benefit analysis. Artificia intelligence and service automation by travel, tourism
and hospitality companies—a cost-benefit analysis. 2017.

[18] Ramadhan M, Naseeb A. The cost benefit analysis of implementing photovoltaic solar system in the state of
Kuwait. Renewable energy. 2011 Apr 1;36(4):1272-6.

[19] Cordes JJ. Using cost-benefit analysis and social return on investment to evaluate the impact of socia enterprise:
Promises, implementation, and limitations. Evaluation and program planning. 2017 Oct 1;64:98-104.

[20] Dykes PC, Curtin-Bowen M, Lipsitz S, Franz C, Adelman J, Adkison L, Bogaisky M, Carroll D, Carter E,
Herlihy L, Lindros ME. Cost of inpatient falls and cost-benefit analysis of implementation of an evidence-based

87



fall prevention program. INJAMA Health Forum 2023 Jan 6 (Vol. 4, No. 1, pp. €225125-e225125). American
Medical Association.

[21] Frank J. Artificial intelligence and intrusion detection: Current and future directions. InProceedings of the 17th
national computer security conference 1994 Oct 11 (Val. 10, pp. 1-12).

[22]Wang F, Preininger A. Al in hedlth: state of the art, challenges, and future directions. Yearbook of medical
informatics. 2019 Aug;28(01):016-26.

[23]Lu Y. Artificia intelligence: a survey on evolution, models, applications and future trends. Journa of
management analytics. 2019 Jan 2;6(1):1-29.

[24] Cordes JJ. Using cost-benefit analysis and social return on investment to evaluate the impact of socia enterprise:
Promises, implementation, and limitations. Evaluation and program planning. 2017 Oct 1,64:98-104.

[25] Dykes PC, Curtin-Bowen M, Lipsitz S, Franz C, Adelman J, Adkison L, Bogaisky M, Carroll D, Carter E,
Herlihy L, Lindros ME. Cost of inpatient falls and cost-benefit analysis of implementation of an evidence-based
fall prevention program. INJAMA Health Forum 2023 Jan 6 (Vol. 4, No. 1, pp. €225125-e225125). American
Medical Association.

[26] Gadde H. Al-Enhanced Adaptive Resource Allocation in Cloud-Native Databases. Revista de Inteligencia
Artificial en Medicina. 2022 Oct 18;13(1):443-70.

[27] Koneti SB. Microstructure, and Risk Optimization Models. Artificia Intelligence-Powered Finance: Algorithms,
Analytics, and Automation for the Next Financial Revolution. 2025 Aug 12:17.

[28] Panda SP. Augmented and Virtua Redlity in Intelligent Systems. Available at SSRN. 2021 Apr 16.
Mohapatra PS. Artificia Intelligence-Driven Test Case Generation in Software Development. Intelligent
Assurance: Artificial Intelligence-Powered Software Testing in the Modern Development Lifecycle. 2025 Jul
27:38.

[29] Eboigbe EO, Farayola OA, Olatoye FO, Nnabugwu OC, Daraojimba C. Business intelligence transformation
through Al and data analytics. Engineering Science & Technology Journal. 2023 Nov 29;4(5):285-307.

[30] Mohapatra PS. Intelligent Assurance Artificia Intelligence-Powered Software Testing in the Modern
Development Lifecycle. Deep Science Publishing. 2025; doi:10.70593/978-93-7185-046-9

[31] Ojika FU, Owobu WO, Abieba OA, Esan OJ, Ubamadu BC, Daraojimba Al. Transforming cloud computing
education: Leveraging Al and data science for enhanced access and collaboration in academic environments.
Journal name and details missing. 2023 Jan

88



Deep Science Publishing, 2025 ® DeepScience
https://doi.org/10.70593/978-93-7185-652-2 ’ Open Access Books

Chapter 7. Exploring Case Studies, Industry
I mplementations, and Future Research Directionsin Al, Big
Data, and Blockchain Technologies

1. Introduction

While the terms “* Artificial Intelligence’” (Al), ‘‘Big Data,”” and ‘‘Blockchain’’ constitute three
distinct disciplines, recent developments centered on the implementation of these technologies
demonstrate their strong mutual interaction. Al in its many manifestations—Machine Learning,
Natural Language Processing, and Computer Vision—creates the data that Big Data then
analyzes to detect latent patterns. Other disciplines also build on Big Data s outputs; Blockchain
is one such area. Properly designed, deployed, and administered, Blockchain technology
introduces an infrastructure extracted from the norms of computer science, cryptography, and
economics. The purpose of the present contribution is precisely to provide case studies and
industry implementations for these three disciplines, address the challenges encountered in their
deployment, and finally indicate promising directions for future research.

Advanced technologies are frequently underestimated—even undervalued—because their
ultimate implementation is sometimes partially lost in translation. Practical applications and real -
world implementation often represent the final destination of a discovery, so the journey should
be recorded for the sake of future research. Practitioners need to be convinced that the
technology they are using or plan to implement—described in so many written contributions—
should indeed be implemented. The first portfolio supports this approach. It offers a series of
examples of Al, Big Data, and Blockchain implementation across different industries. Real-life
Al application is shown in hedthcare, finance, and retail; Big Data is depicted in
telecommunications, manufacturing, and marketing analytics; and Blockchain is demonstrated in
the supply chain, real estate, and voting. Grounded in a wide range of different applied contexts,
these cases provide complementary insights into the uses of the technologies discussed.

2. Overview of Al Technologies

Artificia Intelligence (Al) refers to the simulation of human intelligence in machines, allowing
them to perform tasks that typically require human intellect. It encompasses Planning, Learning,
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Reasoning, Problem-solving, and Language Processing.skills. The section explores the roles of
three subfields in contemporary Al applications [1].

Machine Learning (ML) involves training algorithms on data to make predictions without
explicit programming. Supervised, Unsupervised, and Reinforcement Learning are key types.
Recent progress in Deep Learning, leveraging Deep Neural Networks (DNNs), has led to
breakthroughs in image and speech recognition. Natural Language Processing (NLP) equips
machines with the ability to understand and respond to human language, enabling sentiment
analysis, chatbots, and language translation. Computer Vision enables machines to analyze visual
inputs, facilitating applications like face recognition, image detection, and Optica Character
Recognition (OCR).

2.1. Machine Learning

Machine learning (ML) is abranch of artificial intelligence (Al) that studies computer algorithms
that improve automatically through experience and the use of data. These algorithms operate by
building mathematical models from sample data—also known as training data—to make
predictions [1-2]. Some ML algorithms make decisions and provide answers in response to data
entered by users. Machine learning includes both supervised learning, where the algorithm is
presented with example inputs and outputs in order to learn a genera rule, and unsupervised
learning, where only example inputs are given, and the model attempts to find patterns directly in
the data.

ML algorithms are used in a wide variety of applications, such as speech recognition, computer
vision, medical diagnosis, and forecasting. Machine learning can be applied anywhere where
tasks are accomplished through analysis of data. ML applies the principles of statistics, data
mining, and knowledge discovery in databases (KDD).

2.2. Natural Language Processing

Natural Language Processing (NLP) is a subfield of Al that studies the interaction between
computers and human natural languages. The ultimate objective of NLP is to read, decipher,
understand, and make sense of human languages in a manner that is valuable. NLP is significant
because it enables computers to perform useful tasks, such as text trand ation, sentiment analysis,
chatbot interactions, and market intelligence. Numerous NLP applications are found in fan
fiction recommendation systems, fake news detection, question answerers, part of speech
taggers, and space domain search engines.

Advanced Language Models (ALMs) refer to a collection of pre-trained text generation models,
each boasting billions of input parameters. These models employ transformer architecture and
attention mechanisms to improve learning accuracy and speed. ALMs exhibit the ability to
generate creative content without explicit input from humans, writing lyrics, scripts, business
plans, stories, and source code. The most popular ALMs are GPT-4, LaMBDA, BERT, LLaMa,
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and ChatGPT, which are impacting society in areas such as content creation, language
tranglation, question answering, and sentiment analysis.

2.3. Computer Vision

Machine vision and computer vision are closely related but distinct fields. Machine vision entails
imaging-based automatic inspection and analysis and places particular emphasis on the control
aspect of the system. Machine vision systems are often designed to replace human visual
inspection during operations such as manufacturing, assembly, or printing.

On the other hand, computer vision is concerned with the theory behind artificial systems that
extract information from images. Its overarching goal is to create an artificial system with visual
sensing capabilities that parallel or surpass those of a human observer. In practical terms, it deals
with the automatic construction of realistic or abstract description of objects, scenes, and events
from images. Despite these differences, both disciplines share the use of computers to automate
tasks that the human visual system can do.

3. Big Data Fundamentals

The term “Big Data’ refers to the volume of structured and unstructured data being generated
and stored, forming the foundation of data-driven enterprises and business processes [7]. Big
Data analysis involves searching through vast amounts of data to identify hidden patterns or
correlations, thereby enhancing organizational team efficiency. Big Data methods process large
datasets that traditional databases cannot, enabling companies to predict trends and customer
preferences[3-5].

The Internet of Things (1oT) significantly contributes to the generation of Big Data, coupled with
decreasing storage costs and continuous improvements in data warehousing and analytics
technologies. Over recent years, organizations have increasingly invested in Big Data analysis to
optimize their business strategies. Unlike conventional data processing techniques, the new
capabilities offered by Big Data analytics facilitate the processing of unstructured data at high
velocities. Meantime, the traditional data processing steps of collection, transmission, storage,
and analysis are no longer adequate for real-time Big Data requirements. The growing volume of
digital data worldwide brings significant benefits but also introduces complex risks and hidden
vulnerahilities.

3.1. Data Collection Techniques

Organizations collect Big Data from a variety of sources, including social media platforms such
as Twitter, Facebook, and Instagram; web platforms like Google and YouTube; commercial
sources that provide financial information; health-care sources that publish records and scan
results; investment sources; weather repositories; multimedia data; and scientific projects page
publications. The proprietary dataset of a company depends on the nature of its business. The
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objective of data-collection techniquesis to identify such sources and select the right sources on
the basis of the business objective.

A number of techniques are implemented when collecting Big Data, especially information/web
scraping, application programming interface (API) based techniques, scraping the Google trends
website, web scraping on Medium, and Reddit web scraping. Web scraping techniques create a
small program to collect information from a web page. These techniques extract specific
information, like Liu numbers, followers, and total blogs from different websites.

3.2. Data Storage Solutions

Major technological advancements create the need for efficient data storage solutions, which
help companies store, access, and manage data effectively. Data storage solutions range from
traditional on-premise storage to modern cloud-based storage. Innovations in cloud computing
have led to cloud storage solutions, enabling users to save and backup data on the cloud. Cloud
service providers manage data centres and offer shared resources, allowing users to store data
and access it whenever needed. In addition to cloud storage, companies aso rely on data
warehouses and data lakes, which can be hosted on-premise or on the cloud. Data warehouses
use a structured format to store data, while data lakes can handle unstructured data. Important
considerations in choosing a data storage solution include cost, scalability, data accessibility, and
security.

Once data has been collected and stored, companies can analyse it to gain valuable insights. The
goal of big data analyticsis to provide actionable intelligence to decision-makers in atimely and
cost-effective manner. Big data analytics solutions vary widely and include business intelligence,
data mining, and data science. Business intelligence requires structured data as input and usually
generates reports with rich visualisations for executives [6-8]. Data mining aims to discover
patterns and trends, enabling organisations to support business objectives. Data science focuses
on creating predictive models for automation and improving efficiency across different areas of a
business.

3.3. Data Analysis Methods

Data analysis is basicaly the process of transforming useful data into valuable, insightful, and
valuable information. Using a variety of analysis techniques, the data collected is subjected to an
examination. It makes it possible to draw effective conclusions. Data analysis is the most
difficult step in decision-making. It aids in evaluation, planning series of actions, controls that
implementation.

Data analysis can be accomplished in a variety of ways. An effective technique is chosen based
on the data collection. Data structure, goal of analysis, and many other elements. The explained
techniques are appropriate in relation to decision-making issues in the telecom and
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manufacturing industries. Decision tree and market basket analysis are two frequently employed
techniques. Additionally, data analysis can fall into one of these three categories:

Descriptive Analysis: This analysis reconstructs and describes the history of analyzed data: what,
when, where, how many, and how often something happened.

Diagnostic Analysis: The analysis takes a deeper dive into the data to figure out why something
happened.

Predictive Analysis: Although it requires a ton of data, an extensive predictive analysis sheds
light on what will probably happen in the future.

4. Blockchain Technology Overview

Bitcoin, a cryptocurrency in which transactions are verified and records maintained by a
decentralized system using cryptography rather than by a centralized authority, was proposed in
2008 by Satoshi Nakamoto. Subsequently, Nakamoto also proposed a consensus mechanism
called Proof-of-Work (PoW). PoW has also been applied on severa other cryptocurrency
protocols like Ethereum, Litecoin, and Bitcoin Cash. During the last decade or so, Nakamoto’'s
Bitcoin blockchain was extended to incorporate a feature called smart contract, and the new
blockchain was called Ethereum [9]. A smart contract contains a specific set of instructions that
trigger contract terms and conditions.

Several consensus mechanisms have been proposed in the new blockchain. Apart from PoW,
others include Proof-of-Stake (PoS), Delegated-(D)PoS, Proof-of-Elapsed Time (PoET), Raft,
Practical Byzantine Fault Tolerance (PBFT), and Federated Byzantine Agreement (FBA). PoSis
used on board cryptocurrencies like Cardano, Nxt, and Peercoin. DPoS, the delegated version of
PoS, is used on Steem and BitShares. The new version of the PoW, Litecoin, uses the proof-of-
capacity (PoC), which is based on mining cluster capacity. Quorum Bitcoin employs Raft and
Istanbul BFT. The SEC blockchain uses PBFT, and Ripple employs FBA.

4.1. Decentralization

The most prominent feature of blockchain technology is decentralized consensus. Decentralized
storage Data is spread out in a decentralized way and stored on multiple devices of the
participants that belong to different parts of the world. This decentralized structure is intended to
reduce the ability for any one entity to dictate rate data, and in thus doing accelerates fair order
execution across the board by avoiding acting parties tampering said data. The lack of a central
authority implies that all members have the same standing in the network. Decentralized systems
are fault-tolerant as well; if one computer goes down, the others chug on. Also, with
decentralization, thereis no single point of failure [7,9-10].

Other benefits of decentralized systems include greater security, self-executing smart contracts,
and the lack of reliance on trusted third parties. Blockchain is preferred over others because it

93



can provide the additional benefits of immutable database, distributed consensus and enhanced
security even though there are known weaknesses that can be exploited. This technology forms
the foundation of such categories as crypto-currency and digital currency. Smart contracts
implemented by blockchain enable authorized transactions automatically, and its token creation
capability allows enterprises to design and launch their own tokens for various applications.

4.2. Smart Contracts

Smart contracts are computer programs or digital protocols which manage automatically, control
and enforce the performance of specific kind of agreements (or any other conditional statements)
on a blockchain. Leveraging blockchain’s unique properties — namely, decentralization,
autonomy, transparency, immutability and trust — they alow for parties in a transaction to be
able to forge trust without the need for an intermediary. After 2013, smart contracts are used in
domains including finance, healthcare, government, crisis management and |oT.

Smart contracts on a blockchain involve three parts: the decentralized ledger, the infrastructure
behind it (the ledgers and support systems etc., which must all be running seamlessly) and lastly
the business rules that manage industries and enterprises. The Ethereum ecosystem and its
Solidity programming language is the most popular for writing contracts. It is also necessary to
implement the business rules, in the decentralized context, into Solidity language in order to
develop the smart contract. Consensus mechanism guarantees that business rules are correctly
enforced despite of the complexity and possible mischief of the underlying network gridding. A
summary of smart contract applications existing in these different industrial reviewing sectorsis
presented in the table.

4.3. Consensus Mechanisms

Consensus algorithms including PoW, PoS, BFT and PBFT are essential part of a blockchain
system [1,11-14]. They are a processing module which is responsible for transactions, record-
keeping, credit and asset control in the economy. Fault tolerance, Sybil attack resistance, and
double-spending attacks prevention are some of the main properties we hope to achieve with a
consensus mechanism.

PoW demands that all miners "race" to solve a mathematical challenge and the first one to find
an answer is entitled to create the next block in a given blockchain. PBFT and BFT adopt
primary replica selection for achieving consensus for permissioned blockchains. PoS does not
heavily rely on computational power; rather, the probability of a node being elected for block
generation increases with the amount of digital-assets it possesses.

5. Case Studiesin Al

Artificial Intelligence (Al) is a domain of Computer Science—offering an application that
enables machines to intelligently act like humans—training and building Computers and
software for performing various operations such as recognition, learning, reasoning, and problem
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solving. A broad branch of Al is Machine Learning (ML), which performs pattern recognition
through detailed data analysis. Natural Language Processing (NLP) is employed for training the
Machine with languages trained by humans, so it can recognize and understand human-written or
spoken text. Furthermore, Computer Vision (CV) is used to train a Computer to view the
enactment of an environment [13,15-17].

Al is more recognized for its distribution than any other system and has gradually spread to
every business and market. Different companies are performing the implementation of artificial
intelligence technology to fulfill business needs and their requirements to handle and detect
severa things in daily life. Al Technology in different service industries, such as Healthcare,
Finance, and Retail is also being used for several purposes; for example, Al in Healthcare helps
facilitate the early prediction and detection of cancer and also helps in the detection of
anomalies; Al in Finance is widely used by Banks in severa operations such as customer care,
operational risk management, fraud detection, and several other operations; Al in Retail is being
used specifically for customer behavior analysis.

5.1. Healthcare Applications

The healthcare industry has always been at the forefront of the Al revolution. The rapid adoption
of Al-enabled systems is evident, with the online Al in Healthcare Market Growth Report 2022,
which predicted that Al in healthcare will continue to be a lucrative business, reveaing the steep
increase in the market size—from US $8.23 hillion in 2020 to a projected US $120.2 billion by
2028, at an extraordinary CAGR of 45.8% (Fortune Business Insights 2022). Some specific
instances of those use cases that are aready growing and in research include using Al for
emergency response (TimelySense2021),patient data, patient risk and safety, patient
engagement, diagnosing conditions, aftercare. Healthcare organizations can harness the power of
Al to transform and enhance the quality of care and improve relationships and communication
with patients and clients. This will soon contribute to the aim of Revolutionizing Human Health
through Artificial Intelligence.

Al systems are the key to effective and efficient delivery of diverse health and wellness services.
Voice recognition algorithms help doctors in setting reminders and taking notes on the go,
enabling better coordination of care, improved staff productivity, better patient monitoring, and
faster response in emergency situations and personaized service delivery. Varieties of
agorithms generate hyper-personalized experiences for patients and customers and simulate
high-level thinking and many human cognitive functions. During the COVID-19 pandemic, Al
technologies deployed across the globe to make response and mitigation more effective through
discovery of new drugs and treatment models, creating a distributed ledger of diagnostic reports,
providing clinical decision support to doctors, identifying high-risk patients, and averting disease
transmission through scanning, reporting, and analysing incoming data and information [18-20].
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5.2. Financia Services

Financial institutions are turning to Al to develop advanced trading algorithms and predictive
models capable of extracting patterns in historical data to prevent fraud, conduct risk
assessments, forecast market trends, and manage hedging strategies. These functions lead to
remarkable improvements in efficiency, enabling more accurate predictions, faster execution,
and substantial cost reductions.

Additionally, Al is being applied in retail banking to enhance customer experience. Chatbots, for
instance, offer instant support, affordability and 24/7 availability. These sophisticated virtual
assistants communicate with customers through voice and/ or text, in real time (over the phone
and chat). Through NLP, users can receive help for common services or the newly revised tax
and law knowledge. Personalize information to help customers The understanding of customers
contexts and moods via Deep L earning, bedeutet Personal Advice for the best banking products.

5.3. Retail Innovations

Data insights and algorithms are to be had, and being used more, in the retail industry decision-
making process. Use cases run the gamut, from prediction and anomaly detection to sentiment
analysis and customer profiling. Tacticaly leveraging Al-powered solutions helps retailers
derive drive significant business value by evolving according to the constantly changing
preferences of their shoppers.

The ability of Al to pick out, categorize and interpret images — and even facial expressions -- is
already having an increasing use case in retail. But in addition to enhancing an in-store
experience — including but not limited to brand-based deployments and customer interactions —
the role of those tools have transformed how returns and complaints are managed in e-
commerce, driving substantial improvements in customer satisfaction [19,21-22]. What's more,
Al ensures that customers are engaged with personally relevant interactions, engenders loyalty,
and supports cross-seeling and up-selling by effectively identifying well-defined customer
segments with offers tailored to those needs. The future with Al technologies is even more
exciting — leveraging large volumes of data to get a 360 degree view of all aspects of the
business, front or back-end..

6. Industry Implementations of Big Data

Organizations collect terabytes of data every minute from customers, partners, and the business
environment. It is essential to store, process, organize, and analyze this huge amount of data to
extract useful information, which is vital for making good business decisions. The telecom
industry is a pioneer in using Big Data for storing and processing millions of transactions daily.
The objective isto realize, identify, leverage, and forecast customer needs.

Analyzing industrial manufacturing Big Data has the potential to improve efficiency, decrease
costs, and predict and prevent downtime. Supporting data scientists and stakeholders in gaining
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high-quality insights into manufacturing processes requires a solid Big Data infrastructure.
Industry 4.0 functions in marketing and sales benefit from Big Data. Market strategists can
develop modern and innovative products to gain complete customer satisfaction by utilizing Big
Data techniques such as data warehousing, data mining, and Customer Relationship Management
Software. The rapid growth of online business draws the attention of both customers and
companies.

6.1. Telecommunications

With new data generation mechanisms, such as the Internet of Things (1oT), Big Data in the
telecommunications industry has grown exponentially. The deployment of smart metersin power
grid systems produces massive data, referred to as smart meter data (SMD), which is difficult to
recognize, analyze, utilize, and protect. The diverse formats of generated data include the
documents and files generated by smart meters themselves, remote control commands of smart
meters, and multimedia data (schematic diagrams and photos of meters, multimedia messages
containing customer information). A method for storing these diverse types of SMD and related
security safeguards has been proposed.

The application of big data in operations, administration, and maintenance (OA&M) in the
telecommunications sector has been proposed. Traditional OA&M systems usually handle data
generated at each stage sequentialy, which is time-consuming, operator-dependent, and
incomplete. Big-data-based OA&M systems analyze and process data generated in each stage
comprehensively, enabling automatic generation of the optimal plan that meets operations
reguirements through automatic analysis and judgment, supporting a comprehensive forecast of
the entire life cycle of network elements. Several other applications of big datain OA&M have
been proposed. Customer analytics has a key role in retaining existing customers and acquiring
new ones [11,23-25]. Big-data analytics is widely used to detect the customer's profile, behavior,
and frauds, and thereby achieve enhanced customer satisfaction. Campaign management
analyses a customer's response toward a specific campaign, and telecommunication companies
can identify whether the response is positive or negative; on the basis of this, necessary and
suitable actions are taken.

6.2. Manufacturing

Manufacturing is an area that benefits significantly from Big Data analysis. Besides optimizing
production, Big Data supports supply chain management, product quality, customer feedback,
and data collected from sensors. Consistent and rapid production line operation necessitates
constant monitoring. Early identification of potential production errors ensures a fully
operational factory and optimal resources. Enabling predictive maintenance in factories and
providing operators and engineers with instructions can reduce breakdown times and extend
machinery lifespan. Advanced defect detection processes, superior to human inspection, improve
the quality of manufactured products.
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A novel Big Data logistics-based approach ensures transparency, efficiency, and agility of
manufacturing processes throughout the plant's supply chain. A Big Data framework for the real -
time condition analysis of automated manufacturing systems helps decision-makers enhance
production processes and implement corrective actions. Big Data analytics in automotive
manufacturing improves engine speed, vehicle idling, application prioritization, and job
scheduling. Optimizing operations planning through Big Data analysis involves collecting and
processing datasets related to operations, plant layouts, and machinery status. The big data
repository integrates Big Data and Internet of Things (I0T) concepts to provide continuous real -
time information on production and machinery health. Predictive analytics enhances just-in-time
inventory strategies by forecasting future demand, replenishment requirements, and warehouse
stock levels. Data from the production process is employed to analyze, improve, and shape
planned product maintenance activities and schedules. In the end, a BD framework able to offer
that support to manufacturers in terms of analysis of usage patterns on which their products are
used collects such customer-related data while being utilized by them whenever required for this
use-case.

6.3. Marketing Analytics

Marketing is now heavily infused with big data technology, as companies constantly collect and
analyze a metric ton of consumer data in order to inform effective businessymarketing strategies.
Marketing analysis results in more effective customer segmentation and profiling, the ability to
design targeted communications, increased sales rates, higher customer retention and so much
more. With Big Data analytics, marketers can tailor campaigns and offers to suit the needs of
individual customers, creating a personal experience that customers appreciate and giving the
company adistinct competitive advantage.

Predictive analytics enable marketers to forecast customer demand, avoid stock-outs, reduce
costs, and fulfil customers' needs in a more timely fashion. Marketing practitioners can also use
sentiment analysis to assess the proportion of positive and negative feedback on their products
during new launches, thereby optimizing the marketing mix [26-28]. Furthermore, marketers are
increasingly employing clickstream analysis to identify their customers' motives. The harvesting
of information agents’' clickstream trails, recording their browsing behaviour and examining their
favoured websites, assists marketers in the understanding of consumers search and purchase
behaviours. Specific research studies of clickstream trails have enabled the development of
predictive models of consumer behaviour parameters including click-through rates, probability
of purchase forecasting, consumer segmentation, and frequency of visits, among others.

7. Blockchain in Various Industries

Blockchain Models, Smart Contract Models, and Consensus Mechanism Models, along with
their applications in real-world scenarios, illustrate the transformative potential of decentralized
technologies. Leveraging these case studies can demonstrate the practical advantagesin different
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sectors, facilitating an understanding of their wide applications. Supply Chain Management Case
Studies elucidate the use of Blockchain to enhance provenance tracking and inventory
management. Real Estate lends itself to improvements in property transactions and title searches.
Meanwhile, the Voting domain ensures voter verification and protects ballot legitimacy.
Experiences in these areas provide numerous avenues for further exploration and development.

Despite the compelling advantages indicated by the various studies, Blockchain faces its share of
challenges, particularly in terms of Scalable Storage, Economic Model construction, Security
Systems, and Regulatory Frameworks. Therefore, Future Research Directions should include the
deployment of lightweight storage models, the establishment of incentive-compatible stakehol der
games, the design of advanced permission mechanisms for blockchains, and the development of
regulatory systems that promote healthy ecosystem growth. Additional meaningful research
areas encompass Blockchain for Social Good, the Blockchain-Internet of Things intersection,
and Cross-chain Technology. Furthermore, the synergy between Artificial Intelligence,
Blockchain, and Big Data is of great interest. In this regard, the potential of blockchain is
explored both as an independent research agenda and as a complementary technology that
enables and enhances the capabilities of the other two technologies.

7.1. Supply Chain Management

Today’s users are very demanding and do not want to wait. Before buying a product (for
example, acar), they search for information about it on the Internet and evaluate comments made
by other users, either in the online store of the company or on social networks such as Facebook
or Twitter. The question that must arise in the mind of any user before buying a product is, “How
wasit made?’, “Isit original?’, “Is this product manufactured by areliable company?’

Blockchain could be the answer to these questions. A blockchain-based system could provide
users with a safe way to understand how their product has been manufactured and whether it is
original [29-32]. The fact that every transaction made by companies can be registered and
checked by users would offer them transparency about their purchase, adding value to the
product and, more important, to the company delivering it. SupChain is a blockchain framework
applied to supply chain management systems using a decentralised platform that integrates the
Ethereum public blockchain and an internal private blockchain with smart contracts transmitted
in adigitalised manner.

7.2. Redl Estate Transactions

Several efforts have been made to address the challenges of the real estate industry. Real estate
transactions need to collect, organize, and analyze a massive number of documents and
transaction records that are normally stored by banks and real estate agents. Blockchain helps
collect, track, and record rea estate transactions and property information securely and
transparently. Concurrently, applications of Al technologies to the rea estate industry have also
started. One example is Umbra, which leverages a collection of economic and socia factors,
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such as demographics and life expectancy. The machine learning model captures a property’s
potential and generates an annual risk and value score. A risk and value score report is provided
in a business intelligence format. Real estate investors can make intelligent decisions based on
the property risk and value scores.

Real estate investors highly rely on property history information. To make more informed
investment decisions, it is essential to dig out the potential investment risks, such as property
foreclosures, previous damages, and thefts, from the properties historical records. Recent
advances in blockchain have enabled the property record network to be fully developed with the
capacity to gain the public’ strust because of the immutability of blockchain records.

7.3. Voting Systems

Prior to the 2016 United States presidential election, presidentia candidate Vladimir Putin
suggested the implementation of blockchain voting for the election. However, the need for
electoral security, voter privacy, and other potential problems, such as "digital divides' and a
lack of a paper ballot for recounts, prompted the Russian government to decline the proposal.
The Russian government later promoted other usages of blockchain technology and eventually
implemented a blockchain voting system for the 2020 Russian constitutional referendum.

Beyond Russia, many countries have tested or implemented blockchain voting systems,
including the United States, Switzerland, Estonia, Ukraine, Australia, Canada, and the United
Arab Emirates. The Emirates Blockchain Strategy 2021 aims to move 50% of government
transactions to blockchain by 2021. In Australia, the city of Fremantle in Western Australia
enabled online voting with a blockchain-based voting system, in collaboration between Horizon
State and Voatz. Some voting systems support not only voting but also identity verification and
voting result detection. Societies are exploring the possibility of implementing national election
voting and referendum voting using blockchain voting systems; for instance, Switzerland
allowed citizens to test blockchain e-voting during the 2018 political voting season in the city of
Zug.

8. Challengesin Al Implementation

The groundbreaking capabilities demonstrated by Al in sectors such as healthcare and climate
change have been documented. The most successful Al systems thrive on intelligence produced
by large datasets. As Al grows, concerns become more urgent about the security of sensitive
data, protection of privacy, ethics, and possible biases. These cutting-edge issues should be
addressed through public education and the devel opment of improved data protection legislation.

Example applications include disease diagnosis and treatment recommendations through analysis
of medical images, lab data, and genetic information. Aiding COVID-19 diagnosis and prognosis
through evaluation of imaging studies, cell count and enzyme levels, age, sex-women,
chickenpox—Iinked to databases of signs and symptoms, can help diagnose new diseases,
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evauating signs, and symptoms of patients and provide diagnostic suspicion and decision
support systems. Al naturally complements data-intensive fields such as cyberspace and big data.
Areas of application in the field of cybersecurity include the development of IDS in both
physical and cyber-cognitive domains, malware, anomaly threat detection and classification as
well as situational awareness, and alert prioritization.

8.1. Ethical Considerations

Ethical challenges are prevalent in Artificial Intelligence (Al) implementation due to its ability to
extract in-depth knowledge about individuals from large datasets. Potential issues surround
concerns on privacy, automated decision making, transparency, and bias. Individuals retain a
right to privacy, and the use of Al must indirectly overpower the right to privacy in order to
achieve socia or individua benefits. However, such issues can be managed with legal and
ethical measures on individual and societal levels by adapting data sharing and processing
policies; however, the discussion on the appropriate level required for the management of these
problems continues. That is the reason that the most current analyses admit explicit ethical
agreements so that individuals and states are aware of the generated compromises and therefore
of the acceptance of the consequences.”

Data bias can considerably impact the accuracy of Al models. It is essential to carefully select
the source data to ensure it is neutral and free from gender, regional, or age-related biases. The
quality of source data largely determines the quality of the model produced. Ethical issues also
arise when robotic agents replace humans. Despite the removal of menial and repetitive tasks
from the job market, the displacement of personnel from existing positions raises ethical
considerations. Transparency of decision-making processes, especialy in sensitive areas such as
insurance and private credit scoring, is aso crucia in the acceptance of Al technology. Recent
developments in explainable Al also contribute to overcoming this challenge. Towards a multi-
modal framework, it enables the integration of complementary information beyond pure textual
and linguistic metadata, such as temporal, spatial, and emotional metadata. The literature closely
linked to the establishment of corpora of AIMFs consists of two complementary research lines
[31,33-35]. The first involves interdisciplinary areas such as digital humanities, social sciences,
and political sciences; the second is grounded in the work related to the design of resources for
automatic multilingual processing of social mediatextsin general.

8.2. Data Privacy Issues

Artificial Intelligence Models use vast amounts of personal information during training, resulting
in data privacy concerns. These Al Models require extensive amounts of training data to perform
their acceptable role. Usually, the training dataset consists of users' personal information such as
ID number, phone number, bank account number, email address, location information, and other
sensitive or confidentia information. When the trained model is directly exposed to the external
environment, privacy problems arise. Therefore, research on the training process without
disclosing private training data has been actively conducted in various Al fields.
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The use of data degrades privacy. People get thickly involved in various Al services and require
their data to be safe from privacy issues. For example, data sales or data hacking, etc., are
threatening the privacy of data. Buyers of the data take advantage of it in unfair ways, such as
discrimination and increased risk in insurance companies, insurance applications, bank credits
and job advertisements. At this stage, Methodol ogies connected with Big Data raise user interest
and alert in protecting their private data from misuse. Therefore, there is an interest in using Big
Data to create machine learning models without violating the training data privacy. Privacy
concerns for both individuals and businesses have been addressed explicitly in an efficient
manner.

8.3. Algorithmic Bias

This subsection showcases how the tech industry tackles algorithmic bias in Al. Firstly, it
highlights Google's approach to making trade-offs between bias and accuracy. Secondly, it
discusses Facebook’s problem of biased classifiers and explains why Facebook cannot sidestep
thisissue. The following content is based on the interview with Kate Crawford.

Because Google has fast access to extremely large dataset, it produces better classifier. Better
classifiers tend to be less biased for race, gender and thus it helps reduce agorithmic bias.
However, as Kate points out, algorithmic bias not always goes hand in hand with accuracy.
According to Kate, Google is aware of that and trying to find a way to make trade-offs between
bias and accuracy. With better classification accuracy, the algorithm becomes more "equal" with
less bias embedded. However, when the topic comes to Facebook, it is about bias reduction.
Facebook uses facial recognition to give people a better user experience. Y et bad classifiers tend
to be more biased in terms of race and gender because most of the training data is from the
United States with predominance of white people. The biased face algorithm leads to cognisant
of the unfair treatment of discrimination to people from developing countries. As a resullt,
Facebook needs to debug the facial recognition but in the meantime it cannot not use the
algorithm.

9. Big Data Challenges

Big Data has been implemented throughout many different areas. Even simple industries, such as
telecommunications and manufacturing, can benefit largely. In manufacturing, Big Data can be
used to forecast when equipment is likely to wear and fail, allowing for just-in-time maintenance,
thereby reducing downtime, lowering maintenance costs, and preventing missed delivery
deadlines. Telecommunications companies utilize Big Data to collect information about their
offerings and customers, enabling the creation of products tailored to customer needs while
significantly reducing provider churn rate [36-38].

At the other end of the spectrum is marketing analytics, an aspect of Big Data that involves
collecting and analyzing customer feedback directed to market products and services in a way
that promotes brand loyalty and entices a larger market share. The collection of these data points
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enables an organization to identify who is buying their products, determine the most effective
channels for marketing to that audience, and enhance customer experience. Despite these
practical applications, businesses may be underutilizing, mismanagering, or missing key aspects
of Big Data. Challenges such as poor data quality, real-time data collection, integration with
legacy systems, scalability, and the reuse of data across multiple departments or business
functions remain impediments to Big Data's full potential.

9.1. Data Quality Management

Research into data quality management in large data has been presented. Google BigQuery was
used to test big data algorithms and assess the quality of big data. This service alows users to
perform SQL-like queries on vast amounts of data. Quality assessment is performed in the
solution stages: data gathering, disorganized patterns, viewpoint, preparation for analysis and
processing, modeling, and transformation.

The description of stored data must be clear and easy to understand. Milanovic et al. investigated
the method of establishing metadata, whereas Zhang et al. adapted the OLAP method in big data.
Additionally, the semantic method offers numerous possihilities because it describes the content
of stored data, their properties, and the inferring ability.

9.2. Scalahility Issues

Addressing scalability in blockchain technology is essential for future innovation and widespread
adoption across various sectors. The first concern is that increased block size and faster block
interval times can challenge the capacity of hand-held devices to serve as full nodes. If a full
node requires too much storage space, it suffers from limited distribution, resulting in the loss of
decentralized advantages. Moreover, it can lead to the centralization of mining powers and the
weakening of network security. Faster block times can amplify the proof of processes, hindering
adaptation to the Internet of Things and the latencies of smart contracts. The second aspect
relates to the design choice of different consensus algorithms in different blockchain
architectures. The selection from proof of work, proof of stake, proof of storage, and other
agorithms is typicaly related to the demands for throughput, response time, and finality.
Furthermore, when the health care and IoT industries merge with blockchain, blockchain
applications involve multiple communities, such as users, businesses, and service providers. To
address the issue, the innovative cliques—namely, data sharding, transaction sharding, state
sharding, and functional sharding—have been proposed. The third aspect pertains to the increase
in scalability issues associated with the growth of the underlying block size. The size of the
blockchain, which is currently approximately 300 GB, continues to grow every day, making it
impractical to download and verify at regular intervals. A similar issue arises due to inefficient
consensus agorithms. Although transactions are adequately validated by high-powered devices,
the process remains inefficient for mobile nodes with limited computation power and battery life.

103



9.3. Integration with Legacy Systems

Despite challenges with legacy systems—such as data growth, tightly coupled technologies,
security vulnerabilities, and process inefficiencies—large organizations continue to generate
comprehensive Big Data. Many remain reluctant to store new data in cloud environments, opting
instead to place a Big Data layer on top of their mainframe system, effectively extending
automatic mainframe support with a NoSQL environment that stores Big Data outside the core
database. Legacy systems can receive mainframe dataviaMQ or FTP and send it as files through
a file system. However, this approach introduces additional files that require specific data
management and maintenance. Moreover, an FTP system stores Big Data outside the firewall,
further complicating security requirements.

Data quality issues—such as missing values, outliers, and imbalanced data—further complicate
the ability to generate accurate insights. Incorporating the entire data pool might not be feasible
for real-time decision-making and action. These problems are exacerbated in cumulative
analyses, leading to progressively erroneous outcomes. A potential solution involves automatic
data cleansing, which identifies the nature of inaccuracies and performs necessary formatting
changes, including the removal of inappropriate data elements. Solutions might incorporate basic
statistical functions. measures like mean, median, and mode address missing values; percentile
calculations correct outliers;, and implementing boundary points with upper and lower limits
converts imbalanced values into correct forms. The classification and cleaning are based on
specific business rules.

10. Blockchain Challenges

Blockchain has recently attracted lots of attention among academicians, industry experts, and
governments because of the inherent features of blockchain technology, such as transparency,
resilience, trust among dynamically forming consortium components, immutability, and
decouple trust from a centralized third party. However, despite these advantages, the blockchain
technology is yet to reach the next level of practical implementations and market boom. Recent
research has identified some of the outstanding issues with the blockchain technology, including
scalahility, regulations, cyber-security, privacy and data protection, cybercrime, governance, and
interoperability.

This paragraph continues with specific scholarly challenges. Scaling of blockchain is one of the
major issues as it prevents a high throughput rate for processing transactions. For example,
wang2021evaluating have pointed out several cost barriers in deploying cryptocurrencies by
using blockchain technology, and argued that only 20% of the countries are favorable in their
environment for adopting cryptocurrency, which reduces the potential of revenue generation
through the transaction fees. As a result, the supply and demand gap tends to remain wide.
Moreover, with growing users and transaction rates, legacy cryptocurrencies lack the capability
to beat the traditional payment providers such as Visa or Mastercard in terms of speed and
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efficiency. The study by eenigha2020regulatory have suggested that there should be some
regulations for dealing with cryptocurrencies, otherwise, it may lead to dirty money in the
system. In addition, cyber-security is another important concern, especialy in the use of private
key for access and retrieval of bitcoin wallet. Hence, according to issam2020blockchain there is
alack of appropriate preparedness toward malware that affects the existing cryptosystem. User
privacy and anonymize quaity of  cryptocurrencies aso raises  doubts.
tatarner2018cryptocurrency have suggested that in Europe, the General Data Protection
Regulation (GDPR) may conflict with the core characteristics of blockchain technology. Besides,
as the blockchain technology is still in nascent stage, it has started attracting the criminals by
maliciously utilizing it for money for ransom.

The preceding paragraph continues to supply detail from the literature. As argued by
|ee2019blockchain, the absence of governance framework in blockchain and lack of government
supervision may provide opportunities to misuse blockchain for illegal activities, as criminals
can easily exchange money from one cryptocurrency to another. Moreover, banks face serious
challenges due to the presence of cryptocurrencies as they provide service without any
regulations. A famous rumor says that Nigeria has experienced the second largest drop in bank
account holding, and the highest increase of mobile wallet users in the world, because about 15
million Nigerians trade cryptocurrencies on various websites. Again, the degree of
interoperability among various blockchain platforms is also crucial for its effective operation,
and proper implementation of these issues could lead to exploring a new arena in the field of
blockchain technology.

Research directions are also presented. Within the emerging domain of Blockchain Technology,
a domain that has recently attracted a lot of attention due to its intrinsic characteristics such as
transparency, resilience, trust among dynamically forming consortium members, immutability,
and the decoupling of trust from a centralized third party, several open issues have been
identified. These include scalability, regulations, cyber-security, privacy and data protection,
cybercrime, governance, and interoperability. In line with the challenges previously highlighted,
promising future research opportunities exist for addressing these areas, all of which are crucia
for advancing the field towards broader practical adoption and market success.

10.1. Scalability

Blockchain technology offers a decentralized and distributed ecosystem where various parties
can transact online without a central authority. The integrity, transparency, immutability,
privacy, and security of data within the blockchain network are maintained by utilizing multiple
technologies in the underlying layers, including cryptography, consensus mechanisms, and
computer networks [1,39-40]. However, blockchain systems face scalability challenges similar to
other distributed systems. Such challenges are especialy pronounced when the number of
techniques and services implemented over the blockchain grows at a high rate. The limited
processing speed of the system results in delays in validating transactions. Therefore, before
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implementing any blockchain service or technique, it is advisable to consider the scalability
aspects to avoid performance-level challenges.

Currently, various solutions—for instance, Lightning Network, sidechains, Plasma, Raiden
Network, sharding, and off-chain state channels for Bitcoin and Ethereum-based blockchain
systems—have been proposed and implemented to alleviate scalability issues. Although these
solutions can effectively tackle blockchain scalability, potential issues such as latency,
transaction costs, and multi-hop payments may arise. Moreover, not all solutions are suitable for
scalability issues in specific blockchain platforms. For example, Plasma and sharding have been
primarily implemented for Ethereum. Consequently, a well-defined scalability solution for
scalable blockchain ecosystems remains an open research problem.

10.2. Regulatory Compliance

Maintaining regulatory compliance is often challenging when deploying applications in a public
cloud infrastructure. Issues related to customer data ownership can arise because, physically, the
data may be stored in any part of the world. This situation creates security concerns because the
applicable law depends on the location of the data. Certain regulations require that the data
cannot leave the country or its borders. In some scenarios, regulations specify the country of
incorporation for the cloud provider.

Currently, no single public cloud provider can meet the above-mentioned compliance
requirements alone; however, a federation of public cloud providers can do so. In such a case,
the customer data is stored in a public cloud depending upon the conditions specified by the
governing regulations for that particular industry, although these conditions can be satisfied one
after another in a single cloud setup or ssimultaneously in a multi-cloud setup, depending upon
the data-storage requirements. Public cloud providers do not support these compliance
requirements natively. Therefore, the customer is responsible for ensuring regulatory compliance
before outsourcing its applications and data, which increases management overhead and
deployment complexity for application devel opers.

10.3. Interoperability

With numerous active blockchain projects operating on different platforms, each using different
blockchains with different protocols, communication between these individual blockchains offers
a great hurdle. The lack of a method or protocol that enables different blockchains to
communicate and share data with one another leads to difficulties in scaling the technology.
Interoperability in blockchain technology refers to the ability to exchange and develop
information or utility without restriction and effectively perform cross-chain transactions.

New solutions for blockchain interoperability Methodological approaches for blockchain
interoperability can be largely categorized into three groups. explorer solutions, notary schemes
and relays. An explorer, such as BitMetrics, scans the blockchain for all relevant transactions and
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their information in order to display it to the user in a specified form. Notaries have the ability
and the submission of the transactions that need to be forwarded to the other chain. They act as
trusted third parties that accomplish cross-blockchain proof and accompanying functions.
Examples of equistructural notary schemes include the Pegged Sidechains, the Liquid sidechain
and Sidechains, the Wrapped Tokens as well as the Drivechain Protocol. They essentially
represent two-way pegs that enable certification of assets between two networks in both
directions. Single-structural notary schemes like Atomic Cross-Chain Swaps on the other hand
work without any links established on one side of the system and be accompanied by the
disclosure of the private key that controls the funds in exchange for the funds on the other
blockchain.

Another type of notary scheme operates on the basis of central notaries. the Custodians. As a
third-party holding the assets involved in a transaction, Custodians play the role of a traditional
bank. XAPO and BitGo are representative examples of this approach. Relays are smart contracts
that verify the validity of transactions on other blockchains and inform the communicating chain
accordingly. Blockchains are able to check the authenticity of the underlying records directly via
arelay. Both chains therefore must offer the ability to access their own data resources in order to
implement a relay. To reduce the blockchain interoperability problem, the use of standardization
and regulation should be considered. Common rules, norms and language for the entire sector
can enable side-to-side discourse. Blockchain protocols like ERC-20 or ERC-721 allow different
projects to develop within the Ethereum network. The scalability of Ethereum and Bitcoin's
networks, which play an essential part in overall blockchain adoption, also remains a key factor
to achieve the interoperability of blockchains.

11. Future Research Directionsin Al

The phenomenal growth of artificia intelligence in recent years has initiated a wave of disruptive
innovation, creating a unique momentum and flood of interest in its application across numerous
sectors. Present-day work on large-scale, diverse-curated-data inputs has provided novel avenues
for addressing the Al open challenges. Many recent investigations have demonstrated Al
applications for use in preventing general diseases, COVID-19, and in forecasting diseases. One
of the promising future directions for Al can be in climate actions. Explainable artificial
intelligence (XAl) is another aspect receiving significant research attention, aimed at enhancing
the trustworthiness of machine-based decisions among humans. Additionally, issues related to
privacy, security, and cyber-attack detection remain open topics for further exploration.

Future studies may also target the development of advanced, transformative Al methods that are
highly interpretable, transparent, robust, cost-effective, and privacy-preserving. The COVID-19
pandemic has revealed that reassuring the public of the reliability and trustworthiness of Al
results is a critical concern. Research into human-centric Al, focusing on integrating human
expertise with machine intelligence through human—Al interaction, can enhance the overal
quality of machine learning models. Cybersecurity, being a serious challenge, requires the
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implementation of more sophisticated Al algorithms capable of detecting all types of network-
based cyber-attacks.

11.1. Explainable Al

Explainable Al (XAl) endeavors to make the operations of Al-based systems more transparent,
intelligible, and thus more understandable and explainable to users. Despite the proliferation of
Al applications, there is a conspicuous knowledge gap among many users regarding the
mechanisms, functions, and decision processes of these systems. This lack of understanding can
engender a sense of distrust or fear toward Al technologies. The inability of complex Al or
machine learning models to provide rationale for their decisions, often identified as the “black
box” issue, constitutes a significant representation problem that challenges user acceptance.

Recent scholarly investigations have incorporated analysis of content published by industry-
leading companies and individuals tasked with marketing Al solutions to public users. The
findings reveal that while a substantial proportion of corporate content emphasizes Al's
opportunities and potential benefits, comparatively fewer communications address the dangers or
ethical concerns associated with artificial intelligence.

11.2. Al in Climate Change

Societal and concerns are becoming important topics in Al. The application of Al for climate
change is illustrated here. Al can contribute to climate change mitigation and adaptation in
several ways. Al models can be very useful for the prediction of future effects of global warming
and support in engineering and developing carbon mitigation technologies, as well as analyzing
and developing novel renewable energy sources such as wind and solar energy. Finally, Al can
help to reduce and optimize energy consumption in homes, industries, energy networks, and
transport and distribution systems. The following case study of the United Nations demonstrates
that Machine Learning models contribute to the prediction tasks based on climate change data
and focusing on greenhouse gas emissions, fossil fuel production, and reforestation. These tasks
can efficiently support decision making and policies for climate change.

An outlined approach to understand the current climate situation and perform a prediction of
what might happen in the future is proposed. Emissions dataset for coal, gas, oil, peat
combustion, non—energy use by the U.S.A. states, and fossil fuels production dataset for the
U.SA. states during the last decades are merged and analyzed through Exploratory Data
Analysis. Daily temperature and CO2 concentration affecting the reforestation process in the
U.SA. during 10 years have also been considered. Finaly, predictions of U.SA. states
greenhouse gas emissions and fossil fuel production are made up to the year 2050 through
Machine Learning models such as Artificial Neural Networks and Gradient Boosting Machine.
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11.3. Al for Cybersecurity

Cybersecurity remains one of the major chalenges in the information systems field and Al
techniques are being used to provide new solutions. Always-on monitoring generates huge
amounts of data that can be used for Security Information and Event Management (SIEM).
However, compared to other industries, cyber-attacks generate, by definition, very modest
amounts of data. The Cyber Battlefield is still «a primacy of the attack». When attacker data will
be more abundant, other Cybersecurity strategies will emerge. It is inevitable that a lot of
research will be needed on issues related to the CIARDS that will have to protect industrial,
commercial, financial Big Data.

Al and ML infrastructures are already being used for cyber-attack detection, identification and
response, including spam detection, malware categorization, intrusion detection, traffic analysis,
attack analysis and mitigation, and vulnerability assessment. Hacking techniques that use Big
Data analysis to target individuals or to identify the services accessed by Home/Business Users
are also developing.

12. Future Research Directionsin Big Data

Concluding the exploration of Big Data, the discussion now focuses on future research
directions. Big Data refers to the voluminous information that inundates organisations on a daily
basis. It is principled on the ‘four V'S': velocity, variety, volume and veracity—in other words,
the generation of data in rea time of myriad types—stemming from millions and billions of
sources worldwide—such that it clearly enables new and innovative capitalisation of the data
sets created. Modern organisations are making use of this information to identify risks and gain
insights that can be utilised to predict and solve problems. The deluge of data, however, seldom
comes in completely uniform, neatly organised and easily digestible form, warning researchers to
be cautious of the real value of Big Data.

A massive explosion in computing devices, which are able to collect evermore complex data, as
well asincreasingly sophisticated algorithms to derive different types of knowledge, requires the
utilisation of existing and emerging techniques, as well as the development of new algorithms for
real-time processing of Big Data. In many domains, Big Data has the potential to transform
existing functions by delivering richer, faster and deeper insights. However, there are technical
and non-technical limitations related to Big Data. Therefore, innovative ideas and methodol ogies
are essential to further progress. These requirements need focused research attention and effort.
To cultivate a better understanding of these issues, scholars have examined the effect of Big Data
on individuals and society in general, e.g., by addressing the Big Data ethical problems of
privacy and security. The research agenda is wide and extensive, ranging from frameworks for
Big Data checklists to support marketing decision-making to the utilisation of advanced Big Data
predictive analytics to identify potential suppliers, and product—-market opportunities.
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12.1. Real-time Data Processing

Providing a real-time streaming analysis for big data in a Hadoop framework is a challenge;
Hadoop has an extremely high access cost and is not fit for real-time analysis. The use of the
Superconducting QUantum Interference Device (SQUID) alows the transformation of a
superconducting quantum bit to detect real time analysis in the Hadoop framework. Using Spark
Streaming, a high-performance platform for real-time data processing and real-time data analysis
in al industries, including rea-time sensor analysis, is examined. Machine-to-machine
communication has become an area of focus in recent years. Emotion is one event in
communication that has vital importance for human beings, and Dempster—Shafer Evidence
Theory was used for question selecting.

New trends in artificial intelligence techniques have proven that machine intelligence offers
promising solutions in the decision-making process for a diverse range of applications. Al has
thus been recognized as a support tool that provides human decision-makers with relevant
information and enhances their reasoning ability in complex environments. Focus areas for
future research in Al include explainable Al, using Al to tackle climate change and protect
biodiversity, and applying Al for cybersecurity. Future research directions in big data should be
considered in model processing and streaming analytics; ethical and legal concerns related to
planned and operational models; and predictive modeling with big data. Employing Al and big
datato serve environmental protection presents the challenges and opportunitiesin the field.

12.2. Data Ethics and Governance

Within the field of Big Data, ethical considerations are broadly defined and include aspects
related to the nature and personal information content of the data, cultural elements, and the
processing and manipulation of such data[126]. As an example, a survey-based study confirmed
that data collected for a particular purpose should not be used for another purpose, even in the
presence of anonymization, due to residual concerns about sensitive data[127]. These issues can
be addressed by formulating and implementing appropriate data privacy policies. Techniques
such as abstraction and aggregation can enforce distributed responsibility, incentivize users, and
limit the side effects of broad data accessibility [128]. To address data-related concerns,
strategies such as formalizing a data life cycle for collecting and managing personal information;
building an organizational framework to regulate data collection, organization, analysis, and
exhibition; and devel oping contextual integrity interpretations can be employed [129].

Data governance relates to a set of responsibilities and practices designed to ensure the quality,
availability, usability, consistency, auditability, and security of the data employed in an
organization. In China and the United States, the Privacy Protection Model for Information
Management (PM4IM) method systematically collects user requirements to help organizations
improve information privacy and governance by considering the technical, management,
strategic, and social aspects of data privacy protection [130]. However, a significant challenge
identified is that organizations attempt to minimize risk and related costs rather than establish an
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efficient and transparent information-privacy infrastructure. An information management model
applies Big Data in the product development field to enhance operational effectiveness, taking
into account regulatory and privacy constraints, competitive threats, and the need for
organizations to protect their actions from competitors. Organizations must be long-term oriented
and have the capacity to manage and control the risksinvolved with Big Data.

12.3. Predictive Analytics

The emphasis on real-time analytics and Al has resulted in myriad solutions that purport to
support the prediction of future trends, be it in the context of weather forecasting, earthquakes, or
diseases. These represent significant paradigms in data-driven analyses. Predictive analytics
exercises its influence across a plethora of applications, from the forecasting of natural disasters
and at-risk public health environments to crime prevention. The reported results highlight the
ability to provide substantial forecasting within these areas. However, the ever-increasing
availability of multimodal data, both in terms of structural properties and semantic content,
dictates a novel challenge for predictive analytics, which will centre upon the integration of
knowledge across multiple heterogeneous data sources.

As an investigation in ethics, the researchers explore the undesirable or potentially harmful side-
effects that may arise from instructions contained in product manuals, as a predictive feature
designed to reduce the occurrence of erroneous user behaviour. Such errors can lead to adverse
impacts upon the system that they support, both in a physical and a cyber context. This line of
inquiry reflects the importance of ethical considerations within technologies that employ
predictive analytics and serves as an appendix to the broader exposition of ethical issues
concerning privacy and surveillance.

13. Future Research Directions in Blockchain

Multiple challenges still need to be solved in blockchain performance, regulation, and business
models, namely scalability, sustainable regulation, and integration with legacy systems. Pursuing
blockchain for social good also represents an important area of future study. Topics investigated
include the integration of blockchain with the Internet of Things, cross-chain and side-chain
mechanisms, and solutions that safeguard privacy.

Decentralized applications offer benefits but face limitations regarding privacy, operationa
costs, and throughput. Challenges arise when transgender individuals attempt to participate in
blockchain-based voting or finance systems without disclosure of their transgender identity.
While various mechanisms have been proposed for combating fake news, implementing these in
a decentralized manner remains an open issue. The popularity of peer-to-peer systems coupled
with the global risein artificia intelligence provides opportunities for collaboration between P2P
and Al technologies; creative proposals along these lines are welcome.
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13.1. Blockchain for Social Good

Blockchain technology can be used to address important socia issues such as poverty,
inequality, and climate change. Examples of Blockchain for Social Good initiatives include
platforms that enable transparent charitable donations, microfinance loans for underserved
communities, and decentralized renewable energy projects. Despite its potential, there is still
debate about whether Blockchain is the most adequate technology for achieving these social
goals.

Currently, challenges associated with the implementation of Blockchain-based initiatives for
social good include scalability issues, the lack of regulatory clarity, and the need for
interoperability between different platforms. Several questions remain unanswered. Is
Blockchain really necessary for addressing social challenges? Do existing applications suffer
from data fragmentation? Additionally, how do FinTech and DeFi contribute to the central
banking system during a crisis period? Furthermore, how could the integration of Blockchain
with other technologies, such as the Internet of Things (10T), support social initiatives?
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13.2. Integration with 10T

Blockchain technology serves as a natural solution to many challenges inherent in the Internet of
Things (1oT) industry by providing decentralization, autonomy, and robust security mechanisms
to its devices. Recently, blockchain was designated as a top investment area in |oT. Industry
players are harnessing blockchain's unique properties to resolve multiple complex issues,
including tamper-proof data storage and uniform, robust infrastructural connectivity across the
globe
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The problem areas that can be addressed by combining blockchain and 10T solutions. Juniper
Research predicts that, by 2023, over 700,000 active blockchain networks will be managing
billions of connected devices, with the combined loT—blockchain market set to exceed $12
billion in value. Nevertheless, as with many novel technologies, the loT—blockchain integration
remainsin its nascent stages, with many promising avenues yet to be explored and devel oped.

13.3. Cross-chain Solutions

Many blockchain platforms can be forked and modified, resulting in separate blockchains with
mostly similar internal structures but carrying some differences. These distinct blockchains
coexist smultaneously, and users can collaborate and transact across platforms that can provide
complementary features and/or services. Cross-chain techniques enable interoperability across
multiple blockchain platforms through cross-chain transactions, cross-chain routing, and cross-
chain communication protocols by connecting independent blockchains. A set of business
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applications that leverage two or more blockchains' characteristics and lending each other’s help
to support the operation or execution of atransaction is known as cross-chain business. A notable
example of across-chain businessis the use of Bitcoin for payment on the Ethereum blockchain.

Some examples of cross-chain protocols are the J.P. Morgan Interbank Information Network,
measuring transactions and trades between banks and corporations; Zilliga, a high-throughput
blockchain supporting cross-chain communications; Hadera, offering a decentralized public
ledger for the Internet of Things via the hashgraph consensus algorithm; and Tesla, working with
Dogecoin to permit transactions in the company’s retail operations. By leveraging the properties
of these blockchains, emerging blockchain-based applications unlock new value dimensions
across different industries, such as finance, insurance, manufacturing, and supply chan
management [2,3].

14. Interdisciplinary Approaches

Implementation of the Al, Big Data, and Blockchain technologies are considered very important
throughout many industries. Challenges in the implementation of these technologies are explored
and analysed in sections 8, 9, and 10, respectively. These challenges are then related to future
research directions in sections 11, 12, and 13. In the activities of interdisciplinary research, Al
can be combined with those of Big Data and Blockchain. For example, from the GPT series of
ChatGPT (Chat Generative Pre-trained Transformer), research can apply the technology to
COVID-19-related problems with COVID-19 textual big data (such as research disease
spreading models) and publishing records on coin-based blockchain (such as a decentralized
publishing model). Exploring case studies and practical application examples of Al, Big Data,
and Blockchain technologies yields practical implications in various application areas.
Consideration of compelling challenges facilitates the identification of emerging research
directions.

Al can be denoted as intelligence exhibited by machines or software. Al subfields include
predicate logic, search algorithms, knowledge deduction, neural networks, expert systems,
Machine Learning, Natura Language Processing (NLP), and Computer Vision. Machine
Learning focuses on teaching machines to learn from historical data. NLP enables computers to
understand human language. Computer Vision supports extraction of meaningful information
from images and videos. Big Data involves the processes of data collection, data storage, and
data analysis. Since Big Data can be collected and stored in large quantities, its analysis often
requires advanced analysis techniques such as Artificial Intelligence. Blockchain ensures secure
transactional lookup without information tampering by distributing ledgers across a network,
with the nodes making collective pairwise decisions on new blocks of information added to the
chain.
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14.1. Collaboration between Al, Big Data, and Blockchain

Artificial Intelligence, Big Data, and Blockchain are among the most popular technologies of our
time, with numerous studies exploring their technical characteristics and industrial applications.
Combination also helps reveal emerging challenges and upcoming research directions in these
fields. Examples of joint integration are demonstrated by several implementations and associated
challenges across the three technologies. A recent study presents case studies, industry
implementations, challenges, and future research directions related to artificia intelligence, big
data, and blockchain.

Artificial intelligence provides the foundation and technology for creating intelligent robots that
mimic human brains. Machine learning, natural language processing, and computer vision are
fundamental branches of artificial intelligence. Healthcare, finance, and retail services industries
have adopted machine-learning algorithms in their daily operations. Big data involves gathering
huge amounts of data and drawing meaningful inferences from raw data. Big data
implementation areas include telecommunication companies, manufacturing industry, and
customer behavior analysis. Blockchain technology allows a decentralized system to eliminate
central authority by implementing distributed ledgers and ledgers. Smart contracts, consensus
mechanisms, and transaction blocks are foundational components of blockchain technology.
Blockchain has been integrated into various industries, including supply chain management, land
registration, and e-voting systems.

14.2. Case Studies of Interdisciplinary Projects

Infrastructure management companies are exploring the application of Al, Big Data, and
Blockchain technologies in various sectors. An approach that combines public administration
with Al and Big Data analyses was developed at a Dutch land registry company—it
automatically determines the priority of client requests. In the Netherlands, Al assists education
providers in adapting offerings to learners’ wishes and needs. The Public Utilities Department in
Toronto addresses electricity outages with an Al model that uses data on weather and past
interruptions for prediction. Quality assessment of customers' experiencesis also performed with
NLP.

Big Data analyses applied to public administration in the Netherlands involve the use of
advanced graphical representations and visualization of complex relationships of clients and
requests. In the United States, Big Data analysis powers Telecom providers in resolving issues
and planning services for rarer types of catastrophes. Integrating customer calls and transactional
data generates insights on customer experience, which, when combined with modeling and data
visualization, support operations, marketing, and advocacy, as in a Belgian bank. A
manufacturing company in Italy applies Big Data analysis to monitor and predict machine status,
including maintenance warnings. And in Australia, Big Data enables providers of home and
community care services to obtain a better understanding of client needs for improved care
planning.
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Fig 3.Future directions

15. Conclusion

The three technologies discussed here—Al, Big Data, and Blockchain—are complementing one
another and witnessing exponential growth in new research and innovations. Many new and
specialized interdisciplinary directions are being constructed at the intersection of these
technologies. Fresh sets of challenges emerge for these technologies whenever they become
intertwined. The interdisciplinary topics of ‘* opportunities and challenges’ and ** future research
directions'’ of these three technologies, Al, Big Data, and Blockchain, are indeed fascinating.

The final section of this study selected and briefly presented possible future research directions
and challenges of these three technologies. For the detailed analysis of these remaining topics,
readers are encouraged to consult other specialized sources. This approach alows a focus on
practical applications and emerging trends, in line with the preference for including case studies
and proposed research directions.
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