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Preface 

Artificial Intelligence-native databases are currently at the forefront of the rapidly evolving data 
management landscape. The book examines how database systems are changing to satisfy the 
needs of real-time, intelligent decision-making in different industries. The transition from 
traditional relational models to AI-driven architectures, cloud integration, optimization, and new 
developments like automation, explainability, and security are all covered in the chapters. 

This book's writing has involved both a thorough examination of contemporary data technology 
and a contemplation of the field's continuing opportunities and challenges. I want professionals, 
students, and anybody else interested in the future of databases to be able to understand both 
basic and advanced topics. I hope it encourages readers to welcome innovation and investigate 
the wise opportunities that lie ahead. 

I want to express my gratitude to my parents for their unwavering support during my journey, as 
well as to my peers, fellow researchers, and everyone else who has helped and inspired me. Their 
guidance and collaboration have been invaluable in shaping this book. 

Shashipurna Kurapati 
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1

Chapter 1: The Transformation of Database 
Technologies: From Relational to AI-Enhanced 
Systems

1. Introduction to Database Technologies
Database technologies are an integral part of the global economy. They present an attractive area 
of investment for venture capitalists, are a fundamental component of most software projects, 
and moderate our personal, social, and financial lives with their representations of individuals 
and the everyday. However, the hype that surrounds them is a far cry from their humble roots as 
a simple means of recording and querying progress on budget and hiring tasks. They eventually 
were reinterpreted as the key to information management and enabling business administrations 
to be competitive in increasingly digital economies. 

Fig 1. The Transformation of Database Technologies: From Relational to AI-Enhanced Systems
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They were subsequently understood as the catalyst for creating better products and services in 
almost every walk of life, culture, and pursuit. 

 

2. Overview of Relational Database Systems 
Relational Database Management Systems (RDBMS) have long been the foundation for storing 
and retrieving data for businesses across all industries worldwide, having been introduced in the 
1970s. These systems are based on a rigid structure—the data model, formally defined through 
the relational model—that defines data objects and the relationship between them. This approach 
offers great flexibility; data relationships can be created, updated, and deleted easily, queries are 
built based on the data model rather than the physical model, and the databases are highly 
scalable and fast. However, it also features many rigid characteristics, with inflexible schema, 
less support for complex queries, and less support for other types of data (such as graph, spatial, 
or object data). The relational model has provided a highly established and proven approach for 
storing and retrieving data. Transactional systems largely use relational databases with OLTP for 
applications such as core banking, manufacturing, billing, and so on. 

2.1. History of Relational Databases 

Database technologies have undergone dramatic transformations since the foundations of 
relational databases were laid in the 1970s. In the early years, relational database management 
systems (RDBMSs) completely overshadowed all other approaches to data management. 
However, as modern applications became increasingly complex and database designs were 
targeted to serve a broader range of services, the limitations of the relational technology started 
to surface[1]. Two classes of non-relational database systems emerged at the beginning of the 
new millennium as an alternative approach for data management in the cloud, for Big Data 
analytics, and for large-scale data streaming. NoSQL systems enabled the manipulation of semi-
structured and structured databases, whereas NewSQL systems supported structured and 
relational data. 

Today, a new wave of database systems is on the rise. Next-generation systems, known 
collectively as AI-Enhanced Database (AI-DB) Systems, are enriched with AI capabilities that 
are designed to handle one or more stages of the data pipeline. These new systems leverage the 
extensive use of Artificial Intelligence (AI) and Machine Learning (ML). Progress in ML has 
also led to an increased interest in the physical design of modern workloads, mainly because of 
the impact that an optimal physical design and choice of configuration parameters can have on 
the price and performance. 

2.2. Key Features of Relational Databases 

Relational databases organize data in tables composed of rows and columns. Each table has a key 
column that uniquely identifies a relationship inside the table and acts as a key in other tables to 
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form relationships across the database. Tables can be combined with operations like joins to 
create new tables for query results. Referential integrity constraints control how tables can be 
modified without breaking relationships. No-sql databases do not enforce these constraints. 
Relational databases use the SQL language for data query and programming. In the last decades, 
non-relational database systems appeared with models like no-SQL and new-SQL. Non-
relational databases have an edge over relational databases in terms of scalability, availability, 
and fault tolerance. However, non-relational databases should not be considered as an opposition 
to the relational database model. 

Rather, the emergence of non-relational database systems fills the gap of relational database 
systems by addressing the current modern business requirements, such as the cloud, the large 
size of data, and the intensive methods of extracting meaning from data, driven mainly by 
artificial intelligence. The ability of XAI databases to explain their outputs results in a reduction 
of the number of processing steps that are currently done outside the database and at a higher 
level. Such ability also leads to the creation of new applications in areas where explainability of 
AI is crucial, such as healthcare, financial services, manufacturing, telecommunications, and 
retail. 

2.3. Limitations of Relational Databases 

Even though relational databases have served the world well, their atomic grouping of data into 
rows is not always desirable. Relational databases store data at the atomic level in tables, a two-
dimensional structure of rows and columns. Each entry in a table must be atomic, indivisible. 
This constraint prevents a single cell from holding more than one value. For instance, storing a 
customer's phone numbers becomes challenging: each number requires a separate row, or a fixed 
maximum number of columns must be allocated, though the actual number of phone numbers 
varies between customers [1-3]. When the data model is not normalized to a third-normal form, 
the data cannot be stored in an RDBMS. If the model is not normalized for a business report, a 
NoSQL database with hierarchical storage is ideal. 

Postgres has overcome this limitation by allowing non-atomic groups to be stored in a cell. 
Postgres is a great RDBMS for geospatial queries. Another disadvantage of RDBMSs is their 
difficulty in scaling across distributed computing architectures like clusters or cloud-scale virtual 
private servers that evolve and add more machines over time. 

3. Emergence of Non-Relational Database Systems 
Non-relational databases—based on so-called NoSQL (not only SQL) and NewSQL models—
have evolved to address many of the limitations embedded in the relational model. NoSQL 
databases are characterized by flexible schemas, simplified design, and horizontal scaling, all of 
which contribute to efficient handling of large volumes of diverse, semi-structured, and 
unstructured data without the rigidity imposed by schemas and relations. Consequently, NoSQL 
supports iterative and agile development, enabling rapid data extraction and querying. 
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On the other hand, NewSQL databases preserve the anterior relational models and SQL querying 
standards, including ACID transactional properties, yet overcome drawbacks through non-
locking concurrency control mechanisms, distributed architectures, and elastic resource 
allocation. Both NoSQL and NewSQL represent a response to the expansion of database-related 
challenges not amenable to solutions offered by commercial relational systems. 

3.1. NoSQL Databases 

NoSQL, an abbreviation for “not only SQL,” designates a broad range of data management 
models that do not adhere to the relational model and SQL query language. NoSQL models 
acquired popularity in the first decade of the 2nd millennium thanks to their demonstrated 
capability to manage Big Data and to scale on machine clusters. 

Using a different terminology, one might state that NoSQL models typically relax one or more of 
the ACID principles that underlie relational databases. The motivation behind such relaxations is 
their reconciliation with the CAP theorem, which establishes that a distributed database cannot 
simultaneously provide strong consistency, availability, and high tolerance to network partitions 
(due to node failures). NoSQL models sacrifice some degree of either consistency or availability 
to preserve their ability to cope with node failures. The main NoSQL categories with 
representative examples are as follows: document (MongoDB), key–value (Dynamo), column 
(Big Table), and graph (Neo4J). 

3.2. NewSQL Databases 

The limitations of NoSQL databases have resulted in the emergence of various NewSQL 
databases, exemplified by MemSQL (now SingleStore). As described bydesigner.io, MemSQL, a 
distributed, scalable, relational database supporting SQL queries, combines the benefits of 
traditional RDBMS and NoSQL. This fusion enables transactional applications while delivering 
high performance, scalability, and simplicity for real-time analytics solutions. MemSQL 
achieves this through a distributed, shared-nothing architecture, capturing SQL workflows and 
ACID semantics of transactional databases, while providing NoSQL-like scalability and 
operability. Consequently, it supports the command of SQL for data definition, manipulation, 
query, and transaction, and offers comprehensive relational database services with consistent low 
latency and high throughput. MemSQL delivers one unified database service for operational 
analytics, delivering rich data insights on real-time transactional data. 

Thus, the DBMS market has developed multiple alternative database models and technologies to 
overcome the limitations of relational database systems. NoSQL databases represent a family of 
nonrelational databases designed to address the challenges of managing large volumes of 
distributed, semi-structured, and unstructured data while supporting the rigidity of relational 
databases. The eight prominent NoSQL databases outlined above—from columnar CQL through 
to graph Gremlin—offer drastically improved storage management and query processing 
capabilities for novel application varieties, including web, IoT, and big data. Nevertheless, 
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limitations remain. NewSQL databases seek to reconcile the benefits of SQL support and ACID 
semantics with the scalability and low latency of NoSQL, delivering a unified database service 
for operational analytics. 

3.3. Comparison with Relational Databases 

Relational databases have been dominant since IBM published the paper by Codd (1970). Yet 
certain shortcomings have limited their wide acceptance. First, they are generally not good at 
handling very large amounts of unstructured data, such as images and video. Second, scaling up 
relational databases is very costly, since it requires more powerful CPUs and large amounts of 
RAM—a practice known as vertical scaling. Third, the dependency on the rigid schema tends to 
complicate the ETL (Extract, Transform, Load) processes to feed the data into the database. 
Finally, performing efficient large-scale analytics for data stored in relational databases tends to 
be challenging. 

Over the years, these limitations have resulted in the emergence of non-relational database 
technologies, popularly labelled as NoSQL. Subsequently, the NoSQL approach was 
complemented by NewSQL technologies. The term NoSQL was first coined in late 1998 for a 
lightweight open-source relational database that did not expose the standard SQL interface found 
in traditional databases. However, the term NoSQL gained wide popularity only in 2009, when 
Johan Oskarsson used it for a meetup discussing open-source distributed databases. The meetup 
included databases such as Redis, Cassandra, and Neo4j. EM Codd’s 1970 paper continues to 
shape data management. 

4. Introduction to AI-Enhanced Database Systems 
The term “AI-enhanced database” and the concept of “AI in databases” describe the growing 
integration of artificial intelligence into database technologies and database management 
systems. This development utilizes new technologies that support artificial intelligence to 
enhance or supplement existing data management processes. 

In recent years, several industries—healthcare, financial services, retail, manufacturing, and 
telecommunications—have augmented or replaced traditional databases with AI-enhanced 
alternatives. These systems support new applications that incorporate artificial intelligence and 
machine learning, enabling more rapid decision-making with access to a broader range of 
unstructured data. The trend toward AI-enhanced systems aims to improve current machine-
learning capabilities by seamlessly integrating user intent into the database, thereby facilitating 
advanced analytics and operational efficiency. 

4.1. Definition and Scope 

Database technologies are the backbone of modern data management; they enable organizations 
to efficiently store, manage and analyze large amounts of information. This support of decision-
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making processes is crucial in a digital environment where business success is often directly 
linked to the quality of the decisions made. 

Relational database management systems account for a large portion of industrial and 
commercial deployments in the last three decades [3]. Commercial implementations such as 
Oracle Database and Microsoft SQL Server are two of the twenty most powerful computer 
programs of all time. However, relational databases also present limitations and therefore 
NoSQL / NewSQL non-relational models have emerged to address these shortcomings. 

4.2. Technologies Driving AI in Databases 

The integration of AI in database technology encompasses a range of discrete yet interrelated 
developments. For instance, Turbo-VCM combines probabilistic data models with machine-
learned components, automating the inference of group-by location for contextual visualizations. 
Data requirements analysis, as performed by AIPlanner, utilizes AI planning to construct detailed 
plans that match user-supplied questions. Additionally, machine-learned components comprising 
AI-EDLC are designed to alleviate the complexity of data wrangling, cleaning, and integration. 

Beyond AI-enhanced database systems, advancements in cloud computing have catalyzed the 
rise of specialized data ecosystem services—including popular cloud analytics engines such as 
Snowflake and BigQuery. The services encompass data-messaging, storage, security, and 
governance. Furthermore, even within the domain of relational database systems, interest in the 
transformative impact of AI and machine learning has intensified. 

5. Applications of AI-Enhanced Database Systems 
A wide range of industries rank among the early AI adopters. As AI is embraced and applied, the 
volume and scope of available data is rapidly increasing, triggering a rising-bar effect on the 
underlying databases and database-management systems. This cause––effect relationship 
highlights the potential of AI-enhanced database systems to contribute to innovative applications 
across multiple traditional and new AI sectors. 

The currently evolving applications of AI-enhanced database systems address emerging business 
needs, as illustrated by examples across various industries. Enterprises in healthcare, financial 
services, retail, manufacturing, and telecommunications face common challenges in using data 
for increased revenue growth, cost reduction, and risk minimization. However, AI’s actual 
impact goes much “deeper,” producing a transformational effect on the selected use-case 
category, the corresponding sector, and, quite often,--amplified through the supply chain or 
related sectors--the overall economy. Many of these applications echo the key trends identified in 
other sectors, and their lessons and principles can be extended to other areas. Three examples 
further illustrate the stage and breadth of AI application in database systems. 
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5.1. Healthcare 

The healthcare industry, with its vast data volumes, faces clinical data management challenges 
that traditional systems struggle to address. AI-enhanced healthcare systems offer solutions that 
lower costs, improve patient safety, and deliver quality medical care. The advantages of an AI-
enhanced database can be seen in its ability to categorize, discriminate, transform, forecast, and 
prescribe, assisting in decision-making processes. For example, associating disease patterns with 
X-ray images aids in making accurate, quick decisions; banking fraud detection guards against 
account hacking; customer income prediction supports financial consultancy; and manufacturing 
winner selection guides marketing and manufacturing strategies. Although the key database 
technology employs a Data Warehouse Engine, Artificial Intelligence is instrumental in ensuring 
the safety and quality of human life. 

5.2. Finance 

Artificial intelligence (AI) applications are transforming banking and the broader financial 
services industry. AI technologies are being deployed for a wide range of tasks, from setting 
credit and insurance policy rates to determining which applications for loans, mortgages, and 
insurance benefits to approve [2,4]. AI is also highly beneficial for detecting credit card fraud, 
with most major credit card providers employing machine learning algorithms specialized for 
that purpose. 

AI applications facilitate cross-selling for banks and hedge funds, analyze the effectiveness of 
advertising campaigns in financial services, and recommend preferred shares and bonds for 
individual investors based on their risk tolerance. Additionally, investment management firms 
utilize AI-powered chatbot assistants and document analysis tools to help investors make 
informed decisions. In treasury departments, interest rate forecasting applications employ AI 
techniques to minimize risk. Before the pandemic, many financial services firms were already 
deploying artificial intelligence. Enhanced customer experience, greater efficiency, reduced 
costs, and improved operational control were the top benefits driving adoption. During the 
COVID-19 crisis, these benefits became even more apparent, leading more institutions to 
implement AI. 

5.3. Retail 

AI-enhanced database systems are deployed in the retail and e-commerce sectors to improve the 
customer experience through real-time responses to questions or issues during the decision-
making process while shopping online, at home, on their phone or computer, or in the store. The 
promise of AI is that data can be analyzed in real-time and insights delivered to customers in the 
form of personalized experiences and recommendations based on their spending habits. Real-
time targeted advertising can be presented in price-reduced coupons through emails or ads on 
social media sites. Physical stores can reduce operating costs using AI to monitor security, loss 
prevention, customer movement and products they pick up but don’t purchase. 
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The retail industry uses the vast amount of customer data it collects to manage inventory, change 
marketing strategies in real time, and identify products to suggest to each customer during their 
shopping experience by leveraging AI technologies. The data as well as the predictions can be 
accessed on mobile devices by the decision makers of the company. Both online and brick-and-
mortar stores have increased their use of robotics to replenish shelves, fetch items in the store 
and fulfill online orders. Chatbots acting as virtual sales associates guide shoppers through the 
stores, highlighting promotions and advising on complementary products while improved 
geographic information systems (GIS) map customer shopping patterns for the retailer. 

5.4. Manufacturing 

The manufacturing sector is adopting AI-driven database technologies to achieve increased 
production efficiency and production delivery. By integrating AI-driven systems with IoT 
equipment, real-time connection to production lines generates extensive data, which is then 
cleaned, processed, stored, and analyzed continuously by AI-enhanced database systems. The 
identified challenges in production process management can be addressed by AI-integrated 
solutions; however, adequate data security is essential to mitigate potential leakage during the 
analysis phase. 

Manufacturing enterprises seek continuous improvements in production efficiency, cost 
reduction, and overall increased product quality and related services. Challenges involving the 
complex interactions between physical and logical devices can have significant impacts when 
overlooked [5-8]. An intelligent human-machine environment supported by AI enables 
manufacturers to efficiently schedule production, dynamically manage the supply chain, and 
assist in machine maintenance optimization. Real-time and effective management information 
services for production lines are critical to the development of smart factories. 

5.5. Telecommunications 

The transformation of telecommunications is sustained if not enabled by advances in data 
collection and data analysis. The Big Data challenge is considerable: A Cisco report forecasted 
in 2017 a quadrupling of global mobile data traffic, underpinned by a 10-fold increase in the 
number of mobile devices [53]; and a McKinsey analysis for the European Union concluded that 
within Europe the telecom operators would be responsible for managing a share of Big Data 
responsible for 50 to 80 exabytes of new data annually, and that they are well-positioned to help 
other sectors manage their Big Data [54]. Public networks are evolving towards 5G, which for 
the first time has been designed to deliver highly reliable and low latency connectivity that 
supports flexible network slicing and an increasing number of devices per cell. This enables new 
services as well as new business and revenue models for the network operators. 

Adoption of AI-enhanced database technology in telco markets requires a flexible platform that 
can process large training sets, prepare and cleanse the data, and apply machine learning. In a 
broad cross-industry McKinsey analysis, three applications for telcos were highlighted: real-time 
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multimedia translation and analysis, cybersecurity, and fraud detection [51]. Dialpad, a provider 
of cloud telephony and voice, video, and conferencing solutions, is using AI to create customer-
facing applications with speech performance and emotion recognition, in addition to assisting 
support agents. In Hungary, Telekom is working with Accenture to reduce customer churn, 
improve marketing campaign effectiveness, and enhance the overall customer experience using 
AI. 

6. Case Studies of AI-Enhanced Systems 
Examples of AI-enhanced database systems are emerging in many industries, including health 
care, financial services, and retail. Customer support in all industries is being transformed by AI 
chatbots, including banking, airline travel, and supply chain management. Surveillance systems 
in manufacturing, logistics, and telecommunications are enriched by image recognition systems. 

Health care institutions are increasing database performance and security with AI and 
implementing AI applications. These include disease monitoring, remote patient monitoring, 
image analysis, and prediction of potential epidemics. Banks and other financial companies are 
using AI-based database services to improve power, performance, and risk analysis, as well as 
fraud detection. Several companies use AI-driven database services to support vibration analysis, 
image recognition, trash detection, facial recognition, and natural language processing. 

6.1. Case Study 1: AI in Healthcare Databases 

AI-enabled databases have begun to transform many real-world applications, including 
healthcare, financial services, retail, manufacturing, and telecommunications. In each case, 
incorporating AI capabilities into the database provides a competitive advantage. The following 
examples illustrate three of these applications. 

An exponentially growing population, along with advancements in treatment methods and 
healthcare facilities, is generating unprecedented volumes of healthcare-related data. This data 
explosion renders the efficient assessment and diagnosis of patients more difficult. By utilizing 
AI-enabled databases, healthcare organizations can support physicians with advanced decision 
support systems. These systems analyze vast amounts of data to detect, interpret, and predict 
trends in order to establish a connection between patient scenarios and known outcomes. 
Hospitals can then apply these techniques to develop advanced Intelligent Patient Assessment 
systems that rapidly analyze patient data and conditions for swift and accurate diagnosis. 

6.2. Case Study 2: AI in Financial Services 

Information is the foundation of every business. Companies that use their data effectively can 
sharply improve decision-making and deliver faster turnaround times. The principle applies to 
every individual in a company and at all levels—from entry-level agents to executives, from 
providing answers for customers, to making the right call when investing, to managing a 
company in a manner that achieves maximized value for its shareholders [6,9]. The growth of 
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artificial-intelligence (AI) tools is accelerating. As these tools gain market penetration, the 
impact on the database market is significant. AI-enhanced database systems are those that use 
various database and other technologies in conjunction with AI technology. The term ‘‘AI-
enhanced’’ refers to the fact the database is strengthened in some manner by the integration of AI 
and associated technologies. 

Chatbots are a foundational AI use case and continue to evolve toward smarter answers as 
machine-learning and natural-language-processing techniques advance. Even relatively 
unsophisticated AI applications can reduce costs and improve customer satisfaction significantly. 
Major financial institutions depend on AI-assisted technologies such as optical character 
recognition (OCR) for simple document handling and authentication tasks such as mortgage 
applications and credit card applications. AI tools help regional banks and credit unions battle 
fraud, comply with increasingly complex regulations, and generate more business from cross-
selling and up-selling. Other applications include virtual financial planners, analysis of 
investment possibilities, and fraud detection, identification, and prevention. Case studies confirm 
that AI, in large and small banks alike, delivers better efficiencies, improves quality, reduces 
workload, and generates higher profits. 

6.3. Case Study 3: AI in Retail Operations 

Rapid developments in artificial intelligence (AI) have affected different levels of database 
management systems (DBMSs) and transformed applications through enhanced data intelligence 
[10]. AI engines now contribute to closing the gap between data and value by enhancing 
understanding and facilitating the extraction of value. Businesses adopting AI-enhanced DBMSs 
and exploiting the enhanced intelligence across DBMS components showcase significant 
advantages across diverse sectors. 

Retailing is a prime example of where AI has revolutionized corporate activities. Data from 
internal vertical chains—suppliers, distributors, warehouses, retail stores—and historical 
activities serve as a major application area. Given the growing importance of retailing, especially 
in developed countries, retail data analysis is increasingly recognized as a strategic element for 
corporate success. AI's application in retailing is dedicated to making corporate activities more 
responsive to end-user needs through data intelligence. It contributes to process innovation and 
functional management, ultimately enhancing value to customers. Deployment areas include 
sales forecasting, customer profiling, inventory planning and management, cloud resource 
optimization, customer relationship management (CRM), and strike detection, illustrating the 
broad integration of AI into retail operations. 

7. Challenges and Ethical Considerations 
AI-enhanced databases are increasingly addressing key issues faced by industry verticals, 
including database security provisioning, real-time data insights, and regulatory compliance with 
GDPR, Basel III, among others. The management of access privilege is critical to ensure data 
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confidentiality and prevent unauthorized access or data breaches. Automated database activity 
monitoring and the application of AI can provide real-time alerts regarding abnormal or 
suspicious database activities, particularly during events such as terrorist attacks or bank 
robberies. 

However, recent research has highlighted concerns regarding bias in AI algorithms. Examples 
include facial recognition systems that predominantly identify white males and the targeting of 
black men by online crime prediction tools. Accordingly, various institutions have issued ethical 
guidelines for AI and related applications. AI-enhanced database systems are penetrating diverse 
industry verticals, offering smarter and more efficient services. In healthcare, AI analyzes patient 
data to determine disease susceptibility and optimize treatment recommendations. The financial 
sector employs AI to detect suspicious transactions and prevent fraud. Retail companies utilize 
AI algorithms to tailor products and services to customer preferences, while the manufacturing 
industry leverages AI for quality control, fault prediction, and inventory management. Customer 
churn prediction also benefits from these intelligent systems. Telecom service providers use AI 
to detect fraudulent calls and spam. 

7.1. Data Privacy Issues 

Data security plays a vital role in establishing AI-enhanced database systems for industrial 
applications. Privacy, confidentiality, integrity, and security remain the top concerns for data 
repositories in both relational and non-relational database management systems. The recent data 
breaches at leading corporations such as Facebook and Amazon have highlighted the criticality 
of protecting user data stored in AI-enhanced information systems. These risks can be addressed 
by adopting a procedure of data anonymization or deidentification to ensure individual privacy 
during the data analysis process [10-12]. The disclosure of sensitive data can generate potentially 
devastating effects on the privacy of individuals during a retrieval or data-analysis process. 

In the early 1970s, researchers at the Federal Trade Commission in the USA recognized that the 
disclosure of sensitive and confidential information might lead to potentially devastating effects 
on individual privacy. One of the reasons for potential privacy leakage is the association between 
individual information in the published data and their identities. The release of personal 
information of individuals for conducting data analysis has been acknowledged as a privacy 
disclosure vulnerability. Credit card companies, governmental organisations, hospitals, banks, 
and many other institutions collect a lot of information about their customers, and their privacy is 
vital for a safe and fair society. Indeed, most of the practices of the companies that handle the 
data of their customers fall under data regulation. Organisations use the information of their 
customers to support their business models and strategies. Sensitive and confidential data are 
protected against unauthorised individuals or organisations; however, these data can, in principle, 
be accessed by parties internal to the company for use in various activities. Thus, the exploitation 
of these data did not balance privacy concerns and interests of the public. 
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7.2. Bias in AI Algorithms 

The emergence of powerful AI algorithms has led to the integration of cognitive capabilities into 
traditional large-scale data management systems, giving rise to the AI-enhanced Database 
Technology (AI-DB) research area. Databases serve as the backbone of many organizations, 
underpinning critical business applications across sectors such as financial services, healthcare, 
retail, manufacturing, telecommunications, and government agencies. AI-DB systems leverage 
AI techniques to extract meaningful insights from vast and varied data repositories. Through the 
inclusion of AI modules and components, these systems can analyze, interpret, infer, and even 
make decisions based on their analysis. 

Research has explored the deployment of AI-DB in several application domains. Healthcare 
organizations can employ AI-DB solutions to detect and prevent diseases using medical records; 
for example, systems can monitor blood pressure data to identify health deterioration. Bias in AI 
algorithms, however, poses significant concerns that cannot be overlooked. Pattern analysis in 
the financial services industry can identify fraudulent transactions; bias may lead to either false 
accusations or missed fraudulent activities. Retailers analyze POS and inventory data using AI-
DB to forecast sales trends that influence operational and promotional activities. Task scheduling 
during production can be optimized to reduce manufacturing costs through pattern analysis. 
Additionally, pattern analysis of network data plays a critical role in enhancing customer 
satisfaction ratings in the telecommunications sector. The implementation of AI-enhanced 
capabilities in modern database systems empowers organizations to optimally allocate resources. 
Ethical issues warrant serious consideration, especially when AI-DB assists in regulatory areas 
such as child protection, teacher monitoring, debt management, credit control, and arrest warrant 
decisions. 

7.3. Regulatory Compliance 

When an AI system makes a decision, the decision may be traceable to a database that is no 
longer in compliance with the regulations in place at the time or place of the decision. For 
example, a machine learning model trained on data obtained under GDPR may be used to enable 
a decision that is always made outside the scope of GDPR, thereby creating potential liability for 
the data controller. Probes emerge in the context of an audit and are designed to test the machine 
learning model for compliance with GDPR principles and regulations. Regulatory compliance 
probes are typically implemented using black-box testing techniques, which involve providing 
inputs to a system and observing the outputs, without any knowledge of the internal structure, 
logic, or handling of data. 

Regulatory compliance is critical because an AI system that is either in or out of regulatory 
compliance cannot be described as fair or ethical. Furthermore, regulatory compliance plays a 
significant role since AI-related jobs are increasingly regulated and governed by entities such as 
the EU, IEEE Standards Association, the United Kingdom, the United States, and the 
Organization for Economic Cooperation and Development (OECD). Financial regulatory bodies, 



 

13 
 

while currently concentrated on the financial services sector, are beginning to investigate and 
assess other industries that utilize AI, focusing on AI credit decisioning, AI recommendations, 
and AI pricing. 

8. Future Trends in Database Technologies 
The ongoing integration of artificial intelligence (AI) and machine learning (ML) with advanced 
database systems and the ever-expanding capabilities of cloud computing are expected to 
transform the future of database technologies. Continuous research is focused on developing 
more intelligent and highly automated database systems, including systems with DBMS-internal 
AI capabilities. Driven by the hybrid edge cloud paradigm, the rise of geodistributed, multicloud, 
and polymorphic database services also points to a future of database services that are more 
universally accessible, flexible, and elastic, thus catering to business and user needs more in 
spirit with the meaning of Database-as-a-Service. 

Interest in trend-setting new database technologies remains as strong as ever. AI- and ML-
enhanced (or empowered) database and data-intensive decision-making systems will play a key 
role in the digital transformation of many industries. Recent extraordinary advances in AI, 
powered by deep learning and large neural network models, point to the prospect of greatly 
enhanced, semantically oriented natural language and multimodal (e.g., speech and vision) 
capabilities that promise to address the persistent data management challenges of extracting rich 
business intelligence and knowledge from unstructured data, as well as from structured and text 
data combined. Demonstrating the cross-industry impact of AI-enabled data management, the 
applications range from managing electronic health records and enabling COVID-19 research for 
improved patient diagnosis, treatments, and policy recommendations, to financial decision-
making, personalized retail, production plans in manufacturing, and network optimization in 
telecommunications. 

8.1. Integration of AI and Machine Learning 

Over recent years, a host of novel types of database systems—often classified as NoSQL and 
NewSQL models—have emerged to overcome some of the many limitations of traditional 
relational database systems. The addition of artificial intelligence (AI) and machine learning 
(ML) technologies constitutes the most recent phase of this transformative evolution; the 
resulting AI-enhanced systems are already delivering advanced capabilities for data and 
information management. 

An AI-enhanced database system represents any database product that incorporates fundamental 
AI elements—such as natural language processing, knowledge representation, automated 
reasoning, machine learning, and computer vision—or relies on AI-based technologies to 
provide support for its development and operational phases. The broad range of AI techniques 
applied within database-supportive products continues to grow, and their applications span 
multiple industries. 
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8.2. The Role of Cloud Computing 

Cloud computing is an architectural model for delivering shared pools of computing resources 
scalable on-demand. Public cloud databases capitalise on the elasticity and scalability of their 
underlying cloud computing environment. At the same time, cloud providers share the 
responsibility of security with their customers and implement rigorous compliance controls and 
regular independent audits. Cloud providers such as Amazon, Microsoft, and Google built data 
centres in many countries to accommodate customer requests for legal boundaries on data. 

8.3. Emerging Technologies 

Subsections 8.3.1, Emerging technologies, and 8.3.2, Applications, focus on new approaches to 
and uses of database technology. Database technology has come a long way since early systems 
such as IBM's IMS and Relational Database Systems, notably Oracle. NoSQL and NewSQL 
systems exploit different storage and processing models in order to meet the diverse 
requirements of modern applications. Artificial Intelligence (AI)—more precisely, Deep 
Learning combined with Cloud Computing—plays a leading role in the transformation of 
database technologies into AI-Enhanced Database Systems, which are similarly being applied in 
a variety of contexts. 

8.3.1. Emerging technologies. Artificial Intelligence has long been a popular research topic. 
Breakthroughs in Deep Learning, combined with the growth of Cloud Computing and Cloud 
Storage, now enable practical applications in many fields. 8.3.2. Applications. The integration of 
Artificial Intelligence technologies is transforming many industries. Recent studies and reviews 
indicate that AI has achieved remarkable results in areas such as clinical healthcare, financial 
services, and retail [7,13-15]. In the healthcare sector, AI tools enable doctors to analyse clinical 
data for early identification of patients at risk of critical conditions, while equally important 
applications include supporting clinical decisions. In the financial industry, AI-based algorithms 
assist users with financial advice and offer services such as fraud detection. Other industries 
seeking to optimize their operations with a digital transformation approach also increasingly rely 
on AI technologies. Manufacturing businesses use AI for quality control and preventive 
maintenance, whereas the telecom sector exploits AI to enhance the customer experience. The 
integration of Artificial Intelligence technologies is thus transforming many aspects of everyday 
life. 

9. Conclusion 
Database technologies have come a long way since the early 1970s, when Edgar Frank Codd of 
IBM proposed the relational database model. The proliferation of data sources, the increasing 
demand for data storage associated with new emerging areas such as big data and the Internet of 
Things, and the need for faster processing of read and write transactions have highlighted many 
limiting characteristics of traditional relational database implementations. These limitations have 
led to the development of non-relational (NoSQL) database management systems, which differ 
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from traditional relational databases in various ways. NewSQL databases, which are fully 
relational but implement different mechanisms to achieve scale-out, have also appeared, offering 
solutions to the scale of certain databases. Artificial intelligence is beginning to have an impact 
on the database world and may become one of the main strategic areas for the future of database 
development. 

Over the past decade, more and more industries have started to see how AI solutions can bring 
value to their products and services. AI-enhanced database management technologies can 
simplify the creation and maintenance of industrial databases, while intelligent data management 
systems can improve both the quality of the stored information and the automatic generation of 
business intelligence. AI can optimise manufacturing processes and detect fraudulent actions. As 
a visionary research topic, the integration of AI and database technologies is making great strides 
and will have a profound impact in the coming years across all industrial domains, including 
software development, healthcare, finance, retail, manufacturing and telecommunications. 
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Chapter 2: Architectural Strategies for Managing 
Databases in AI Environments

1. Introduction to AI and Database Architecture
Artificial intelligence (AI) workloads differ markedly from those of traditional business 
intelligence, primarily because they incorporate the use of non-structured data like images, 
audio, and text. Furthermore, it demands real-time access to features that are feeding models for 
inference, typically via a real-time feature store, in order to be able to respond to requests with 
minimal latency. Databases have historically been considered non-natural hosts for machine 
learning (ML) models, which was often solved by building architecture that extracts data from 
the database and loads it on the serving infrastructure. However, certain techniques can be 
leveraged such that ML models can reside natively within the database itself.

Fig1. Architectural Strategies for Managing Databases in AI Environments
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The continuous integration of automation into everyday tasks hinges on the real-time extraction 
of knowledge from data, a capability provided by ML models. These models, encapsulated in a 
production-ready state, interact with external systems to deliver predictions. The external 
systems, in turn, generate feature data based on live and historical events. While the data 
retrieved is non-real-time, it must remain fresh and comply with stringent service-level 
agreements. As AI workloads become widespread and address diverse use-cases, organizations 
across sectors such as automotive, financial services, manufacturing, retail, and technology are 
revisiting database architecture and design principles. 

2. Architecting Databases for AI Workloads 
AI (artificial intelligence) workloads pose distinctive challenges; these involve training ML 
models on massive volumes of data or deploying previously trained models in live applications. 
The insights generated are then presented alongside traditional data, in dashboards or standard 
reports. Databases have long addressed the basic requirements of AI workloads [1-2]. Can they 
do more? Perhaps a broader ecosystem is required, exploiting the efficiency and features of 
databases where feasible, but going beyond when necessary. 

The broad architecture of an AI system that exploits databases differs greatly from the more 
familiar data warehouse or summary reporting environment. Three core capabilities are required. 
First, a “real-time feature store” must make suitable inputs to a model available for querying 
while respecting constraints on data freshness, low latency and consistency. Second, the 
streaming architecture must efficiently forward events to one or more live models, observing the 
varying tolerances of different use cases to dropped events. Third, ML models must be served to 
live applications under strict performance requirements. Specific techniques for serving models 
from the database kernel promise environmental benefits by consolidating infrastructure and a 
compelling performance advantage for large-scale use. 

2.1. Data Lakehouses 

Artificial Intelligence (AI) workloads consist of tasks that require algorithms to identify patterns 
and generate forecasts from data, as well as to modify system behavior based on past experience. 
Such workloads are typically categorized at a high level as being either predictive or mostly 
automated. Predictive AI focuses on anticipating outcomes, while mostly automated AI 
encompasses routine decisions made by autonomous systems. The complexity of AI workloads 
has profound implications on the engineering and database infrastructure needed to support 
them. Most notably, native AI is requiring enterprises to rethink their data management systems 
and architectures.More generally, it is becoming a best practice to position Artificial Intelligence 
as an independent workload within a company, supported by a specialized branch of the 
information technology (IT) organization that is distinct from business intelligence (BI) and data 
engineering. 
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The advent of AI workloads has in turn created a set of new requirements for database 
management systems (DBMSs). For one thing, AI workloads tend to require the handling of 
much larger volumes and more diverse modalities of data than most business intelligence and 
operational analytics workloads, many of which are in unstructured format or simply textual 
format. This diverse corpus of unstructured data has to be stored and indexed inside the database 
for efficient retrieval of relevant context during inference. The issues of scale latency and 
performance also apply to operationalized model serving, real-time feature stores, and streaming 
architectures [2]. Data management challenges arising from legal, regulatory, and business 
governance frameworks also require attention. A prominent example is the demand for 
explainability and fairness in model predictions, which underscores the importance of model 
monitoring and validation in production. Security and privacy for AI data is a growing concern 
for all organizations, especially during inferences involving sensitive personal information. 
Broadly, optimizing DBMS performance, ensuring availability, scalability, and security for AI-
related data, models, and inference responses concurrently and at scale are critical architectural 
considerations within modern DBMSs and data platforms. 

Due to mixed workloads, enterprises rarely adopt a single database approach. Instead, of the 
different AI use-case categories, data lakehouses form a foundational capability because 
organizations have the lowest degree of control over currently-existing data sources. Hence, 
“many data scientists focus on building predictive AI applications on top of native AI 
capabilities. These predictive AI applications have fairly lax latency requirements in terms of 
inference response times, ranging from subsecond to a few minutes.” 

2.2. Multimodal Storage 

AI workloads require managing data of diverse types and modalities. Images, text, video, audio, 
time series, and other unstructured sources constitute a growing share of the volume of data 
ingested and processed by organizations, as well as of the features associated with use cases 
supported by AI. In fact, a substantial number of AI use cases rely on principles of 
multimodality. Consider, for instance, Alexa or Siri, which can synthesize speech and images. 
Interpretations at the foundation of vision-language models are deeply multimodal and combine 
images and text data. Consequently, multimodal storage capabilities represent another essential 
requirement for an AI database architecture. 

Because every use case relies on its own data types, it is impractical to craft custom pipelines to 
convert a single feature store to support new target modalities when addressing a new scenario. 
Instead, the ability to natively support all the relevant modalities within a single feature store 
emerges as a more natural API to present to AI systems. The different components of data within 
a single AI workload may have very different requirements. A database suitably architected for 
these applications must be able to satisfy the specific needs of each data category. For that 
reason, multimodal storage and processing are typically associated with specialized submodules 
or subengines optimized for each task. For example, unstructured features—such as images, time 
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series, or text—are mainly consumed by AI models and therefore exhibit much lower query rates 
with very different access patterns and query types from the main relational table of the system, 
which is optimized for fast, random reads and writes, focused mainly on serving enrichment 
features for model queries. 

2.3. Unstructured Data Handling 

Artificial Intelligence workloads present new challenges for data management. Large-scale 
pretrained models require query, analysis, and scanning of vast amounts of training data to 
understand their behavior and bias. Online inference with these models requires retrieval of a 
fresh set of features for each request. A second wave of AI adoption in enterprise applications 
involves synthetic data generation and incorporating AI-generated content into transactions and 
communications. The size and rarity of such AI-generated content inhibit traditional storing and 
loading that large language models (LLMs) utilize. Consequently, database management must 
adapt to serve AI applications at scale. 

Two core architectural aspects enable data management for these setting requirements. Firstly, 
data lakehouses combine data warehouses with data lakes to support unstructured AI training 
data while retaining enterprise capabilities such as governance and ACID consistency [2-4]. 
Secondly, multimodal storage, exemplified by real-time feature-store and streaming 
architectures, supports the time-sensitive nature of AI inference prediction. These approaches 
influence strategies for serving machine learning (ML) models within database systems, where 
tightly integrating a model's architecture with the database engine is crucial for efficient serving 
and is orthogonal to the challenge of accessing features during prediction. 

3. Serving Machine Learning Models from Database Systems 
Artificial intelligence (AI) is transforming almost every aspect of life, and with that 
transformation arise new requirements for many of the underlying systems that support the 
technology. An increasing number of AI workloads are hitting database management systems, 
but database management systems are not optimized for these kinds of AI workloads. The 
storage of data of different types, including unstructured data, and the serving of machine 
learning models for inference are two particular challenges. 

Machine learning models are typically created with an ML framework such as TensorFlow or 
PyTorch, but inference issues occur because the creation processes within the frameworks are 
disconnected from the real-time processes needed for production. Feeding models at production 
into a database system and serving them from that system might solve both the incompatibility 
and performance issues, but doing so requires new techniques. 

3.1. Integration of ML Models within Databases 

Architectural Strategies for Managing Databases in AI Environments 



 

21 
 

Artificial intelligence (AI) workloads present a profound challenge in designing the systems and 
architectures of enterprises and software companies that provide AI services. The data involved 
in AI workloads is diverse, often stored in various database management systems (DBMSs) in 
use within the company. Data organizations must retrieve, integrate, clean, and prepare data from 
all these different systems for executing model inferences and training, with structures capable of 
responding to requests in real time; these architectures are often referred to a real-time feature 
stores. Graphical information often accompanies data tables to support the AI inference or 
training. Managing this information demands a streaming architecture, which can capture and 
serve sequences of past events, enabling a machine learning model in production to access its 
historical inputs and predictions. 

Model inferences produce representations or embeddings that encode semantic information about 
the concept the embedding captures (a joke, a human face, the meaning of a sentence, the 
characteristics of an image, etc.). These embeddings represent the different entities involved in a 
problem (the topics, the profile of a new product, or the preferences of a customer) [5-6]. The 
role of databases, and how these are architected, lies not only in storing and managing the large 
amounts of information used to train the models but also in giving support to the operations 
involved in the organization of inputs and outputs, both during the execution of inferences and of 
model training. 

3.2. Performance Optimization Techniques 

Machine learning (ML) is considered a key technology for the new era of Artificial Intelligence 
(AI). Databases have been central to business for many decades, providing capabilities such as 
storage, access, management, protection, and security of company data. ML models form the 
core of many AI applications, and these applications evolve with changes to the models 
themselves. 

ML models and their implementations are frequently deployed outside of data management 
systems. However, serving ML models inside databases can yield significant benefits, including 
efficiency gains, incremental model updating, execution of pipelines inside the database, and 
seamless integration with existing pipelines. These advantages help reduce inference latency and 
enable real-time loading of information into models. A major challenge in performing ML 
inference inside databases is the computationally expensive nature of matrix operations required 
by neural networks. Existing work has demonstrated that hardware acceleration through GPUs 
and FPGAs noticeably improves prediction speed. Nevertheless, to effectively support serving 
ML models inside databases, further optimizations are essential. 

4. Real-time Feature Stores and Streaming Architectures 
Multi-model databases can play a pivotal role not only during model training but also at serving 
time, when the ML model is used to perform inference. The straightforward approach is to 
separate training and serving. When it's time to perform inference, the model is integrated into 
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your service's source code, making queries to your main PSQL database to fetch all required 
features. While this approach scales horizontally with the rest of the application, it requires 
special code for logging features and model inferences, and burdens the main database with ML-
related traffic. 

Real-time feature stores address this challenge by decoupling serving from feature creation and 
model training. Features are generated and materialized within the feature store, a dedicated, 
distributed, read-optimized storage layer that supports very low latency and up-to-date feature 
retrieval, ensuring consistency among all features required by the model. To close the real-time 
feature data pipeline, streaming architectures are used. 

4.1. Designing Real-time Feature Stores 

Feature stores are data structures that store the features that are consumed by machine-learning 
(ML) models. Both AI and traditional ML models can benefit from feature stores. In batch-
model building, feature stores provide saved historical features. Many models support 
transactions and require data windows; feature stores provide the data needed to support these 
windows. In model life cycles, feature stores oversee both the development of new models and 
the deployment of online (real-time) models — including fraud detection in banking, product 
recommendation in e-commerce, and loan approval. The data that supports these models changes 
as individuals perform different actions on the bank or e-commerce platforms. 

Although feature-store design applications cover a broad range of feature-store details, one key 
component is a real-time serving capability: supporting low latency and consistently retrieved 
features in live ML models. Supporting real-time features is of minimal value unless a model can 
immediately utilise these features in its inference process. 

4.2. Implementing Streaming Architectures 

Streaming architectures enable continuous data flow and processing, crucial for real-time AI 
applications such as recommendation engines and anomaly detection. Different subsystems 
involved in streaming architectures include data ingestion, data stream processing, and serving 
ML models from streaming [7,8]. Data ingestion continuously captures events in the machine 
learning workflow and the application. Data stream processing transforms these events and 
calculations over historical data into useful real-time signals. Finally, a subsystem is responsible 
for serving these ML models from streaming—making models available for consumption as part 
of a stream. 

Data ingestion systems continuously capture signals generated in the application and ML 
workflow—such as user profiles, real-time events like clicks, login timestamps, or ML closest 
neighbours—at low latency. Historical sensors feed the batch systems but have high latency 
(e.g., 24 hours). Real-time sensors can reduce latency to a few minutes or even seconds. As the 
number and variety of signals grow, organizations investing in scalable real-time capabilities 
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often adopt a standard data ingestion pipeline. However, this introduces significant complexity to 
the streaming architecture. 

5. Data Management Techniques for AI 
Data management for AI methods covers database auditability, compliance, data quality, and 
data-validation/generation methods. Auditability and compliance can be tackled with provenance 
data management methods and cryptographic data verification schemes, both areas that have an 
established literature with techniques now integrated into commercial-grade relational database 
engines. Data quality for multimodal AI training data can be addressed with integration of data 
profiling and data cleaning with ML theory so as to derive, for example, the best selection of 
training datasets that minimizes downstream model error-index. Similarly, methods from 
adversarial machine learning can be used to perform semantic data validation, for example, by 
generating the sets of training data that make a given ML model achieve optimal performance. 
Techniques in this area also look at the trade-off of data-quantity and data quality in noisy 
training datasets in order to achieve optimized investment on data-generation and data-curation 
for enhancing model quality. 

Architecture principles to optimize machine-learning model serving inside the database engine 
have been discussed in the previous section. Other complementary techniques in this space 
involve (1) methods of model serving that achieve low latency while guaranteeing model 
accuracy, (2) approaches that use data structures analogous to indexes to serve high-dimensional 
data such as neural network embeddings, (3) real-time feature stores that provide the feature 
vectors used during prediction by taking the value of the relevant attributes at the query time, (4) 
streaming architectures that continuously feed events of real life into prediction framework for 
near-real time responses, and (5) approaching model serving as an event streaming problem for 
handling large influx of prediction requests. Database architectures in AI also present scalability-
related concerns, such as comparing the use case of horizontal versus vertical scaling as well as 
investigating optimal load balancing strategies. Lastly, given the sensitivity of the data involved 
in AI workloads, security concerns require methods and systems for encryption, access control, 
and auditing. 

5.1. Data Governance and Compliance 

The quality and quantity of data used to train machine learning models determine model 
performance. The training data must be minimally curated and rich in information, with a test set 
accurately representing the real-world data distribution. Many organizations face obstacles such 
as compliance and regulatory requirements, which are particularly challenging in scalable 
training-data preparation. Training data often contains sensitive personal details that require 
governance to comply with regulatory and corporate rules [9-12]. Large organizations sometimes 
house training data in general-purpose data management systems. These industries project rapid 
growth in training-data preparation, necessitating the addressing of the outlined challenges. 



 

24 
 

Despite significant individual progress in data governance, data compliance, data-quality 
checking, and training-data validation, there is a lack of synergy to realize scalable, parallel 
training-data-preparation pipelines. Optimal utilization of underlying big data frameworks is also 
missing, resulting in subpar scalability and efficiency. 

5.2. Data Quality and Validation 

Data quality and validation comprise an active area of research and development within AI data 
management. The myriad of techniques employed for quality management, primarily developed 
for OLTP (Online Transaction Processing) systems, confront challenges when applied to AI data. 
These challenges are especially evident with unstructured data, where the absence of a defined 
schema hampers the enforcement of data quality assurances through traditional methods. The 
sector of AI data management dedicated to these issues is poised for an increasingly prominent 
role. 

The issue of quality management has grown even more difficult due to the growing interest in 
self-driving or autonomous systems. Within such environments, an AI model—such as an 
autonomous car—constantly collects new data as it interacts with the physical world. The data 
generated must then be used to retrain and update different models. As in a continuous 
integration environment for software, the data produced must be checked to verify whether it 
contains any anomalies, errors, or gaps that could potentially degrade the quality of the models 
trained for the system. 

6. Scalability Considerations in AI Database Architectures 
The rapidly growing volume of data is the primary cause for the evolution of the AI database 
architecture. The ability to handle increasing amounts of data, both in terms of storage and 
computational needs, is crucial for AI applications since large-scale datasets are essential for 
training accurate models [7,13-15]. Databases designed for AI workloads must scale effectively, 
ensuring consistent performance even as data volumes surge. Scalability is often categorized into 
two dimensions: horizontal scaling, which involves adding more machines to a system through 
sharding or replication to distribute load and increase capacity, and vertical scaling, which 
focuses on enhancing a single machine's resources to manage more substantial workloads. Both 
require efficient load balancing strategies to optimize resource utilization and minimize response 
times. 

In the future, databases tailored for sensitive AI applications will likely employ enhanced 
security features, incorporating detailed encryption and access control mechanisms for stored 
data. Such measures are indispensable for maintaining data privacy and protecting sensitive 
information. Moreover, business or mission-critical AI workloads often include stringent 
compliance requirements related to data governance, making comprehensive data management 
an essential aspect for AI databases. 
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6.1. Horizontal vs. Vertical Scaling 

Modern databases for AI need to build an efficient execution framework and flexible data model 
to process all the different data types without losing performance. Storage systems supporting AI 
should store all the different data types together and should be integrated closely to the 
processing engine. In this way, it is possible to quickly combine large amounts of meta-data and 
unstructured data. AI database management systems should also provide real-time responses, 
helping to get insights from specific events. 

Traditional centralized data systems do not satisfy all these requirements, especially regarding 
scalability. Scaling up typically requires expensive and complex hardware upgrades, such as 
faster CPUs, more RAM, or higher I/O disks, which can quickly deplete available resources. 
Additionally, the processing capacity might be bounded by a sequential workflow, causing the 
system to become a bottleneck that restricts overall performance. A distributed architecture 
removes these constraints, allowing for seamless scalability by adding more machines with off-
the-shelf hardware. Furthermore, data can be partitioned across different nodes and processed 
locally, combining the results to deliver a global answer efficiently. 

6.2. Load Balancing Strategies 

AI workloads are often distributed across fixed clusters, and balanced load distribution is crucial 
to maximize resource utilization and maintain high throughput. Model serving engines adopt 
various strategies to assign workloads among stored model replicas. One straightforward method 
is the round robin approach, assigning requests to replicas sequentially in a loop. For stateful 
streaming architectures, more sophisticated techniques ensure that all related events of a given 
stream are directed to the same process, preserving state consistency. Recent work optimizes 
model serving by dynamically adjusting the number of replicas at runtime based on the real-time 
workload. 

Real-time feature stores require low-latency feature retrieval to serve live model inference. Their 
architecture resembles that of serving engines, necessitating mechanisms to distribute querying 
load evenly across servers to achieve low latency and efficient resource use. A simple approach 
employs round robin distribution [16]. Alternatively, assigning requests for the same entity key 
to a specific replica enables that replica to cache features for the entity, boosting cache hit ratio. 
These strategies parallel those applied in model serving engines. 

7. Security and Privacy in AI Database Management 
Security and privacy are paramount in managing databases for AI, particularly through 
encryption and role-based access control. Underlying data for AI workloads can be highly 
sensitive, such as industrial sensor data in predictive maintenance scenarios or data sources prone 
to attacks in autonomous vehicle systems. Sensitive information also emerges from stored 
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embeddings used for similarity searches, semantics, and data retrieval. Data breaches have 
driven the adoption of encryption methods applied to both data at rest and data in transit. 

Data at rest can benefit from file-system encryption that protects static data on disk, but practical 
considerations can lead to IT staff disabling this feature. Consequently, a more robust defense is 
offered by database layer encryption. Data in transit requires an additional layer of encryption to 
implement TLS between distributed systems and end users, securing data as it moves across 
different nodes in the system. Implementing these measures alongside role-based access control 
mechanisms ensures that unencrypted data, whether in storage or in motion, remains accessible 
only to authorized personnel who require it for their work. 

7.1. Data Encryption Techniques 

Artificial Intelligence (AI) has been around for many decades but interest in the field has soared 
recently, with new applications like ChatGPT using foundation models to enable systems that 
can perform a variety of tasks, such as answering questions, summarizing texts, creating new 
content and more, and doing so with high quality and low latency. This high demand for 
interactive AI systems requires a rethinking of the underlying database architecture. Modern AI 
systems impose new requirements on database management systems, such as support for data 
lakehouses that combine the efficiency of data warehouses with the low-cost storage and 
flexibility of data lakes, the ability to support multimodal storage of data in the same database, 
support for unstructured data like images and text, and the ability to serve ML models inside the 
database for low-latency, high-throughput processing. 

In addition, a wide variety of techniques are necessary to support AI systems. Real-time feature 
stores enable the retrieval of ML features in a consistent, low-latency, highly available manner, 
and streaming architectures enable the continuous flow of events. Privacy, security, compliance, 
data management and governance techniques help produce trustworthy AI systems. Finally, the 
scalability of the system ensures that low latency and high throughput are maintained, and 
encryption techniques protect data both at rest and in flight. 

7.2. Access Control Mechanisms 

The management of databases used in artificial intelligence (AI) workloads benefits from the 
general security measures used in conventional environments. In addition, AI data repositories 
require privacy-preserving modeling techniques such as differential privacy. The latter protects 
privacy during model training, ensuring that no subset of data samples—either as individuals or 
as a group—can exert an outsized influence on the output of a model. AI databases that contain 
information like names, addresses, and credit limits often have specific governance and 
compliance requirements that must be enforced. The databases themselves must provide access 
control policies, governance, auditing, and the ability to iterate on data (e.g., remove users) for 
compliance reasons. It is crucial to build in fine-grained access control on data that undergoes 
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heavy processing before final storage. Public data can be stored in cheaper tiers, whereas 
sensitive data can be stored in expensive but encrypted storage. 

AI databases often contain highly sensitive data that must be protected, either owing to the nature 
of the data or the nature of the model training process. In traditional sensitive-data scenarios such 
as financial and medical applications, encrypting the data is both an organizational and 
regulatory requirement. One of the most expensive phases of machine learning is the training 
phase, which needs to be repeated each time the underlying data changes by even a single record. 
If such encrypted data is outsourced to the cloud for performing training, then the question 
becomes: How much does the database knowledge that it is training on encrypted data provide 
an advisory role in strengthening model training privacy while simultaneously being cognizant of 
the computational overhead? The standard input/output primitives of a database system support 
privacy preservation during inference as well. For example, during the inference phase, the 
database system can query a trained model over an encrypted dataset [9,16-18]. The output of the 
model can also be encrypted so that it provides inference without leakage of information. 

8. Case Studies in AI Database Architectures 
Several real-world case studies illustrate how database management tools have been scaled up to 
meet the demands of artificial intelligence. Data lakehouses, combining data lakes and data 
warehouses architectures, provide unified storage for historical, operational, and machine-
learning data. As AI databases must support multiple data types—'multimodal' data including 
structured tables, time series, images, videos, hypertext, speech, and audio—such companies as 
UnifyID store the data in a single database instead of housing different data types in separate 
repositories. The demand for speedy live inference (serving predictions in response to queries in 
real time) has led to the creation of dynamically updated feature tables containing the inputs for 
machine-learning models, together with streaming architectures that feed a flow of live data into 
the models. 

Architectural aspects also influence the integration of machine-learning models within the 
database engine by considering embeddings, transformers, bloom-filters, multiplexers, and 
tokenizers. An architecture that performs horizontal scaling—distributing the models across 
multiple nodes in a cluster—enables the serving of more model inferences in parallel. Vertical 
scaling entails the selective allocation of model components to specialized hardware accelerators 
such as GPUs. Furthermore, model inference serving can be accelerated by the deployment of 
load balancers to distribute incoming HTTP inference requests efficiently, and by the 
implementation of caching mechanisms to store and quickly retrieve results of frequently 
accessed model inferences. 

8.1. Industry Applications of Data Lakehouses 

The increased use of artificial intelligence in the industry is not new, but the team responsible for 
designing database management systems that support AI workloads faces several new 
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challenges. Storage engines commonly used in a data lake type architecture to store unstructured 
data from text, images, and video are combined with the low latency, high throughput, and 
efficient update and delete operations of the data warehouse storage engine in the so-called data 
lakehouse architecture. As a result, the database management system operation is up to an order 
of magnitude more expensive because it was not designed for this scenario. For example, a 
feature store that supports serving features for an ML model inferences at online prediction time 
must scale horizontally to support thousands of requests per second and process events in real-
time for very low latency and consistent retrieval of features. Another example is the need to 
perform real-time event streaming in a streaming architecture. 

8.2. Real-world Examples of ML Model Serving 

Databricks Lakehouse Platform embodies the data lakehouse architecture by merging the 
scalability of data lakes with the management and tuning capabilities of data warehouses to 
provide a single source of truth for AI-driven analytics and decision-making. The platform 
employs Apache Spark™ for distributed processing of large datasets and Delta Lake for reliable 
streaming and batch data pipelines, delivering consistent high-quality data at scale on cloud 
object storage. Its low-latency optical caching capability allows users to cache frequently 
accessed data, significantly boosting performance. Databricks also supports a wide range of 
machine learning models, from classification and regression to natural-language processing and 
computer vision, enhancing security and governance across the platform’s extensive analytics 
ecosystem. 

EaseML offers a declarative abstraction system for rapid development and deployment of ML 
services. Built on top of PostgreSQL, it allows users to easily implement ML services within the 
popular open-source database, utilizing shared-disk elasticity for deploying models on fewer 
machines and eliminating redundancy. Unlike typical AI databases, EaseML provides a 
declarative interface that decouples ML services from the underlying implementation of storage 
and model serving. Developers can quickly deploy state-of-the-art models with ease, and 
graduate to more specialized tasks without abandoning the simplicity of the declarative model. 
EaseML also serves as a reusable foundation for implementing ML-serving infrastructures 
within a database[2,19-20]. 

9. Future Trends in Database Management for AI 
Artificial Intelligence (AI) workloads differ significantly from traditional database workloads in 
the direction, structure, and velocity of data movement. Consequently, databases supporting AI 
applications require architectural features that depart from the organization of transactional and 
traditional analytical processing. These architectural considerations have given rise to the 
concepts of the data lakehouse and the serving of machine-learning models from the database. 
Real-time feature stores further extend databases to support low-latency retrieval of training and 
live inference data for ML models. 
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The data lakehouse architectural model combines the best features of data lakes and data 
warehouses in a single database and is particularly suitable for AI workloads. Data lakes provide 
highly scalable, low-cost multimodal storage that supports structured, semi-structured, and 
unstructured data in their native formats. However, the schema-on-read approach of a data lake 
often complicates data governance, performance, and compliance. Data warehouses, by contrast, 
improve governance and performance through the imposition of a structured, relational schema 
on highly curated data, but they only support a limited number of data modalities. The tightly 
bound transport, schema, and storage of the data warehouse also inhibit the performance 
achievable for much higher data velocities demanded by AI that operate in all directions — 
training, validation, and live inference. 

9.1. Emerging Technologies and Innovations 

Artificial Intelligence is giving rise to various emerging technologies that require data 
management and back-end infrastructures at scale. Artificial Intelligence Interactive Applications 
like ChatGPT demonstrate the complex and partially unresolved challenges encountered when 
managing databases. While feature stores and real-time data streams support lightning-fast AI 
inference for interactive applications, scaling the training set for the entire underlying AI 
model(s) poses immense challenges in a rapidly evolving environment. 

Several emerging areas illustrate the challenges of managing AI databases. First, database 
architectures must scale effectively—horizontally, vertically, or both across clusters—while also 
incorporating load balancing strategies to optimize operational performance. Second, 
governance, compliance, and data quality processes are essential to ensure appropriate data use 
at scale. Third, the management of sensitive data requires privacy mechanisms, such as 
encryption and access control models. New cutting-edge architectures are evolving to address 
these challenges. 

9.2. Predictions for AI Database Architectures 

The architecture of future data management systems will be driven by Artificial Intelligence. 
What is special about AI workloads? While training large neural networks requires tensors 
encompassing both model parameters and their corresponding gradients, AI is about more than 
just tensors. As AI continues to advance, unstructured data in the form of images, audio, video, 
and text gain significance. Therefore, AI databases need to be multimodal universities that 
support multiple types of data and enable machines to learn. Since AI models operate on data but 
cannot generate predictions in a vacuum, AI databases must support real-time feature stores—
repositories where we can look up key-based, high-dimensional feature vectors for live inference 
requests. Additionally, real-time event streaming architectures are essential to channel streaming 
events into the models. Furthermore, AI models operate on data. Given the dependence of AI 
model predictions on input data, enhancement models are necessary to improve AI data quality 
and support auditing and compliance related to AI models and their predictions. The diverse 
requirements of the data translate to a multitude of design alternatives. 
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Currently, two architectures dominate: lakehouse architectures aimed solely at training, and 
serving models from database systems that support both training and serving. The future likely 
holds a convergence of these architectures to deliver the best of both worlds. 

10. Conclusion 
Data management plays an important role in artificial intelligence (AI) workloads. AI generates 
large amounts of data, such as the objects that a self-driving car passes on the street or a patient’s 
color image database for cancer diagnosis. This data can be either structured or unstructured. 
Structured data can be organized into rows and columns within a database, while unstructured 
data can take forms such as text, color images, and videos. Due to the large size of unstructured 
data, storing it in SQL databases can lead to very large tables. Another important part of AI data 
is the model and its weights, which are critical components of any AI application. New 
techniques aim to store machine-learning models, their weights, and inferencing functions within 
database systems. 

AI data is quickly becoming one of the largest data domains. Databases are moving the goalpost 
by supporting new AI workloads. Among the different types of AI databases, data lakehouses 
offer the ability to manage data of different modalities and provide data management services 
such as governance, compliance, security, privacy, data validation, and data quality—all 
essential components for handling AI data. Models can be stored in a multimodal database along 
with features from different data modes and the data lakehouse that stores the ground-truth data. 
Real-time machine-learning inferencing requires features to be retrieved with exceptionally low 
latency, while online machine-learning training demands consistency. Both needs can be 
addressed by implementing feature stores either as part of or closely integrated with the URI. 
Moreover, streaming architectures are necessary to deliver upstream events to the online 
machine-learning training pipeline. 
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Chapter 3: Exploring the Impact of AI on Query 
Optimization and Database Performance Tuning

1. Introduction to AI in Database Management
Artificial intelligence (AI), defined as computer algorithms that undertake tasks normally 
requiring human intelligence, is an enabler for self-tuning databases and improvements in query 
optimization. By drawing on specialized machine learning techniques such as reinforcement 
learning and deep learning, database management systems can incorporate AI to optimize 
critical-performance-determining features. With query plan selection having such a significant 
impact on performance, the prospect of being able to dynamically choose plans within a single 
query provides exciting possibilities for query optimization.

Fig1. Exploring the Impact of AI on Query Optimization and Database Performance Tuning

Databases have always needed to be tuned, and in response, engineers have created tools that 
assist with or automate the tuning process. Oracle, Azure SQL Hyperscale, and Snowflake offer 
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feature sets that are self-tuning in varying degrees. Self-tuning involves eliminating, removing, 
or at least reducing the amount of manual intervention required to tune the database, by 
incorporating AI techniques. Tuning operations that are particularly painful or difficult from a 
human perspective are usually the primary candidates for AI-driven self-tuning. 

2. Fundamentals of Query Optimization 
To optimize a query, a database system must decide on an efficient plan for executing the query. 
The database does so by first deriving an algebraic representation of the query and then creating 
a tree representation for it. The system transforms the tree and assigns data access methods to 
create different query plans [1]. Cost models estimate the execution costs of these different plans, 
determining an apparently optimal query plan. In some implementations, these models are driven 
by machine learning, which predicts query execution costs. Its focus is on reinforcement 
learning, which can be used to create dynamic query plans. 

In the earliest phases of the database revolution, development teams created specialized 
engineering tools. As technologies matured, the team could build self-scaling and self-healing 
mechanisms, incorporating more automated algorithms. Businesses soon demanded self-tuning 
technologies, which could address performance bottlenecks—such as long-duration queries—
without human intervention. Self-tuning is now recognized as an indispensable component of a 
database environment as data drain increases. Certain modern databases, including Oracle, Azure 
SQL Hyperscale, and Snowflake, collect query execution data and proactively tune the system to 
improve performance for repetitive queries, thereby minimizing customer pain points. 

3. AI-Powered Query Optimization and Tuning 
Common query optimization strategies adopted in database management system 
implementations can be supplemented with reinforcement learning to enable dynamic query 
planning decisions. Because cost models constitute the core of query optimization, machine 
learning methods can be employed to enhance the accuracy of predicted query execution costs. 
However, there are also ways in which databases can be made largely self-tuning through the 
application of AI techniques. 

Several major database vendors offer cloud-based databases that harness artificial intelligence 
for this purpose. Oracle, for example, provides a self-tuning feature for its autonomous database. 
Microsoft Azure offers a self-tuning capability for the hyperscale tier on Azure SQL Database, 
while Snowflake has incorporated features that render its service largely self-tuning. Each of 
these implementations leverages aspects of AI to automate and optimize performance tuning 
tasks. 
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3.1. Reinforcement Learning in Query Planning 

Advanced technologies employ AI techniques, such as reinforcement learning, to generate 
optimized query plans dynamically. Strategies using reinforcement learning demonstrate the 
resulting potential of such an approach. 

Reinforcement learning provides a foundational approach to self-tuning databases that can be 
extended successfully by including cost models based on machine learning. These advanced cost 
models are also implemented using machine learning techniques. 

3.2. Cost Models Driven by Machine Learning 

Cost models can be transparently enhanced by leveraging Machine Learning techniques, as they 
excel in uncovering and leveraging hidden correlations within datasets. Models driven by 
Machine Learning are capable of adapting to a myriad of objectives, including query execution 
duration, resource consumption, monetary expenditures, and the number of input/output requests. 
They adeptly accommodate diverse implementations of identical data operations. Unlike 
traditional cost models anchored in database statistics, estimations generated through Machine 
Learning are resilient to the pitfalls of cardinality estimation errors, given that stock cost 
parameters inherently absorb errors across preceding processing stages. Incorporating the cost of 
the reward function itself remains a non-trivial endeavor, as certain cost entities might not be 
pertinent to all queries; for instance, the CPU cost of an index scan is zero. 

Machine Learning techniques excel at discovering hidden correlations within diverse datasets. 
Models erected on the foundations of Machine Learning can adapt to various targets, such as the 
duration of query execution, consumption of resources, monetary costs, or the tally of 
input/output requests [1-2]. They gracefully accommodate implementations of the same data 
operation in its different achievable variants and are less vulnerable to the effects of cardinality 
estimation mistakes. This robustness stems from the fact that, contrary to cost models relying on 
conventional database statistics, cost model parameters are frequently integrated within the 
Machine Learning data annotations. The estimation procedure for the reward function remains 
challenging, as not all cost categories are relevant to every query; for example, the CPU cost 
associated with an index scan does not apply. 

3.3. Self-Tuning Databases 

Databases incorporate self-tuning features to enhance query performance and adapt to evolving 
workloads. Operators can configure these mechanisms to allocate more resources to heavy 
workloads or query groups, reducing execution time. In query planning, plans can be 
dynamically adjusted using feedback during execution or runtime information. Cost models may 
rely on machine learning predictions of query performance, improving over heuristics. 
Operational tuning leverages activity and timing metrics to rebalance workloads and manage 
resources, with alternatives including the addition of virtual nodes for scalability. 
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Recent trends also show major database vendors incorporating artificial intelligence (AI) into 
their products. Self-tuning through machine learning lowers administration costs and enhances 
user-friendliness by reducing the need for manual parameter settings and role assignments. It is 
anticipated that AI automates all tuning operations in the future, leading to fully autonomous 
databases. Such developments are pixelating the traditional roles of DBA and race analyst, as AI 
in the cloud handles the bulk of operational decisions. Making operations smart is nearly 
synonymous with incorporating AI at some level. 

4. Case Study: Oracle's AI Capabilities 
Artificial intelligence (AI) plays an increasingly important role in database management and 
optimization. Database vendors integrate AI automation into self-tuning features, aiming to 
remove tedious and error-prone manual interventions in query optimization. Oracle, for example, 
refers to its Autonomous Database features as the "Future of Databases." 

The following examples demonstrate the benefits of Oracle Autonomous Database for the user, 
highlighting how AI autobot businesses are revolutionizing database management. As AI-based 
optimization algorithms mature, more advanced approaches appear beyond traditional 
optimization heuristics and query planning strategies. Reinforcement learning, for instance, can 
optimize live query plans. It adapts the query planning strategy dynamically to limit execution 
times and enhance user experience. Other approaches employ cost models driven by machine 
learning to estimate query costs better. Clear advantages over traditional cost modes enable 
model-driven optimizers that estimate costs based on richer representations than individual plan 
operator costs. 

5. Case Study: Azure SQL Hyperscale 
AI-enabled tools for database performance optimization—specifically quasi self-tuning 
databases—have now been introduced at all of the major database vendors. The following case 
study on Azure SQL Hyperscale highlights how Microsoft incorporates AI to tune performance. 

The Hyperscale service tier for Azure SQL Database enables rapid scaling to hundreds of 
terabytes for single databases in the cloud. The data is stored in page servers and transaction logs 
are stored and managed separately by the log service. Another component, the Log Replay 
Service, is responsible for applying transaction log records to page servers. It plays a key role in 
database creation, scaling, backup, and restoring [3-5]. Log Replay must be highly performant to 
meet scaled-out logging requirements. Recently, artificial intelligence techniques have been 
applied to optimize Log Replay. By automating tuning of configuration parameters and 
improving the commit rate, AI integration has markedly enhanced update performance of Log 
Replay. 

In SQL Server 2019, a new, lightweight, and scalable architecture for batch-mode query 
processing was introduced. Operating on a columnar batch of rows, this new engine now lets 
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more data-processing tasks benefit from the performance of batch mode. AI Red Opimizer 
technology extends the benefits of the batch-mode processing engine to rowstore data—without 
requiring any indexes or materialized query tables to be created. By predicting the efficiency of 
various batch-mode query plans with greater accuracy, and guiding SQL Server to choose better 
batch-mode plans, AI Red Optimizer enables better plan selection for both rowstore and 
columnstore data formats. An experiment on TPC-H Q9 using AI Red Optimizer yields a 4× 
improvement in overall query runtime, and a TPC-DS Q67 workload with joins between narrow 
rowstore, wide rowstore, and columnstore tables runs 3.5× faster with AI Red Optimizer 
enabled. 

6. Case Study: Snowflake's AI Features 
Modern database systems are incorporating increasing degrees of self-tuning query optimization. 
Snowflake's cloud data warehouse has recently launched a range of features leveraging machine 
learning to recognize operational patterns on their platform and optimize customer workloads 
accordingly. Their Query Acceleration Service dynamically determines the number of resources 
utilized to process a query, impacting both response time and run-time cost. Machine learning is 
employed to identify and deliver the optimal provisioning for a given query that offers the best 
trade-off for the user, taking into account user preferences. The service supports various query 
types, such as SDR pre-provisioned queues and ad hoc queries. 

Snowflake also uses artificial intelligence in their automatic clustering service. Each table is 
examined to find the single best key to re-cluster on, allocating the compute cluster in 
accordance with the recommended system cost for such re-clustering. The metadata is analyzed 
to monitor and detect performance degradation caused by existing clustering keys, while 
workload information is incorporated to assign benefit scores to partition-level activity within 
current keys. By examining the distribution of data access by clustering key, it ensures that only 
required partitions are reclustered, thereby minimizing additional costs. 

7. Comparative Analysis of Database Systems 
Artificial intelligence enables databases to automate or partially automate complex operations 
across the entire data lifecycle, encompassing collection, storage, analysis, and protection. 
Additionally, AI optimizes cost-effectiveness by dynamically allocating resources in support of 
an organization's digital transformation. Prominent cloud vendors such as Oracle, Microsoft, and 
Snowflake are currently advancing these capabilities, offering clients products that facilitate the 
processing of increasingly complex and demanding workloads with minimal supervision and 
reduced tuning overhead. 

AI-powered query optimization emerges as a fundamental element in the development of cost-
effective and scalable database systems. The application of reinforcement learning to dynamic 
query planning enhances scalability and adaptability, while the incorporation of machine 
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learning augments the optimizer's cost model, resulting in more accurate query cost estimations. 
Fully automated tuning remains one of the most captivating aspects of query optimization; for 
instance, Oracle provides an autonomous cloud that leverages AI to administer workload 
management, resource allocation, and tuning decisions. Similarly, Azure SQL Database 
Hyperscale exploits AI in its autoscaling mechanisms to support highly scalable and flexible 
workloads. Snowflake integrates AI-driven elastic scaling to address the demands of compute-
intensive workloads, enabling clients to perform analyses with greater efficiency and speed. 

8. Challenges in AI-Driven Query Optimization 
AI techniques, particularly those making database management systems self-tuning, hold great 
promise. They can transform operations: as less human intervention is required, fewer errors 
occur, flexibility increases, workloads scale more easily, and data-driven decision making and 
pattern recognition become quicker and more reliable. Nevertheless, numerous technical 
difficulties remain as the technology matures. 

The size, complexity and sophistication of modern database management systems call for 
machine learning that can scale and adapt. Most engine components already adjust themselves 
automatically, but these systems mimic adjustment by means of thresholds applied to 
meticulously crafted metrics [6-8]. As workloads constantly evolve, these thresholds must be 
recalibrated—preferably in an automated way, with as little human input as possible. Adapting to 
new and changing configurations requires learned models to consider operations that lie beyond 
their current experience—such as adding, removing or relocating indexes, changing memory 
parameters or updating the concurrency control algorithm. 

9. Future Trends in AI and Database Performance 
Machine learning (ML) techniques are becoming increasingly popular within the database 
community. For example, reinforcement learning has recently been applied to query planning, 
allowing for the dynamic selection of optimal query plans as the plan executes. Moreover, ML 
can be used to build enhancements that leverage the latest cloud technology. Given the central 
importance of cost models in traditional query optimizers, ML models trained to provide 
accurate query cost estimates also hold great promise for adapting query processing to evolving 
hardware architectures. 

One obvious candidate for ML techniques is self-tuning databases, which have been a research 
focus since the 1990s. Database vendors are beginning to incorporate these concepts into 
commercial platforms. For instance, Oracle has branded part of its Autonomous Database as self-
driving. Self-scaling and self-tuning features are central to Azure SQL Hyperscale and 
Snowflake. Specifically, two key aspects of self-tuning—the ability to automatically scale virtual 
machines (VMs) or compute nodes and the use of AI techniques to optimize query 
performance—are expected to become ubiquitous in cloud databases. Self Scaling has been 



 

38 
 

addressed previously. Self Optimization, the application of AI and ML techniques to improve 
query optimization, is outlined below. 

Recent research demonstrates that query optimization can be improved by caching the execution 
of sub-plans within the same query and using this information to produce better query plans for 
subsequent sub-plans. In addition, a dynamic query optimization approach based on 
reinforcement learning adapts the execution strategy based on the current resource availability of 
the distributed system and the progress of the query execution, significantly reducing query 
latency and optimizing resource consumption across multiple nodes. 

10. Ethical Considerations in AI Implementation 
Ethics becomes paramount when AI query optimization functions are deployed in production, as 
the stakes are high. Not only can they vastly influence the monthly operating costs of a company, 
but wrongful implementations can cause catastrophic outages or even seriously damage a 
company’s reputation. Consequently, companies internally demand the highest level of 
confidence in those systems, partly because the opaque nature of AI makes its predictions less 
explainable than those of rule-based heuristics. The costs associated with manual validation, 
however, often complicate matters. 

Moreover, problems of fairness and bias appear in similar polymorphic forms. It is not 
reassuring, for example, if a subgroup of users receives a less-efficient query plan because of 
socioeconomic or racial data inferred from the query or users’ historical query patterns. Despite 
the challenge—since certain kinds of optimizations are specifically targeted in boosting 
performance in high-frequency queries—such considerations must be taken into account in 
future developments. These are just a few of the many ethical concerns that arise and intensify as 
the research field moves in the direction of AI-powered database management [9]. 

11. Performance Metrics for AI-Driven Systems 
Appropriate metrics guide AI tools and quickly assess gains. Performance metrics include 11.1 
Average Query Runtime (seconds) and 11.2 Average Cost Metric as an Abstract Value. 

Query runtime is the prime performance indicator, the one for which database optimization 
exists. What else is? AI and machine learning typically evaluate and compare performance 
improvements in terms of cost functions. While the cost function is a value in the optimization 
model, it does not always translate directly into a scalable, measurable unit like seconds or 
milliseconds. The cost metric is an abstract, dimensionless value, designed to serve as a proxy 
for cost or run time. Query planning aims to minimize the cost metric. 
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12. User Experience and AI in Databases 
Experiences differ between setups and scale. For data warehouses, a simple query to read a 
million rows from a basic table should run flawlessly in any vendor’s ecosystem. Yet, anomalies 
often arise that confuse even seasoned developers. These disruptions stem from which 
optimization features are toggled, affecting plan search strategies, index selection, auto-
parallelization, distributed query plans, and many other aspects. The issue’s root is that automatic 
parameter setting is necessary but not sufficient. Autonomous systems must accurately 
understand the workload. Achieving 100% reliable SQL plan stability remains improbable—and 
might never be attainable—due to the unpredictability of future queries. 

Data warehouses represent the low-hanging fruit for AI in automation. Yet, similar self-tuning 
capabilities are emerging in OLTP database engines. Oracle Autonomous, for instance, 
incorporates self-tuning features, while the Azure Hyperscale variant introduces a horizontally 
scaled SQL Server engine. Snowflake leverages AI to optimize data handling within CSV and 
JSON semi-structured files. 

13. Integration of AI with Traditional Optimization Techniques 
Artificial Intelligence and machine learning have received increasing attention in database query 
optimization and tuning. A recent line of research exploits diverse AI techniques, including 
reinforcement learning, deep learning, and learned cost models, to complement and overcome 
the limitations of traditional query optimizers. Following this trend, the focus here is on their 
application to self-tuning mechanisms. 

Protecting Database Performance with AI—Why It Matters While SQL performance is 
determined by several factors—such as thin client speed, network condition, latency, query 
execution plan, and database resources—the consistency of query performance especially 
depends upon the database part. As the volume of data grows exponentially and the workload 
varies dynamically, the database execution plans keep starving for new information in order to 
come up with an effective query plan. This makes AI models well-suited to query optimization. 
Further three cases examine how Artificial Intelligence integrates with traditional optimization 
techniques in Oracle Database, Azure SQL Hyperscale, and Snowflake. 

14. Impact of Cloud Computing on Database Performance 
Cloud providers use many techniques to improve the performance of cloud database services. 
One example is the hyperscaler database architectures used by Microsoft and Oracle. These are 
different from a traditional database. 

The hyperscale architecture is primarily designed to support very large database sizes (petabytes 
of data). The unique feature of the hyperscale architecture is the separation of the compute layer 
from the storage layer. The compute layer is a database engine that supports classic database 
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operations (queries, data manipulation/statements) and a remote cloud storage layer (e.g. Azure 
Storage or Oracle Autonomous Data), which is a fully managed, tabular, auto-scaling, highly 
reliable, and performant distributed storage service for structured relational data in the cloud. 

15. AI for Predictive Analytics in Databases 
Just as AI has been incorporated into a variety of different database management functions, 
query optimization is another database operation that is highly influenced by AI technology. 
Traditionally, a query optimizer calculated the best access path to the raw data for a query being 
processed. Query plan optimization techniques such as cost-based optimization attempt to find 
the query plan with the lowest cost to return the results from a query. AI such as reinforcement 
learning has been used to dynamically generate a query plan as the query fetches its results. AI 
can also be used to create a cost model with machine learning that is used by the optimizer to 
calculate the cost of a query plan and choose the plan with the best cost. Self-tuning technologies 
can also be embedded in a database. Oracle or Azure SQL Hyperscale SQL Server are two 
examples [7,9-10]. Wisdom gained from tuning procedures used by DBAs or the engine can be 
introduced as heuristics to be applied when working on a potential slowdown, scaling or 
concurrency problem. Snowflake can also be added to these as some of the aspects of its public 
API address predictive analytics at scale. 

In the most demanding cases for DBMSs, some queries start clogging the system. AI is ready to 
use its knowledge to prevent this scenario coming from resources saturations such as CPU, RAM 
or IOPS. One DBA’s first reaction is to run either a tuning stored procedure or a dynamic 
management view (DMV) SQL Server query. These queries will usually bring the most 
expensive items within the system. AI goes further by creating a baseline of historic performance 
metrics on the main resources, linked also to factors behind the user workload. If it is out of 
norm, AI can react and use the information that it had collected earlier to address the on-going 
demand. The AI procedure can also warn about an excessive number of concurrent users for a T-
SQL or stored procedure compiled object. Scalability issues can be tackled proactively during a 
peak time for OLTP or OLAP work. For recent cloud-connected databases such as Snowflake, a 
SQL API can be triggered to provide additional scalable resources, followed by a subsequent 
API call to remove it once the activity is back to normal. 

16. Real-World Applications of AI in Database Management 
Artificial intelligence (AI) enhances modern database management by automating performance 
tuning and query optimization, areas traditionally addressed through manual configuration and 
heuristics. Emerging techniques in reinforcement learning, machine learning, and deep learning 
enable the creation of AI-augmented tools that optimize query plans dynamically and generate 
more effective physical design strategies. 
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AI-powered tuning features have become a core component of many cloud database services and 
hyperscale architectures, providing automated workload-aware scalability and self-tuning 
capabilities. For example, Oracle’s self-driving database leverages machine learning to 
recommend optimal configurations and analyze query performance across operational 
workloads. Azure SQL Hyperscale introduces an architecture capable of auto-scaling and auto-
tuning to maximize performance. Snowflake employs AI-driven optimization to adjust its 
internal structures continually, enhancing query execution speed automatically. 

17. The Role of Data Quality in AI Optimization 
Credit costs for a given query during the process of trade-off interaction. Expedia partnered with 
Snowflake to develop an ML-based cost model for its SQL queries within Snowflake. In the 
domain of self-tuning, automated or semi-automated tuning of database parameters and 
structures is a well-known and desired concept in database management systems. Oracle, 
Microsoft, and Snowflake incorporate such technologies to enhance query optimization and 
database performance. 

Trading-off last-level-cache (LLC) misses against prefetching opportunities can substantially 
influence query performance, which can be addressed by dynamically choosing the best tuning 
operation. Controlling the large scale of databases in the cloud is challenging, yet Azure 
Hyperscale enables dynamic scaling of compute and storage independently [1,11-14]. While 
cgroups can assign a profile to each database container, finding the best profile is non-trivial, 
especially when workload patterns change over time. Snowflake developed a controller that 
dynamically scales the resources of a virtual warehouse to optimize performance during periods 
of peak workload intensity. The achieved return on investment ranges from 20 to 40%, 
depending on the current workload. Credit costs for queries change during these trade-off 
adjustments. 

18. Security Implications of AI in Databases 
AI-powered SQL generation also implies the AI can perform queries that might compromise 
security. Any machine learning system still fails if trained with bad data. Even when trained 
properly, training data can always be hacked through poisoning and backdoors. Thus if care is 
not taken, AI can output hard-to-explain queries that will execute on the database. To overcome 
this limitation, any practitioner would therefore narrow down the amount of access the AI can do 
to just a small part of the database [13,15-17]. 

In general, the use of AI in databases introduces new security concerns, such as data privacy 
risks from automated indexing and schema management, the risk of data leaks via generated 
queries, and vulnerabilities to data poisoning and model backdoors. Addressing these challenges 
is both necessary and difficult, requiring a balanced approach between the benefits of AI-driven 
optimization and the imperative of maintaining robust security. 
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19. Regulatory Compliance in AI-Enhanced Systems 
Regulatory compliance represents a crucial consideration in the implementation of services like a 
Self-tuning Azure SQL Database that employs AI and machine learning techniques for auto-
scaling. Such organizations must comply with relevant laws and regulations regarding software 
application development and delivery, the collection, processing, storage, and transfer of 
personal data, consumer protection, and contractual and tort liability. The level of compliance 
responsibility will depend on the nature and location of the organization's operations, the data 
managed, and how the service is designed and delivered. It is the organization's responsibility to 
ensure that the use of Azure SQL Database complies with all relevant laws and regulations. 
Additionally, national security regulations might also apply. 

The organization must adopt any measures necessary to prevent the unauthorized transfer of 
services or data outside regions or countries where their residence or operation may trigger 
additional compliance requirements. Microsoft is positioned to provide the Artificial Intelligence 
capability needed to support the Self-tuning Azure SQL Database, yet it is currently the 
organization's responsibility to comply with all relevant laws and regulations concerning the use 
of Azure SQL Database. These considerations extend beyond compliance alone, encompassing 
the perceived impact that outsourcing core components of an organization's business operations 
to third-party providers may have on external reputation and investor confidence[18-20]. 

20. User Training and AI Systems 
A particularly novel application of reinforcement learning to query optimization is the resulting 
prospect of a self-tuning database. Major database vendors have been applying machine learning 
(ML) methods to automation in self-tuning. Google demonstrated the value of ML in a DBMS 
Autotuner. Oracle has applied ML methods in a self-tuning version of its database. Azure SQL 
Hyperscale supports a self-tuning feature that scales compute nodes up and down based on actual 
workload demands. Snowflake added support for AI-powered tuning. 

Self-tuning involves applying AI in the broader context of query optimization and query 
planning. During query planning, the DBMS breaks complex queries into simpler steps and 
structures the plan to execute steps in an order tailored to the size and clustering of input query 
results. Reinforcement learning may guide the database system to choose an execution strategy at 
each step. 

21. Collaboration Between IT and Data Science Teams 
The rapid growth of unstructured data, such as images, documents, and sensor recordings, is 
transforming data-driven applications in modern trade and commerce. This has led to an 
increasing focus on AI technologies that allow databases to understand and process unstructured 
information. Despite the recognized benefits of integrating AI with databases, practitioners face 
several challenges in implementing and adopting these capabilities within real-world databases. 
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Given the complexity and diversity of database systems across various domains, a one-size-fits-
all approach is impractical. Instead, targeted community efforts should consider the needs of 
different groups of users and database engines [19,21-22]. 

Effective collaboration between IT professionals and data scientists is critical to realizing AI's 
full potential in query tuning and database performance optimization. To build trust in AI-
powered solutions, vendors have developed systems that are not only powerful but also easy to 
use. For example, Oracle Database's self-tuning technologies leverage AI at various levels, 
enabling automatic tuning and workload management in single-node and multi-node settings, as 
well as seamless workload scale-up and scale-down in the Autonomous Data Warehouse. 
Similarly, AI-driven features in Azure SQL Hyperscale and Snowflake are significantly 
changing the way organizations optimize query performance [23,25]. 

22. Cost-Benefit Analysis of AI Implementation 
The challenges faced by human experts attempting to manually optimize the query plan can be 
highlighted by considering the growth of the search space for an SQL query as described by 
Surajit Chaudhuri and Gerhard Weikum. Queries can be joined in different orders, creating a 
complex space of hundreds of millions of logically equivalent plans for just a few tables. The 
problem arises when the cost model is inaccurate for the specific hardware and workload being 
run. This inaccuracy causes the query optimizer to pick a local optimal plan when a globally 
optimal plan exists but cannot be detected due to the cost model, thus causing performance 
degradation. Recently, the reinforcement learning technique has been used to optimize the query 
planning stage itself, finding the optimal sequence of join operations without using a cost model 
[26,27]. 

Machine learning has made a significant impact on the database community. Traditionally, 
machine learning has improved the cost model of query optimization using classification, 
regression, and learning to rank, which still use, at their core, a cost model but train it with real 
query data. With the increased interest shown in database tuning, vendors have been developing 
self-tuning databases that enable automated database tuning. Although database management 
systems such as Microsoft SQL Server, Google Cloud Spanner, and SAP HANA offer automated 
tuning capabilities, Oracle, Azure SQL Hyperscale, and Snowflake have pushed the concept of 
an autonomous, self-tuning database furthest. 

23. Conclusion 
AI plays an important role in modern database management systems. Query optimization aims to 
change a SQL statement into an efficient execution plan that accesses the data and computes the 
result more quickly. In a self-tuning database, machine learning is used in various tuning areas, 
including indexing, resource provisioning, and concurrency control. Reinforcement learning can 
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help improve query performance by selecting different query plan operations. A cost model 
powered by machine learning offers more accurate query optimization. 

Oracle databases incorporate artificial intelligence to automate query optimization and 
performance tuning. Azure SQL Hyperscale leverages machine learning to automatically 
optimize resources and services for extreme scalability in the cloud. Snowflake also applies AI 
techniques for query optimization and performance tuning. 
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Chapter 4: Embedding Intelligence into Data 
Pipelines: Exploring the Intersection of MLOps and 
DataOps for Enhanced Automation and Quality 
Assessment

1. Introduction to MLOps and DataOps
MLOps—the intersection of Machine Learning, DevOps, and Data Engineering—introduces 
continuous creation and operationalization of machine learning workflows. MLOps enables rapid 
experimentation and model leveraging for business enhancement. DataOps improves automation, 
monitoring, and quality of data. Embedding intelligence into data pipelines allows automation of 
many steps in ETL/ELT workflows beyond what is achievable with traditional DevOps. 
Artificial Intelligence methods can enhance data quality assessment and anomaly detection in 
data pipelines.

ETL (Extract, Transform, Load) operations are among the most manually intensive business 
processes. Organizations strive to operationalize and automate ETL steps with continuous 
monitoring and alerting for breaks or delays, but monitoring data quality is usually not 
implemented. As data volumes grow powerfully, they deliver greater value in rapid analyses but 
also generate actions requiring control for possible risks. Ensuring high quality is critical for 
making business decisions. The intersections between MLOps and DataOps enable this 
intelligent layer within data pipelines, providing mechanisms to connect data quality assessment 
and anomaly detection with monitoring, alerting, and auditing systems, supporting feedback 
loops and continuous development.

2. The Convergence of MLOps and DataOps
The DevOps revolution has paved the way for modern transformations in the fields of machine 
learning (Machine Learning Operations, MLOps) and data (Data Operations, DataOps). MLOps 
is a set of cultural and technical practices that enables the deployment and maintenance of 
machine learning models in production reliably and efficiently. Its aim is to increase automation 
and improve the quality of production models while focusing on business and regulatory 
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requirements. DataOps is a collaborative data management practice focused on improving the 
communication, integration, and automation of data flows between data managers and data 
consumers across an organization. These practices address against the pitfalls of building and 
maintaining a data pipeline. 

When MLOps meets DataOps, the potentials for a fully automated, adaptable, and scalable 
integrated data pipeline solution arise. Today, business needs require combining data-driven 
decision services, ML predictive services, and forecasting services into a single product. The 
convergence stimulates the automation of ETL/ELT pipelines through AI techniques and models, 
thus giving birth to a new research and technology domain. These issues are discussed in section 
3, where the focus is mainly on the automation of ETL/ELT pipelines using AI techniques, and 
the associated products that can be developed and delivered [1-3].  

2.1. Historical Context 

Both DataOps and MLOps appeared almost simultaneously and succeeded DevOps principles, 
long established. DataOps appeared in 2014 as the new practice of Agile analytics, aiming to 
reduce the cycle time of data analytics. MLOps appeared in 2015 as a variant of DevOps 
necessary to deploy and maintain machine learning applications in production. The continuous 
integration and continuous delivery/deployment (CI/CD) in the MLOps approach are extended to 
the integration of machine learning models. Both disciplines focus on bringing teams working 
with data closer by shortening feedback cycles, but they emphasize different dimensions. 
DataOps managers are responsible for the complete data lifecycle in an enterprise, including data 
preparation and governance functions, as well as data delivery. MLOps managers focus primarily 
on the phases around training machine learning models and deploying them in production, 
including business metrics and key performance indicators evaluation. 

2.2. Key Principles of MLOps 

The key principles of MLOps are cross-functional collaboration and automation. Cross-
functional collaboration ensures that teams across different departments work together, use 
common tools, and share a unified purpose. Automation leverages recurring processes and 
patterns to establish a trustworthy, repeatable, and disaster-resilient deployment pipeline. Such 
pipelines not only deploy trained models to production but also handle big data traffic flows 
serving the data related to these models [2]. 

Given the scale of data processed by operations, DataOps practices are crucial for assuring data 
quality. Machine learning and deep learning techniques, which are themselves data-driven, 
depend heavily on data quality. Recent research explores how DataOps and MLOps can 
complement each other in providing automated quality assessment for data transformations in 
extract, transform, and load operations (ETL). MLOps tools and mechanisms can learn from 
DataOps anomalies and error patterns, fueling automation in data pipelines. Although Electrical, 
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Electronics and Communication Engineering was not originally centered on Machine Learning 
and Artificial Intelligence, advances in these fields have naturally steered them in that direction. 

2.3. Key Principles of DataOps 

DataOps emerged from experiences at companies such as Netflix, Facebook, and Spotify, 
evolving over time and drawing inspiration from the principles of Agile, Scrum, and DevOps. 
Agile introduced Developer Operations to continuous software development and deployment, 
Scrum provided a framework for continuous team collaboration and sprint structuring, and 
DevOps integrated development and operations teams to rapidly deploy executable software 
code to production. These concepts directly influenced the birth of DataOps, which extends the 
same DevOps principles to manage and maintain stable and scalable data pipelines. 

Scrum, Agile, and DevOps were integrated through automation and collaboration, bringing 
together cultural and organizational philosophies that supported their principles. DataOps shares 
these foundational elements, guided by a set of automation and collaboration practices as 
reflected in "The DataOps Manifesto." The resulting continuous cycle advances collaboration 
between users, developers, and operations personnel, cutting across disparate workflows from 
various companies and increasing the automation rate of data pipeline phases. 

2.4. Benefits of Integration 

About a decade ago, the ground broke and a growing community of machine learning (ML) 
engineers came together to form a new discipline called MLOps, or machine learning operations 
[2,4,5]. The premise is simple: embedding machine learning intelligence into the data pipeline. It 
works with data operations and management because it focuses on the data used by machine 
learning, especially for predictions and ranking. Industry analysts proposed the complementary 
term DataOps, emphasizing the need for a culture change that brings data-first thinking with 
automation and processes like continuous integration/continuous delivery (CI/CD) for data 
pipelines. 

Embedding intelligence into the data pipeline enables a new level of automation allowing 
organizations to work faster, develop more pipelines and models and ultimately derive more 
value from their data. This new level of automation optimizes operations by blending AI with the 
operational aspect of data management. It helps businesses avoid the risks and compliance issues 
caused by problems in the underlying data structures by analyzing metadata and engine logs 
from all components. A meta machine learning system effectively enables Artificial ETL 
(extract, transform and load): an AI system that automatically performs the ETL/ELT embedding 
intelligence into the data pipeline. 

3. Automating ETL/ELT with AI 
Modern MLOps pipelines increasingly feature ELT (Extract, Load, Transform) operations to 
organize data for AI model training, testing, and validation. Similarly, DataOps pipelines rely on 
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ETL (Extract, Transform, Load) steps that prepare data before analytics and visualization. 
Especially in DataOps, these workflows process data related to the business, the product, pricing, 
or the resultant revenue. Most of the time, organizations develop these processes based on 
business decisions and data-management staff placed in two separate silos. At least in principle, 
AI can help handle some of this organizational complexity but also provide guidance about the 
potential impact of decisions related to these processes. 

Recent trends in machine-learning operations deliver new business values based on managing 
business metadata, business metrics, and data quality/observability. These advances open a 
completely new perspective for DataOps approaches [6-8]. The General Data Protection 
Regulation (GDPR)–related requirements for data transparency, and the general data-protection 
and data-governance objectives of enterprises, are additional drivers for accelerating the 
automation of metadata management and data quality assessment. Another trend in automating 
data-preparation pipelines is using ML techniques to detect data anomalies. 

3.1. Overview of ETL/ELT Processes 

MLOps meets DataOps: Embedding intelligence into the data pipeline Automation in the extract, 
transform and load (ETL) or extract, load and transform (ELT) process plays an important role in 
order to provide timely, consistent and accurate data for business intelligence. MLOps meets 
DataOps: Embedding intelligence into the data pipeline Automation in the extract, transform and 
load (ETL) or extract, load and transform (ELT) process plays an important role in order to 
provide timely, consistent and accurate data for business intelligence. Extract, transform and load 
(ETL) describes the process of extracting the data from the source systems, applying 
transformations to the data and loading the transformed data into its destination table in the target 
system. Extract, load and transform (ELT), on the other hand, loads the extracted data into 
dedicated tables in the target system without applying any transformations. Subsequently, the 
transformations are applied on the data in the target system and the data is moved into its final 
destination table. This principle allows the database engine of the target system to perform the 
transformations more efficiently by using native commands and parallel processing. 

Both ETL and ELT processes are usually constructed manually. For instance, in the case of the 
Zeppelin Movet project, team members are required to design the workflows in Apache Zeppelin 
and continue with a manual follow-up and maintenance. The ETL/ELT automation, however, 
also includes the automatic inferral of dependencies for workflows used to extract the data from 
the source, transform the data and load the data into the warehouse. For most businesses, data is 
a key asset and it is essential that data quality is assured and continuously monitored in order to 
provide consistent, accurate preferably up-to-date data for the business intelligence analysts, 
business users and company executives. Anomalies in the data can indicate potential problems 
and appropriate actions can be taken to reduce the likelihood of having wrong data in the data 
warehouse. Data quality functions have become a standard feature of demand management 
systems and most vendors offer a number of predefined data quality functions. Artificial 
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intelligence (AI) can play a decisive role in the assessment of the data quality of the ETL/ELT 
process. 

3.2. Role of AI in Automation 

Modern software development is undergoing a transition towards the Automation Age. Rapid 
growth in software, data generated by applications, and the development of artificial intelligence 
(AI) methods and tools present software engineers with abundant automation options. Indeed, 
new AI tools related to Software Engineering (SE) tasks appear rapidly, often disseminated 
through social media. Owing to the availability and ease of use of AI tools—particularly code 
generative large language models (LLMs) such as Copilot and ChatGPT—developers are 
beginning to adopt AI-generated code. These AI tools can be integrated into existing software 
development automation practices (e.g., DevOps, MLOps) to address other aspects of the SDLC 
[9,10]. For example, incorporating AI-generated code, automated analysis methods, and AI-
augmented tools can accelerate and automate aspects of Data Engineering in DataOps pipelines. 
DataOps, an emerging discipline that combines Agile software development methods with 
continuous delivery aspects from DevOps, focuses on data pipelines—particularly the move, 
process, and transformation of data. Controlling the quality and consistency of data in these 
pipelines remains a significant challenge. 

3.3. Tools and Technologies for Automation 

A variety of existing tools integrate artificial intelligence with ELT and ETL processes. 
Knowledge Graphs and Knowledge Bases form an intelligent layer above ETL technologies by 
extracting, structuring, enriching, storing, reusing, and sharing enterprise semantics and related 
knowledge. Machine Learning Operations ecosystem addresses the automation of data pre-
processing and quality assessment [11-13]. Quality assurance tools allow the user to define ETL 
quality rules and monitor data quality, while data anomaly detection solutions are based on 
Machine Learning. Finally, executing analysis models in an online environment involves 
orchestrating different components with an automatic scheduler. 

Embedding intelligence into the data pipeline is an emerging area of artificial intelligence. It is 
leveraged by MLOps and DataOps integration. Applying artificial intelligence to automation 
breaks simple data ingestion processes into microservices within the larger mutation phase of a 
typical ELT workflow—Extract, Load, and Transform. Integrating MLOps and DataOps 
transforms the traditional Extract, Transform, and Load data pipeline, establishing governance, 
orchestration, monitoring, and quality controls across the full data lifecycle, from ingestion to 
reporting. The confluence of MLOps and DataOps facilitates embedding intelligent capabilities 
into ETL/ELT processes. In particular, artificial intelligence supports automation at three levels: 
automating ETL workflow construction, automating data quality assessment, and automating 
data anomaly detection. 
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3.4. Case Studies of AI-Driven ETL/ELT 

The automation of data extraction, transformation, and loading processes can be achieved by 
harnessing different artificial intelligence methods. The following cases illustrate the effective 
integration of machine learning and AI methodologies in ETL/ELT pipelines. 

There’s one specific DataOps pipeline that is focused on data quality (DQ) verification using 
machine learning to analyze records as they enter the data lake. Low quality is detected, 
triggering a quick reaction from data engineers and reducing reprocessing costs [2,14-17]. 
Machine learning based anomaly detection and predictive data validation is used by big fintech 
companies to identify root causes of data quality issues there are more accurate and earlier in the 
ETL process. These are just a few examples of how the intelligence built in to DataOps 
workflows drive automation and improve data quality. 

4. Data Quality Assessment 
ChecKing as an Analytical Reasoning Tool for Data Quality Assessment Decision making is 
important task in decision life cycle of any organization particularly when organizations want to 
have competitive edge through business intelligent. Preprocessing and manipulating the data is 
thus critical. Various methods are designed for automatically assessing data quality through 
artificial intelligence which deal with problems of practical applications to automate AI. A joint 
solution of both supervised and unsupervised learning is in the direction with good potential. The 
right algorithm or ensemble algorithm to use is important and also related with the business 
context. Signs, such as vessel size or ETA that may influence container release and payment 
process should be constantly monitored. According to the model of European Foundation for 
Quality Management (EFQM) with "radicalism", a customer-oriented, process driven, and 
integrated approach is intensified toward excellence and continuous improvement. Data quality 
is a vital part of the EFQM model and contributes to a business's reputation for achieving 
business excellence. 

Machine learning offers robust forecasts of vessel arrivals, supports the identification of 
anomalies, and highlights where data quality should be prioritized. Machine learning techniques 
can identify and compute the anomalies detected within a dataset. Subsequently, decision trees 
can categorize these anomalies into clusters within the vicinity of the anomaly. Anomalies can be 
categorized as organisational, catastrophical, or suspected anomalies, and labeled with the 
associated cause in the dataset. This annotated dataset then serves as a foundation for further 
classification tasks. In these projects, assessment was performed within a DataOps culture, where 
DataOps tools and workflows are integrated into the actual work culture of the organization 
[9,18-21]. 
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4.1. Importance of Data Quality 

Modern data pipelines do more than collect, transform, and pre-select data—they also monitor 
and analyze incoming and output data to assess its overall trustworthiness and suitability for 
intended downstream tasks. Data quality evaluation remains critical, with data subjected to 
comprehensive validation before use in models, reports, or dashboards. Moreover, data quality 
assessment demands continuous temporal monitoring to detect and address technical glitches or 
natural business fluctuations and seasonality. 

Today, organisations can leverage artificial intelligence to enhance the automation and quality of 
traditional extract, transform, and load (ETL), or more recently, extract, load, and transform 
(ELT) processes. Organizations have developed MLOps and DataOps methodologies to assist 
data practitioners in confronting cultural, organizational, and technical challenges associated 
with adopting and operationalizing these new AI tools across the enterprise. 

4.2. Traditional vs. AI-Driven Approaches 

The growth of data economies promotes the recognition that data is a product represented by its 
Quality, and Data Quality is recognized as a critical element. Data quality and associated control 
procedures have been developed, like Six Sigma and Analytical Quality Control, to manage the 
Quality of the Product. 

Data quality assessment can be designed in various ways depending on the use case. 
Nevertheless, data quality gates or rules can be automatically built with AI methods that augment 
data engineers’ skills. It is common to start by implementing quality checks for source data. Data 
quality gates can then be established for each step in the ETL/ELT process. These gates perform 
control checks to ensure that the data transform performed on a dataset is as expected and does 
not create unexpected data anomalies or biases. 

4.3. Frameworks for Quality Assessment 

Notable efforts have been made to approach data quality assessment systematically.1–5 
Although the techniques differ, the majority fuse scored indicator metrics to provide an overall 
data quality assessment and visualization. Machine learning has been recent applied to assess 
data quality,6 but unsupervised anomaly detection has proven more effective — in essence, 
training an ML model on fresh data for discovering data anomalies or outliers should reflect 
most data-quality issues, rather than relying on a traditional trained model. 

Data quality assessment is intimately related to anomaly detection. Implementation 
considerations arise, however, for organizations that have yet to establish a complete MLOps 
environment. Since DataOps and MLOps are mutually dependent, the integration challenge 
deserves particular attention. Therefore, the preceding methods maximize automation for ETL 
workflows, work in both supervised and unsupervised scenarios, and require only a minimal 
level of MLOps support. 
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5. Anomaly Detection with Machine Learning 
Data anomalies represent deviations or inconsistencies in data that diverge from an expected or 
typical state, presenting challenges to proper data handling and business operations. Detecting 
these anomalies is crucial for preserving data quality and enhancing security. Machine Learning 
techniques provide robust means for identifying unusual samples within datasets, applicable 
across diverse domains such as credit card fraud, network intrusion, product defect identification, 
and disease diagnosis. Typical approaches include Clustering, Neural Networks, Support Vector 
Machines (SVMs), Statistical methods, and Ensemble Learning. Clustering assesses groupings 
and detects points distant from defined clusters as anomalies. Neural Networks, particularly Self-
Organizing Maps, leverage clustering and visualization to identify atypical samples. SVMs 
employ hyperplanes to segregate normal from abnormal data, assigning labels accordingly. 
Statistical methods analyze attribute distributions to flag data points falling outside normal 
boundary values [22,23]. Ensemble Learning techniques integrate multiple models to compute 
anomaly scores, facilitating outlier detection. 

Anomaly detection—considering temporal, spatial, relational, and other contexts—is a 
fundamental application in domains including Cyber-Physical Systems, Environment, 
Transportation, Finance, and Healthcare. Evaluation metrics such as the F1 score, Accuracy, 
Precision, and Recall quantify the performance of detection systems. 

5.1. Understanding Anomalies in Data 

MLOps and DataOps can be viewed as ways to environmentalize AI or, in other words, as ways 
to operationalize AI-based workflows that either actively make use of AI or represent a 
necessary prerequisite for successfully applying AI in other stages of the data flow. Once the 
underlying processes of the data flow have been environmentalized and automated, the 
integration of AI is a natural next step to embed intelligence into the different steps of the data 
flow. In the context of DataOps, this can be seen as a means to transition from merely managing 
the data flow to enabling a self-managing data flow. The overall benefits of this integration are 
clear: it leverages the potential of AI for existing tasks, improves the efficiency of data flows, 
and reduces the manual workload of DataOps teams. 

Extract–Transform–Load (ETL) or Extract–Load–Transform (ELT) serve as crucial methods for 
automatising data transformation and preparation Apart from the other dimensions, automatic 
ways of determining and evaluating quality of the transformed data are equally important. A 
potential application for artificial intelligence in this domain would be to assist a company’s 
DataOps team when data quality is assessed, for example, by detecting anomalies within 
transformed data tables [24-26]. Anomalies can be in the forms of anomalies, collective data 
distribution and lost periods in short. By using machine learning methods, a data-driven anomaly 
detection method is developed that provides significantly higher capability versus traditionally 
defined rule-based approaches. 
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5.2. Machine Learning Techniques for Anomaly Detection 

The discipline of Operations in Machine Learning (MLOps)—also called Automatic Machine 
Learning or Tools of Artificial Intelligence—consists of tools and techniques that introduce 
automation into building Machine Learning models. 

Data pipelines consist of sequences of processes that extract and load information into other 
systems. Traditionally, these pipelines have served as the backbone of Modern Data Engineering, 
enabling the generation of reports and business intelligence. They have become the need of the 
hour for data-driven companies that drive growth and compete better in the market. 

 

The rich and varied family of Artificial Intelligence techniques could also be exploited to 
automate other steps of the conventional Data pipeline (such as the extract-transform-load step, 
or operations related to Data Quality Assessment, such as these performed in DataOps 
operations). 

The parallel presence of Machine Learning oriented pipelines and the classical data pipeline 
paves a way for an Operational Model for Data. This model would combine aspects of MLOps 
and DataOps, incorporating intelligence into data pipelines for improved automation and quality 
assurance. 

5.3. Implementation Strategies 

Implementing Data Quality Control in Production Once the phase of Data Quality Control 
Design is completed, the entire working regime, including monitoring, alerting and 
troubleshooting, must be implemented, preferably in an automated and integrated way. Partial or 
primitive forms of automation can be supported by popular workflow managers such as Apache 
Airflow, but full automation is frequently attained through the employment of MLOps tools, 
which enable the integration of ML workflows into broader data pipelines. Automation Code 
Once data quality KPIs and Anomaly Detection models become operational, the corresponding 
monitoring and alerting processes are systematically automated to achieve full automation of 
data quality control. [27,28] Given the mature DevOps infrastructure that supports ETL/ELT 
tooling, including CI/CD pipelines, containerization and orchestration, the deployment of new 
data quality workflows on prem or in the cloud can be accomplished with minimal effort and 
maximal reliability in the shortest possible timeframe. Monitoring Integration into various 
dashboards is also straightforward through Loggers, Cerberus, etc. Culture and Mindset The 
effective implementation of the concept of embedding intelligence into data pipelines 
necessitates concerted efforts to harmonize MLOps and DataOps both culturally and 
organizationally. A common understanding of the objectives must be established, along with a 
clear recognition that the creation and maintenance of AI elements in all processes is an 
everyday job that demands continuous attention and adjustment. 
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5.4. Real-World Applications 

Implementations of machine-learning techniques for data-quality assessment and anomaly 
detection are steadily growing in number and increasingly apply to various real-world data sets. 
Companies such as Hume and Soda revolve these concepts around the more modern DataOps 
discipline, which is evolving into the MLOps framework successfully used within artificial 
intelligence (AI) teams. Many tools and integrations support this evolution and allow for the use 
of data-quality checkers built on AI methods, such as Deepchecks, Great Expectations, or 
Datafold. These data-quality checkers offer automated, intelligent support in writing 
expectations, analyzing data, and detecting anomalies, thus not only ensuring clean data but also 
assisting in model selection and the definition of model boundaries. 

Within the AWS ecosystem, a service named Deequ automates data-quality checks using ML 
methods. Deequ processes raw data and computes metrics and constraint checks, which it then 
evaluates. The results determine whether a data row passes or fails the quality criteria, enabling 
the definition of guard rails. Deequ’s automated support facilitates the generation of constraints 
by analyzing historical data and identifying anomalies. Combining the functionality of guard 
rails with the automatic generation of constraints inspired by Concerns-Less Data Engineering 
fosters cooperative evolution between MLOps and DataOps, thereby embedding intelligence in 
data pipelines. 

6. Challenges and Solutions in MLOps and DataOps 
Integration 
The fields of MLOps and DataOps are growing very fast but there are several cultural, 
organizational and technical challenges to overcome. Fairly distinct skills are required to tackle 
MLOps and DataOps, with DataOps engineers being typically skilled more on synthetic 
languages like Python or Scala and MLOps engineers focusing more on system or shells 
programming languages like C or GO. Both actions are performed by completely separate teams 
with very little crossover in high level strategic technical decisions [19,29-31]. 

Where we most need to shift is the operationalization of machine learning There are some big 
barriers there, such as lack of architecture and methodologies integrated with operations systems 
and parts From there on out it is all about data AND not enough people that can combine those 
skills, roles, responsibilities etc.getSelected quotes:1) In reality (and common sense), without 
data you cannot feed any intelligence at all. DevOps automation system is more slowly being 
adopted because of lacking the common MLOps architecture and guidance and lack of cross 
skilled manpower. Organizations move at different paces in synchronizing DevOps traditional 
stream with new MLOps stream and police forcefulness towards the latter can hinder progress. 
To overcome the challenges and realize the benefits requires an approach that embeds 
intelligence into existing data pipelines, i.e., an approach where MLOps meets DataOps. 
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6.1. Cultural and Organizational Barriers 

As with any new methodology, there are several challenges when applying MLOps and DataOps 
conceptually. First, DataOps emphasizes an iterative and continuous approach to the design and 
development of data analytics, which requires supervision motivation and business support, all of 
which may be lacking in traditional siloed organizations. Second, DataOps calls for the 
automation of a multitude of steps and activities associated with data analytics, not only the 
retrieval and storage of data but also profiling, cleansing, integration, and transformation. The 
lack of end-to-end automation and data pipelines often í nterferes with the ability to address 
changing market demands. 

These problems have been solved in the cloud business intelligence (BI) area, offering easy 
access from anywhere and a low level of knowledge to exploit their capabilities. However, it still 
remains a considerable challenge to construct DataOps that can automate the entire process of 
web presentation, periodical use, and scripts scheduling along with data visualization. 

6.2. Technical Challenges 

MLOps and DataOps together ensure the maintainability, replicability, reliability, security, and 
quality control of data pipelines with embedded intelligence. Technical challenges in integration 
arise from the nature of these two disciplines. DataOps encompasses technical practice, 
particularly Julia Language web development, data transformation pipelines, and Apache Kafka 
data streaming. MLOps focuses more on machine-learning topics such as hyperparameter 
searching, architecture evaluation, and model training/rendering. Designing, implementing, and 
maintaining extensive pipelines that rely on MLOps and DataOps live in practice within two 
development teams with distinct primary skills and tools. 

The different goals of DataOps and MLOps represent an additional obstacle. While DataOps 
aims to create quality data in a reliable and automated manner, any machine-learning method 
introduced must act as an assistant. Consequently, MLOps techniques should provide robust 
quality assessment and anomaly detection support that supports domain expert decisions, enable 
data-preparation automation that improves efficiency, and ensure a seamless, fail-proof train-
predict-iterate circle. 

6.3. Best Practices for Overcoming Challenges 

The convergence of data and machine-learning pipelines brings intelligence to well-known 
DataOps problems such as ETL automation, data-quality assessment, and anomaly detection. 
Typically, these problems are tackled by dedicated teams with a DataOps mindset. The 
emergence of MLOps establishes a similar mindset, organization, culture, and tools for machine-
learning pipelines. Combining DataOps and MLOps practices is a logical evolution that can 
significantly increase automation and intelligence in production data and machine-learning 
pipelines. 



 

57 
 

Surveyed practitioners have observed that for effective collaboration between DataOps and 
MLOps teams on end-to-end data pipelines, "a cultural shift and organizational mindset 
supported by a conducive structure" is essential. Realizing the vision of data and machine-
learning pipelines as a single intelligence embedding pipeline reveals several challenges, 
including knowledge gaps, duplicated tasks, poor pipeline quality, conflicting objectives, focused 
projects over shared outcomes, and siloed domain knowledge. Practitioners have shared 
recommended practice patterns to address these issues and capitalize on the benefits of integrated 
operations. 

7. Future Trends in MLOps and DataOps 
MLOps and DataOps have followed an analogous trajectory, shaped by analogous forces and 
driven by analogous forces—first the cloud, followed by containers and orchestration, and now 
AI. For the same reasons, the two domains will also converge and merge into a single practice, 
drawing upon complementary core competencies. 

The automation of ETL and ELT workflows, data quality assessment, and data anomaly 
detection has traditionally been carried out using rule-based algorithms and heuristics. The 
incorporation of AI can produce better results and enable the automation of more aspects of an 
analyst’s or a data engineer’s work. Indeed, the differentiation of the future AI orchestration 
platforms currently under development will be their focus on automation or AI-first support for 
these critical processes. 

7.1. Emerging Technologies 

The integration of MLOps and DataOps supports the deployment of machine learning models 
into production and engineering workflows for analytics, reporting and decision making. Cloud 
providers as well as open-source projects have produced numerous supporting tools and 
managed services. For example, Amazon Web Services has announced the general availability of 
code, notebooks, pipelines, evaluation reports and templates for training, tuning, endpoint 
deployment and data capture alongside an orchestrating workflow for monitoring data drift and 
report generation. Data quality frameworks augment batch and streaming data pipelines to 
produce detailed reports. Services such as Amazon SageMaker Model Monitor support baseline 
creation and data profile monitor deployment for batch and real-time inference within active 
endpoints. 

Embedded intelligence in data pipelines offers clear benefits through improved monitoring, 
decision-making, quality and automation. Further, decision-making automation has been brought 
out even to traditional ETL/ELT workflows which are almost fully automated based on AI and 
have expert users empowered with or replaced by the value of AI. Data quality assessment 
models use validations based on rules (RBVs), which can be improved integrating AI techniques 
to avoid the drawbacks of fixed schemas and plain heuristics. Just as classification-based 
approaches are replacing rule and threshold-based methods that analyze data anomalies through 



 

58 
 

machine learning, anomaly detection based on supervised models is subsuming classical 
anomaly scoring techniques. 

7.2. Predictions for the Next Decade 

Automatic of ETL/ELT workflows with AI is a hot area in research. The basic idea is to push 
intelligence into the data pipelines to improve efficiency and reduce human effort to handle data, 
especially in anomaly detection which may be present in machine learning models. These 
activities have found new forms in the recently introduced paradigms of MLOps-from-the-Data-
Quality-Perspective and DataOps-paradigms, working to bring DevOps into data-science-and 
respectively data-engineering-operations. 

The integration of machine-learning methods addresses two main challenges. There is a demand 
for deploying machine-learning models that determine the possible causes of quality failures and 
for implementing models that anticipate these causes. This dual capability would enable data-
engineering and data-science teams to be proactive, providing them with triggers for data failure 
and difficulties, and to respond promptly to data failures. However, attempts to meet this demand 
have failed because many of the more mature MLOps and DataOps frameworks and tools 
emphasize the operationalization of the MLOps lifecycle only after release or focus on 
establishing Continuous Integration and Continuous Delivery pipelines for machine-learning 
projects. Typically, MLOps and DataOps do not explicitly consider the operationalization of the 
data-preparation pipelines that make datasets appropriate for training machine-learning models. 

8. Conclusion 
MLOps and DataOps are the two faces of the automated data process cycle. While MLOps deals 
with exposing and automating the intelligence of the data in the pipeline, DataOps focuses on the 
pipeline itself. The two are seldom considered together, but many can benefit from the synergies 
of embracing both philosophies. Having intelligence embedded inside the pipeline can help in 
automating much of the ETL/ELT process as well as providing a quality assessment of the data. 

Embedding intelligence inside the pipeline automates much of the ETL/ELT process and 
provides a quality assessment of the data. A specific popular aspect of quality assessment—
anomaly detection—is chosen to demonstrate the potential of introducing Machine Learning 
models into the data pipeline. An overview of how MLOps and DataOps complement each other 
is presented, followed by the various types of data pipelines. Finally, using univariate forecasting 
of data-behaviour as an example, an end-to-end deployment is conducted to reveal one approach 
to combining these two philosophies for a common purpose. 

 

 

 



 

59 
 

References: 

[1] HUSSAIN, Fatima; HUSSAIN, Rasheed; HOSSAIN, Ekram. Explainable artificial intelligence (XAI): An 
engineering perspective. arXiv preprint arXiv:2101.03613, 2021. 

[2] Koneti SB. Artificial Intelligence in Financial Systems: Digital Transformation, and Machine Learning 
Applications. Available at SSRN 5401202. 2025 Aug 12. 

[3] Muppala M. SQL Database Mastery: Relational Architectures, Optimization Techniques, and Cloud-Based 
Applications. Deep Science Publishing; 2025 Jul 27. 

[4] Muppala M. Artificial Intelligence, IoT, and Sensor Technologies for Marine Monitoring and Climate 
Resilience. Digital Oceans: Artificial Intelligence, IoT, and Sensor Technologies for Marine Monitoring and 
Climate Resilience| Deep Science Publishing. 2025 Jul 8. 

[5] Panda SP, Koneti SB, Muppala M. Benefits of Site Reliability Engineering (SRE) in Modern Technology 
Environments. Available at SSRN 5285768. 2025 May 1. 

[6] Koneti SB. Artificial intelligence Applications in Retail and Investment Banking: Personalization, Robo-
Advisory and Behavioral Analytics. Artificial Intelligence-Powered Finance: Algorithms, Analytics, and 
Automation for the Next Financial Revolution. 2025;4:72. 

[7] Muppala M. Architectures in relational databases: An analytical study of SQL-based data models and ACID 
principles. database.;2:4. 

[8] Bentahar J. A Survey on Explainable Artificial Intelligence for Network Cybersecurity. arXiv (Cornell 
University). 2023 Mar 7. 

[9] Gadde H. AI-Assisted Decision-Making in Database Normalization and Optimization. International Journal of 
Machine Learning Research in Cybersecurity and Artificial Intelligence. 2020;11(1):230-59. 

[10] Koneti SB. Algorithmic Trading and Quantitative Finance Strategies: High-Frequency Trading, Market 
Microstructure, and Risk Optimization Models. Artificial Intelligence-Powered Finance: Algorithms, Analytics, 
and Automation for the Next Financial Revolution. 2025;4:17. 

[11] Panda SP. The Evolution and Defense Against Social Engineering and Phishing Attacks. International Journal of 
Science and Research (IJSR). 2025 Jan 1. 

[12] Mohapatra PS. Artificial Intelligence and Machine Learning for Test Engineers: Concepts in Software Quality 
Assurance. Intelligent Assurance: Artificial Intelligence-Powered Software Testing in the Modern Development 
Lifecycle. 2025 Jul 27:17. 

[13] Koneti SB. Analysis, Predictive Analytics, and Macroeconomic. Artificial Intelligence-Powered Finance: 
Algorithms, Analytics, and Automation for the Next Financial Revolution. 2025 Aug 12:90. 

[14] Panda S. Scalable Artificial Intelligence Systems: Cloud-Native, Edge-AI, MLOps, and Governance for Real-
World Deployment. Deep Science Publishing; 2025 Jul 28. 

[15] Shivadekar S, Halem M, Yeah Y, Vibhute S. Edge AI cosmos blockchain distributed network for precise ablh 
detection. Multimedia tools and applications. 2024 Aug;83(27):69083-109 

[16] Reis J, Housley M. Fundamentals of data engineering. " O'Reilly Media, Inc."; 2022 Jun 22. 
[17] Ivanov SH, Webster C. Adoption of robots, artificial intelligence and service automation by travel, tourism and 

hospitality companies–a cost-benefit analysis. Artificial intelligence and service automation by travel, tourism 
and hospitality companies–a cost-benefit analysis. 2017. 

[18] Ramadhan M, Naseeb A. The cost benefit analysis of implementing photovoltaic solar system in the state of 
Kuwait. Renewable energy. 2011 Apr 1;36(4):1272-6. 

[19] Cordes JJ. Using cost-benefit analysis and social return on investment to evaluate the impact of social enterprise: 
Promises, implementation, and limitations. Evaluation and program planning. 2017 Oct 1;64:98-104. 

[20] Dykes PC, Curtin-Bowen M, Lipsitz S, Franz C, Adelman J, Adkison L, Bogaisky M, Carroll D, Carter E, 
Herlihy L, Lindros ME. Cost of inpatient falls and cost-benefit analysis of implementation of an evidence-based 
fall prevention program. InJAMA Health Forum 2023 Jan 6 (Vol. 4, No. 1, pp. e225125-e225125). American 
Medical Association. 



 

60 
 

[21] Frank J. Artificial intelligence and intrusion detection: Current and future directions. InProceedings of the 17th 
national computer security conference 1994 Oct 11 (Vol. 10, pp. 1-12). 

[22] Wang F, Preininger A. AI in health: state of the art, challenges, and future directions. Yearbook of medical 
informatics. 2019 Aug;28(01):016-26. 

[23] Lu Y. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of 
management analytics. 2019 Jan 2;6(1):1-29. 

[24] Cordes JJ. Using cost-benefit analysis and social return on investment to evaluate the impact of social enterprise: 
Promises, implementation, and limitations. Evaluation and program planning. 2017 Oct 1;64:98-104. 

[25] Dykes PC, Curtin-Bowen M, Lipsitz S, Franz C, Adelman J, Adkison L, Bogaisky M, Carroll D, Carter E, 
Herlihy L, Lindros ME. Cost of inpatient falls and cost-benefit analysis of implementation of an evidence-based 
fall prevention program. InJAMA Health Forum 2023 Jan 6 (Vol. 4, No. 1, pp. e225125-e225125). American 
Medical Association. 

[26] Gadde H. AI-Enhanced Adaptive Resource Allocation in Cloud-Native Databases. Revista de Inteligencia 
Artificial en Medicina. 2022 Oct 18;13(1):443-70. 

[27] Koneti SB. Microstructure, and Risk Optimization Models. Artificial Intelligence-Powered Finance: Algorithms, 
Analytics, and Automation for the Next Financial Revolution. 2025 Aug 12:17. 

[28] Panda SP. Augmented and Virtual Reality in Intelligent Systems. Available at SSRN. 2021 Apr 16. 
Mohapatra PS. Artificial Intelligence-Driven Test Case Generation in Software Development. Intelligent 
Assurance: Artificial Intelligence-Powered Software Testing in the Modern Development Lifecycle. 2025 Jul 
27:38. 

[29] Eboigbe EO, Farayola OA, Olatoye FO, Nnabugwu OC, Daraojimba C. Business intelligence transformation 
through AI and data analytics. Engineering Science & Technology Journal. 2023 Nov 29;4(5):285-307. 

[30] Mohapatra PS. Intelligent Assurance Artificial Intelligence-Powered Software Testing in the Modern 
Development Lifecycle. Deep Science Publishing. 2025; doi:10.70593/978-93-7185-046-9 

[31] Ojika FU, Owobu WO, Abieba OA, Esan OJ, Ubamadu BC, Daraojimba AI. Transforming cloud computing 
education: Leveraging AI and data science for enhanced access and collaboration in academic environments. 
Journal name and details missing. 2023 Jan 

 

 

 

 

 

 

  



61

Chapter 5: The Age of Vector and Graph Databases: 
Foundations for Advanced Information Retrieval and 
Reasoning

1 Introduction

The explosive growth of unstructured data and the escalating complexity of AI applications have 
begun to reveal fundamental flaws in traditional relational database systems. These systems are 
intended to be used with structured data and predefined schemas, making them ill-equipped to 
handle the kinds of semantic relationships and complex interdependencies that now frequently 
crop up in today’s modern types of data: text, images, knowledge graphs. This technology 
mismatch has encouraged several special-purpose database paradigms that work well for certain 
types of data and operations.

Two such complementary approaches are vector and graph databases. Vector-based databases 
store items as mathematical vectors in a high-dimensional space which permits to perform 
efficient retrieval based on similarity that captures semantics, instead of exact equivalence. In 
contrast, graph databases use node-edge-node structures to directly express relationships between 
entities on the data keeping level allowing for advanced processing and analysis of linked data. 
The combination of these technologies with more advanced AI methods has led to powerful 
knowledge-based application frameworks.

This chapter explores how these database technologies underpin today’s AI systems. In the 
following, we first compare vector and graph databases focusing on their different data model, 
queries as well as potential usage. We also walk through the foundational idea of vector 
embeddings and how they support semantic search, as well as an investigation into how retrieval 
systems are combined with large language models using Retrieval-Augmented Generation 
(RAG) architectures. Finally, we are considering knowledge graphs and reasoning engines, 
bringing explainable inference to AI systems. We highlight throughout the practical applications 
of these technologies and their synergistic effects in fostering advanced, efficient, and 
transparent intelligent systems..
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2 The Age of Vector and Graph Databases 

The abstraction between vector and graph databases is the underlying data model and what kinds 
of relationships are most important. The aim of this review is to highlight these differences and 
show the reasons for choosing the right technology, and also to understand their complimentary 
potentials in hybrid architectures [1-3]. 

2.1 Data Representation Models 

Vector databases convert raw data of any sort — text, images, audio — into a numerical 
representation in high-dimensional space called the embedding. These embeddings map the data 
points into a continuous vector space in which distances correspond to degrees of semantic 
similarity. For instance, in an e-commerce use case like online shopping items' descriptions are 
converted to vectors so that similar items falls on same set of points(not only close but also 
harder for recommendation system to find interested items if different vendors decide to offer the 
same item under a slightly different name / description) [2]. 

In contrast, graph databases explicitly model complex networks using a structure formed of 
nodes (entities or concepts) and edges (relations). This model is a natural representation for 
connected domains such as social networks, where the vertices are users and edges represent 
connecting pair of them or fraud detection systems, where patterns of relationships among 
entities can indicate to anomalous activities. 

Table 1: Comparative Analysis of Vector and Graph Databases 

Feature Vector Databases Graph Databases 

Data 
Representation 

Points in multi-dimensional space 
based on semantic similarity  

Nodes (entities) and edges 
(relationships) forming 
interconnected networks  

Primary Query 
Method 

Similarity search using metrics like 
cosine similarity or Euclidean 
distance  

Graph traversal algorithms (e.g., 
breadth-first search) to navigate 
relationships  

Optimal Use 
Cases 

Recommendation systems, semantic 
search, anomaly detection  

Social network analysis, fraud 
detection, knowledge representation  

Scalability 
Considerations 

Generally handle large-scale 
similarity searches well with 
horizontal scaling  

Can face performance challenges 
with highly complex queries over 
massive graphs  
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2.2 Complementary Strengths and Convergence 

Despite their different modeling approaches, vector and graph databases are strong in different 
types of scenarios. Vector-based systems are useful for similarity search in unstructured data, 
while graph-based databases can address the complicated relationships and paths from proximal 
data.. 

Curiously, these paradigms are now more and more merging in modern AI systems. Vector-like 
capabilities are being integrated to graph databases endowing them with the ability to perform 
similarity searches on node properties and not just an nested relationship traversal. Conversely, 
some vector databases are integrating graph-like relationships to enhance their similarity metrics 
with contextual information [2,4,5]. This Now the intersected items of two facets represent an 
entity’s both semantic attributes and its position relations in a knowledge graph. 

3 Vector Embeddings and Semantic Search 

Vector embeddings are the mathematical basis for making sense of meaning between words in 
AI systems. These techniques allow automatic derivation of continuous vector space 
representations of discrete data, in which the similarity between elements can be queried to 
retrieve semantically related information. 

3.1 The Embedding Generation Process 

Vector embeddings are compact numerical representations that encode relevant properties and 
semantics of data into vectors in a very high-dimensional space. This is based on the 
fundamental framework of neural networks, in particular specialized paradigms such as 
Word2Vec for text variations or Convolutional Neural Networks (CNNs) for images, that learn 
to translate raw data into vectors through representation learning. In training, these networks try 
to move semantically similar items to places close together in the vector [6-8]. For example, 
words that have similar meanings (e.g. king and queen) have very close vector representations in 
the semantic space, whereas unrelated words like car are placed further. 

The high dimensionality of these embeddings (usually a few hundred to a thousand dimensions) 
affords the capacity necessary to encode such complex semantic relationships. Modern 
embedding models such as OpenAI's text-embedding-ada-002 convert variable-length text into 
fixed-dimensional vectors, providing a uniform input size for processing. This transformation 
opens the door to all kinds of data, from text and images, through audio and other sensations up 
to molecular structures, being processed in one single mathematical space where dependencies 
between any kinds of inputs might be quantified systematically. 

3.2 Similarity Metrics and Search Implementation 
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In a simplex embedding, query and document representations are projected into this embedded 
space and their cosine similarity in such a space is measured. Unlike keyword-based search, 
which uses exact matches, semantic search grasps the meaning of context, and is able to serve up 
relevant results despite variations in terminology across queries and documents. 

The performance of semantic search is tightly bound to similarity metric selected. Some of the 
widely used measures are as follows: 

 

Cosine similarity: Computes the cosine of the angle between vectors a and b (the vectors must 
have length 1 for this to be a proper distance metric). That makes it especially useful for text 
tasks where we need frequency-independent semantic similarity [9,10] . 

The (dis)similarity measure is euclidean distance, which measures the straight-line distance 
between points in a vector space; it is easy to interpret in terms of absolute separation. 

In practice, semantic search systems use Approximate Nearest Neighbor (ANN) algorithms (e.g., 
Facebook’s FAISS and Google’s ScaNN), to perform efficient searches in high-dimensional 
vector spaces. These methods allow fast similarity search over even billion-scale vector 
databases, so semantic search is possibly for real-time scenarios. 

4 Integrating with LLMs for Retrieval-Augmented Generation 

(RAG) 

Cross-linking retrieval systems and Large Language Models (LLMs) via Retrieval-Augmented 
Generation (RAG) is a crucial step towards addressing the limitations of LLMs such as static 
knowledge truncation, hallucination and non-expertise in domain. RAG architectures effectively 
bridge the gap between the generative capabilities of LLMs and the dynamic, verifiable 
knowledge stored in external databases. 

4.1 RAG Architecture and Workflow 

A typical RAG system follows a structured pipeline that combines information retrieval with 
contextual generation [11-13]. The process begins with an indexing phase, where domain-
specific documents are chunked into manageable segments, converted into vector embeddings, 
and stored in a vector database . At inference time, when a user submits a query, the system 
embeds this query using the same model and performs a similarity search against the vector 
database to retrieve the most relevant contextual documents . 

These retrieved documents are then concatenated with the original query and fed to an LLM, 
which generates a response grounded in the provided context . This approach significantly 
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enhances the factuality, accuracy, and timeliness of LLM outputs while 
providing explainability through source attribution . For example, a customer support chatbot 
utilizing RAG can retrieve relevant information from a constantly updated knowledge base and 
generate responses that reflect the most current policies and procedures . 

4.2 Evolution of RAG Frameworks 

RAG designs have moved from simplistic naive implementations to abstract and modular 
structures. Naive RAG Naive R-eir-e v-al- g-en -eration techniques extracting replies by simply 
retrieving a candidate context and estimating its likelihood as a reply to the current turn have 
been already evaluated using metrics like retriever precision, in which was found naiv e New 
state-of-the-art results on how AdvRAG New SOTA Applying improved pre-retrieval 
optimization (e.g. better chunking strategies, the enrichment of metadata), enhanced retrieval 
techniques (e.g. fine-tuned embeddings) and post-retrieval refinements (e.g. reranking or prompt 
compression may improve these results ) addresses this~":"{}" This is also brought to question 
by new experiments with SingleSeqStruc with more suitable architecture and a better pre-
training method [2,14-17]. 

The most adaptable position, which accepts additional functional blocks, is Modular RAG that 
includes search modules, memory mechanisms and routers that adapt the retrieval policy 
according to the query. This modularity facilitates the use of advanced methods as recursive 
retrieval, that begins with smaller semantic chunks and goes higher with respect to larger context 
semantics, or query Decomposition which decomposes complex questions relative to simple sub-
queries able to address different sources of data.  

5 Knowledge Graphs and Reasoning Engines 

Although vector databases are efficient at similarity-driven retrieval, KGs and their reasoning 
capabilities offer complementary strengths for representing structured knowledge and conducting 
logical inference. Such technologies add explainability, relational understanding and deductive 
power to AI systems, especially in the setting of complex decision making based on facts 
interconnected [9,18-21]. 

5.1 Knowledge Representation and Inference Mechanisms 

A knowledge graph is an architectural way of representing knowledge as a linked-network of 
entities, where the nodes are concepts or objects and the links are their relationships. This 
framework fitly contains complex relationship (i.e., hierarchical classification, spatial relations 
and temporal order). Contrast to vector representation where semantic closeness is encoded in a 
continuous space implicitly, Knowledge graphs encode relationship in an explicit and symbolic 
fashion  
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LogicaJ reasoning engines apply logical rules on these explicit representations to derive new 
knowledge (I). For instance, given facts "Person X works for Company Y" & "Company Y is 
headquartered in City Z", it should be possible to provide RSETs with a reasoning engine which 
can deduce the implicit fact that Person X is based on City Z. The techniques which advanced 
reasoning engines such as RDFox use are incremental in the sense that real-time inferences can 
be updated when new data comes in without having to recompute the entire knowledge base. 
They also support negation as failure (by being able to infer based on the lack of some data), and 
aggregation, permitting numerical calculations over groups of data in the graph [22,23]. 

5.2 Applications and Integration with AI Systems 

Domain-specific regulatory requirements and the ability of knowledge graphs to represent 
relationships explicitly and perform logical inference, which makes them particularly promising 
in regulated industries and complex decision-making domains. On health, knowledge graphs 
could depict relations among symptoms and diseases or treatments (thereby allowing reasoning 
engines to propose the most probably diagnosis according to a symptom pattern). For example in 
finance, they can discover complex fraud cases that have uncommon relations between entities 
and do not get discovered through isolated similarity searches[24-26]. 

Integrated with LLMs, KGs serve as sources of structured knowledge grounding, which 
contributes to improved factual and relational correctness in the generated responses. Such 
integration can operate in both directions: knowledge graphs may provide verifiable information 
to LLMs, and in reverse, LLMs may help fill out and update knowledge graphs by filling it with 
structured information extracted from free-form text. This nexus of statistical learning from 
LLMs and symbolic reasoning with knowledge graphs offers a promising route to more powerful 
and reliable AI systems 

6 Synthesis and Future Directions 

The technologies that we have seen in this chapter—vector and graph databases, semantic 
search, RAG, and knowledge graph reasoning—are additional pieces of a modern AI stack. 
Instead of just being its own separate choice, they form the integrated parts in an advanced AI 
design. There is a need to understand the synergies between these views and their possible 
trajectories for future intelligent systems. 

6.1 Hybrid Architectures and Emerging Convergences 

The most critical trend impacting database infrastructure for AI is the merging of vector and 
graph techniques. Graph databases are adding vector capabilities in their systems, allowing for 
similarity searches on node properties; whereas vector databases are embracing the addition of 
graph-like relationships to improve its semantic matching with surrounding contexts. This 
hybridization makes for powerful synergies: for example, a recommendation system could use 
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vector similarity to find similar products and graph traversals to discover items liked by users 
with similar network profiles. 

For RAG architectures, such convergence enables advanced retrieval strategies [27,28]. Hybrid 
search The hybrid search approaches fuse the semantic vector search with traditional keyword-
based as well graph-based retrieval in order to handle different query types and information 
requirements. For multi-perspective questions, taking different point of view systems can break 
down the question into suitable sub-queries in which each sub-query is posed to a different 
database system and by combining the returned information they attempt to produce a coherent 
answer. This multi-modality retrieval method leads to much stronger and richer AI systems.. 

6.2 Research Challenges and Future Outlook 

Although much progress has been made, many challenges in scaling and improving these 
techniques still puzzle researchers. Computational efficiency remains an issue as the size of 
datasets increase to billions of vectors and trillions of graph relationships. This scaling is being 
challenged considerably by more efficient indexing structures, approximate algorithms and 
hardware acceleration. Moreover, biasin embeddingmitigation is a continuning reminder before 
em- beddings that comes with continuing neglect as the pre-trained vectors may amplify social 
biases in training data. 

In the future, we expect greater emphasis to be put on the real-time reasoning capabilities that 
could leverage the strengths of the pattern recognition in neural methods and other forms with 
explainability from symbolic AI [19,29-31]. Such technologies can unleash edge-based 
implementations that will make AI applications more responsive as well as more privacy-
conscious. Moreover, when AI systems come to play an increasingly important role in high-
stakes decisions (e.g., about my health or wealth), the accountability and explainability provided 
by tools like knowledge graphs will be necessary rather than just highly desirable [32]. 

7 Conclusion 

In this chapter, we discussed the role of vector database systems and graph database systems as 
well as technologies related to these newfound types in transforming AI. We showed how these 
dedicated data management systems overcome basic limits in managing unstructured information 
and relationships, making it possible to support more advanced AI applications. 

The era of vector and graph databases is a time when “one size fits all” data management is 
replaced by specialized offerings developed for certain variety of the data and the universe of use 
cases that surround it. Vector databases are especially effective to capture semantic similarities 
and deliver context-sensitive retrieval due to the embedded-based approach. Graph databases are 
extremely powerful at modelling and querying for complex relationships. When incorporated via 
interfaces such as RAG, they enrich large language models with external knowledge to reduce 
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hallucinations and support domain task applications. In addition, knowledge graphs and 
reasoning engines deliver explainable, logic-based inference to AI systems — critical in 
regulated sectors and in complex decision scenarios. 

As these technologies merge and progress, they promise to become ever more central in the 
construction of AI systems that are but not only, capable, but also transparent, trustworthy and 
aligned with human modes of reasoning. The future is not to decide between these paradigms but 
to exploit the complementary strengths of each other with hybrid approaches that combine a 
statistical power of neural methods and structured reasoning in symbolic AI. 
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Chapter 6: Exploring Security, Governance, and 
Explainability in AI Systems

1. Introduction
There are numerous hurdles in AI Systems too ranging from security of the models to model 
governance to model explainability. Anomaly Detection of AI Systems, Data Lineage of AI 
Systems and Compliance with eXplainable_AI. Each challenge comes with a specific problem 
statement, solutions and references to real world use cases along with libraries, tools or services.

AI is the science and engineering of making intelligent machines (intelligence in such sense, 
enables learning,based on experience,user provided knowledge reasoning, andadapting to new 
environment s). AI learns training data to address similar problems. The veracity of predictions 
or classifications is dependent on the assimilation and learning procedure. The AI world divides 
into—narrow AI labs building systems for very specific tasks; artificial superintelligence work 
aiming to exceed human intelligence; and artificial general intelligence trying to match the 
human ability to reason in a variety of domains. It is safe to say that end-use AI applications are 
limitless, encompassing from disease diagnosis in medicine to intelligent gaming models, voice-
activated assistants or self-driving cars and the application of machine created art.

2. Understanding AI Systems
Foundations Artificial Intelligence (AI) is the science and engineering of making intelligent 
machines. Weak AI does specific tasks (think Siri or Alexa), Strong AI hopes to do all that 
humans can as we wander our ways through the world. Applications of AI include Decision tree 
regression, AdaBoost, Support Vector Machines (SVM), Naive Bayesian classification, K-
nearest neighbours (KNN), Neural Networks and others. IBM’s Deep Blue (Chess) are some of 
the AI applications which shows how we can apply AI to wide variety of areas. For example, 
Liquibase is a database schema change management tool which designs to keep track of the 
schema change history so as to detect anomaly based on data lineage[1].

Anomaly Mining for AI Systems The security considerations in AI systems are not mature and 
are likely to evolve with the increase of risk exploiting data and model, when being sourced 
through multi-party collaborations, e.g., data annotation & training. Sensitive applications, 
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especially in law enforcement, financial analytics, or credit risk analysis, require corporate 
governance policies for AI systems to satisfy regulations like the General Data Protection 
Regulation or the Equal Credit Opportunity Act (ECOA). Regulatory bodies such as the 
Consumer Financial Protection Bureau oversee these areas, highlighting the importance of 
comprehensible models for outcome explanation. Best practice governance policies therefore 
leverage anomaly detection to ensure AI models perform as anticipated. 

2.1. Definition of AI 

A working definition of artificial intelligence (AI) can be constructed by considering several 
aspects. Firstly, AI is intelligence exhibited by machines. Secondly, considering the distinctions 
between artificial and natural, absent and existent, nonbiological and biological, inorganic and 
organic, unnatural and natural, AI is also unnatural intelligence that may be manifested naturally 
or artificially [1-2]. Thirdly, considering distinctions between machines and organisms, unnatural 
intelligence exhibited by machines is artificial. Fourthly, considering different types of 
intelligence, AI corresponds to the performance of activities associated with human thinking or 
intelligent behaviour. Finally, considering that designing machines with AI consists of making 
them perform activities requiring experiences associated with human intelligence, AI can be 
defined as the discipline of designing machines that exhibit unnatural intelligence. 

The definition, in its broadest sense, does not account for the major differences between various 
levels of AI. For example, AI may merely emulate human behaviour, as is the case in the game 
of chess, or it may emulate the human mind, producing behaviour that is hardly distinguishable 
from human behaviour, such as determining a diagnosis or recommending a course of action. 
Four types of AI have been proposed: reactive AI (such as Deep Blue); limited-memory AI (such 
as Siri); theory of mind AI (advanced psychological systems under development); and self-aware 
AI (capable of self-awareness). Understanding AI solely as a discipline of designing machines 
capable of exhibiting unnatural intelligence greatly broadens its scope and application, enabling 
it to penetrate virtually every aspect of daily life. 

2.2. Types of AI Systems 

AI systems currently in use may be categorized into narrow AI, also called weak AI, and AGI, 
also called strong AI, human-level AI or deep AI. Narrow AI is designed and trained to perform 
specific tasks . Voice recognition systems, image recognition software, recommendation engines 
and self-driving cars are all examples of narrow AI applications. Artificial General Intelligence is 
an AI system with general-purpose understanding and reasoning abilities that is similar to or 
exceeds those of humans. AGI research is evolving rapidly and includes applications in gaming, 
voice recognition, image recognition, robotics, text generation and many others. 

Within the AI category, there are several sub-areas including Machine Learning, a technique that 
enables computers to learn from new data inputs or experiences; Machine Reasoning, focused on 
reasoning processes; Robotic Process Automation; Supervised Learning, using labeled data to 
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train models; Unsupervised Learning, processing information without labeled examples; and 
Natural Language Processing, which deals with text and voice recognition. Although each 
subfield serves different purposes, they are all focused on using machines to simulate elements 
of higher intelligence for specific tasks [3-5]. Examples of AI applications include 
recommendation systems, healthcare diagnostics, autonomous vehicles, social media, and smart 
manufacturing. 

2.3. Applications of AI 

The ability of AI to learn operations or strategies from training data or an environment means it 
can perform a wide range of tasks, as long as the task can be described well and input data are 
available. Modern AI systems use deep learning to mimic the human brain, enabling them to 
create associations and learnable patterns between any kind of data. Reinforcement learning is an 
iterative method in which an AI agent learns to solve a task by exploring different steps in a 
potentially very complex landscape. In the following subsection, some important use cases of AI 
are listed, which help in understanding the scope of AI systems. 

Personal assistants like Siri, Google Now, and Cortana provide users with help by sending 
messages, searching for information, providing traffic information, and so on. Few mobile 
phones currently offer AI features as an upgrade, aiming to assist the user even more. Many 
games utilize AI to provide players with believable and challenging opponents. AI bots can be 
used in these games for social media marketing purposes, to send automatically generated 
messages to a large amount of users with the same content or topic or to provide answers to 
frequently asked questions. AI systems also play a major role in other industries. In the banking 
sector, credit scoring is applied to assess a customer’s creditworthiness. AI is also present in 
fraud detection. Data of new customers are matched with the crime data to see if there is 
coincidence between the two. Audit trails could be analyzed by AI technology, the data in 
contractor forwarding and generation of reports that could detect discrepancies. 

3. Security in AI Systems 
AI Security studies how AI systems react to arbitrary inputs that induce incorrect behavior and 
investigates mechanisms of attacks or vandalism on these systems. It includes the identification, 
resitance and recovery from such adversarial events. Critical threats include model extraction, 
evasion and poisoning [6-8]. Model stealing attacks want to copy the model's capabilities 
perfectly or just approximately and do so without authorization; they can result in proprietary 
models leak or service integrity compromise. Evasion attacks utilize perturbed data that is true 
under normal evaluations and cause a misclassification during runtime (adversarial example) 
which have been demonstrated to fool real-world systems including self-driving cars. Backdoor 
attacks consist in poisoning training or testing data with perturbed examples, or abusing the 
feature extraction pipeline in those phases, for degrading model performance, biasing inputs 
toward certain classes or facilitating target evasion at inference time. 
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Credit allayance tactics range from regulatory participation, platform design to model-level 
resuscitation. These regulations aspire to create normative security model, compare with existing 
standards and clarify who is responsible and liable. In terms of platform, their concerns are about 
defensing against attacks on process and data – e.g., by sanitizing the training data to prevent 
poisoning or filtering at runtime to resist evasion – so that they can enforce model 
confidentiality, integrity and availability with as low operational overhead [9]. However, The 
practical use of these methods is very limited, especially in the evasion attacks. Formulating 
model defense methods aim at achieving recovery of original performance by excluding 
backdoor functionality or improving resistance with respect to input perturbation. Examples of 
incidents that make this point include the 2016 trainwreck when Microsoft’s Tay chatbot was 
manipulated to create racist and obscene content; a 2017 Amazon Echo proof-of-concept 
procedure shattered so-called cryptographically secure secrets where signals could be sent out 
from an in-pocket device to record what supposed-to-be-private sounds were around; and the 
latest Capital One data breach which occurred because of a AWS cloud computing vulnerability, 
which wound up exposing more than 100 million customer accounts and credit card applications 

3.1. Threats to AI Security 

Artificial intelligence comes with security issues like other computing technologies, which can 
lead to very undesirable consequences. In recent years deep-learning models have been exposed 
to attacks such as data poisoning, evasion, or model-inversion attacks. These actions are 
addressed by adversarial machine-learning techniques. There is a need to identify other probable 
threats across the various parts of the system (AI model, training dataset, results, and underlying 
infrastructure), determine how these can be carried out, and develop mitigating controls. 

Malicious hackers can take several approaches either individually or in combination to breach an 
ML system. They may perform a data poisoning attack by corrupting the training data, which 
will result in faulty training. They might attempt an inference attack on the training model to 
gain information about the training data or the model. The adversaries may also try to launch a 
reverse engineering attack to build a model similar to the training model. A successful system 
breach may allow them to alter or destroy the training model or its results[7,9-10]. External 
entities may breach the underlying infrastructure which hosts the ML system, initiate a denial-of-
service attack, or take control of the system for command and control. They may also possess 
legitimate access rights to the model’s output and attempt to encrypt or sell it to untrusted 
parties. 

3.2. Mitigation Strategies 

While holistic security of capitals remains a demanding task, mitigating known attack types 
helps minimize the attack surface. Each attack category can be assessed based on damage, 
implementation level, target target capital, and attack direction. Although some attacks can have 
catastrophic damage, others allow limited inferences on sensitive information. User profiling 
data at the inference level can lead to a range of attacks if disclosed. Automatized Privacy 
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Setting Attack and the Feature Reconstruction Attack typically impact Symbiotic Capital, while 
the Hard Label Attack at the inference level affects all four indentified capitals (Data, Model, 
Users, and Services). Model Extraction attacks generally bear high damage as they rely on 
compromised sensitive information. 

Implementing mitigation strategies at the affected level(s) significantly curbs attack capabilities. 
For example, attacks taking place at the training data level are limited if no privileged access is 
granted to the model. Conversely, substantial damage emerges if attacks commence at the 
training privileges level or at the training model level. Similarly, the Sneaky Metadata 
Attribution attack requires metadata access to evade detection. Most model-level attacks interact 
directly with the user, necessitating their implementation within the user's interaction level. More 
broadly, three fundamental strategies underpin most mitigation measures: 

* Feature/Model Hardening: during ML/AI training phase, data sanitization is conducted to 
remove noise from data or strengthen the ML/AI model against manipulation. * Detection: 
implemented on the ML/AI system to identify anomalous model responses (testing/inference 
phase) or recognize manipulated data. * Response: upon detection of anomalies, a specialized 
response mechanism is triggered to counter the threat. 

3.3. Case Studies in AI Security Breaches 

Information exchange-no request and response relationship breaches involve sharing sensitive 
data with unauthorized parties [1,11-14]. Examples include a return flight booking email sent to 
an incorrect recipient, an investment risk evaluation questionnaire filled by an uninvolved 
participant, and disclosure of a confidential secure meeting notice to external vendors. 

Denial-of-service (DOS) breaches can render network services useless, for instance, when an 
attack blocks a trading system, an irrecoverable error arises due to no reserve price data, or a 
shortage of seats results. 

4. Governance of AI Systems 
The growing adoption of artificial intelligence (AI) in a wide array of applications has created a 
number of concerns that have an impact on the decision-making process. 

AI governance can be designed around the threats to and risks of an AI system, to the roles and 
responsibilities of those involved in the AI lifecycle, and to the policies, practices, and 
arrangement of controls for effectively directing and managing AI systems in order to achieve 
the organization’s strategies and business objectives. AI governance addresses the management 
of the organization’s AI by providing direction and continuous monitoring through the 
evaluation of AI models, parameters, sources, and targets, as well as through the clear 
assignment of roles and responsibilities. Ensuring holistic AI governance requires a mechanism 
to provide transparency into AI systems through explainability, security, compliance, fairness, 
and performance. 
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4.1. Frameworks for AI Governance 

Artificial intelligence continues to advance and shape society For when AI models are employed 
in decision-making, it is important to be able to get a sense of how they use data on an ongoing 
basis during their several-year lifecycle as a means of detecting abnormal behavior and as 
feedback mechanism for AI governance policies. Various approaches exist to secure and govern 
AI systems, including anomaly detection, data lineage and explainable AI. [13,15-17]. 

AI anomaly detection can be used to detect abnormal activities throughout the entire AI lifecycle 
Anomaly-based approaches help users discover unusual behaviors related with a model or 
training data— some attacks that fall under this category are poisoning the input data, and 
identifying an unanticipated surge in the number of training records from a particular city. Data 
lineage enables to track the flow of information across the AI lifecycle. It provides traceability 
between the input sources, the operations executed upon them and its result. Data lineage allows 
for ensuring that AI governance policies are accomplished and it constitutes an important factor 
when it comes to explainable AI. Regulations such as the GDPR demand that humans execute 
decisions rather than relying fully on AI, thus when making AI-supported decisions it is 
fundamental to understand how AI arrives at a certain conclusion or recommendation. 

4.2. Roles and Responsibilities 

AI Governance is the process and policies used to govern an AI system. Its purpose is to assign 
clear and unambiguous responsibility for the tasks involved in designing, training, tuning, 
testing, deploying, monitoring, maintaining, updating, and decommissioning an AI system. The 
roles involved in governing an AI system and the associated policies differ for each phase and 
thus are described separately. 

The testing procedure determines who is responsible for development and execution and what 
the expected outcome is by defining the governance test objectives, governance test setup, source 
of data, and pass/fail criteria or assessment methods. The monitoring process specifies who is 
responsible for the monitoring, when to monitor, and how to monitor the AI system and evolving 
operating environment; what to monitor (including measurement of KPIs and detection of 
anomalies in model and/or operating environment); what are the thresholds indicating an 
anomaly; and how to respond in case of an anomaly (e.g., raise a warning, launch an 
investigation, retrain or adjust the model, or deactivate the AI system). Operational procedures 
state the required governance aspects for the deployment, maintenance, and decommissioning of 
an AI system. These include the labeling requirements for the human consumers, limitations in 
web and/or mobile usage, frequency and amount of carbon footprint allowed, cost of service 
(subscription or per use), and any other policy–rule–process–regulation applicable in each phase. 

The governance policies generate requirements for the verification, validation, and test activities 
for the AI system. In addition, they contribute to the configuration management of the AI System 
Artifacts – the documented and implemented information for each phase of the life cycle. 



 

76 
 

4.3. Policy Development and Implementation 

Following the assignment of roles and responsibilities, the process of developing and publishing 
AI policies begins. The AI governance tool provides support with templates to accelerate policies 
creation, for example, from top-level rules to operational policies and procedures. The 
publication of policies signals the initial step toward formal AI governance. When policies are 
enacted on an AI system, governance controls, opinions, and anomaly detection become 
operational. Subsequently, the governance capability analyzes the policy content to identify 
obligations and prohibitions, and it determines the artefacts within the AI system to which these 
policies correspond. Finally, it enforces control mechanisms to verify that the policy 
requirements are properly addressed. 

Operational Roles consolidate the AI security role, providing a comprehensive service 
framework for addressing all security-related requirements. A police Detection verifies that the 
final outcomes of an AI system, when combined with anomaly detection, can be used to measure 
the accuracy of the AI system results. Policy compliance policing checks how much the policies 
are satisfied and detects violations for further investigation [18-20]. 

5. Explainability in AI 
Explainability is a critical design factor to make AI systems trustworthy and is closely associated 
with the capability to detect abnormal events by AI systems and to establish data lineage. 
4Reliable AI develops trust in an autonomous system and enables human understanding, control, 
prediction and response to the behaviour of adversarial or unforeseen AIs. Explainability also 
refers to ethical and societal impacts of AI decision-making, and is useful for stakeholders who 
want to know: what the system aims to do; why it comes to a certain conclusion or prediction.. 

Explainable Artificial Intelligence (XAI) is important for various reasons: it enables the end-
users and the stakeholders to comprehend the outputs of an AI, mitigates any worries on errors or 
biases that might occur in an AI prediction, builds Trust on decision-making by AI, satisfies 
legal and regulatory requirements such as GDPR, harness ethical implementation and fairness of 
AI-powered applications; finally helps detecting anomalous events driven by attacks. 
Explainable AI techniques have been separated into data, design, and post-hoc interpretability 
methods, and challenges for achieving explainability in the context of AI are data quality issues, 
algorithmic complexity high-level methods such as decision trees solving problems through 
analogue grey-box models under difficult conditions and negative consequences associated with 
over-interpretation. Moreover, the requirement of explainability is critical for compliance in AI 
environments which can help organizations comply with regulations like GDPR and inject 
transparency in AI results. 
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Fig. 1. Stakeholders in XAI 

5.1. Importance of Explainability 

It is well known that many artificial intelligence (AI) systems are being used to assist data-based 
decision-making and knowledge discovery in diverse domains. Yet a lack of knowledge about 
how their predictions are arrived at has limited the range of scenarios in which AI's can be 
deployed [19,21-22]. AI anomaly detection deals with unstructured data that is distinct from 
training data. Data lineage involves tracking the flow, changes, and possible challenges affecting 
the data. Compliance with explainable AI meets the requirements defined for deploying models 
within organizations and projects. 

AI can assist in detecting security threats to AI systems and alert the appropriate personnel. 
Responsible AI governance encompasses the policies and practices for managing, monitoring, 
governing, and maintaining AI models. The increasing use of AI in areas such as education, 
healthcare, enterprise network security, financial fraud detection, self-driving cars, supply chain 
management, and customer analytics underscores the significance of "explainable AI," which 
offers the rationale behind prediction decisions, enhancing human trust in AI models. 

5.2. Techniques for Explainable AI 

Explainability techniques can be categorized by scope within a system, stage in the systems 
lifecycle, the time-frame in which the explanation is delivered and, relatedly, the "target" or 
intended audience. A useful taxonomy distinguishes pre-model, in-model and post-model 
explainability. Pre-model explainability methods seek to clarify input data and the mechanics of 
the model building process in order to help users understand the inner workings of the prediction 
model, for example by explaining why certain training data was selected, visualizing data inputs 
or even elucidating the technical steps in the model building phase. In-model explainability is 
achievable with some types of models – in particular white-box approaches such as rule-based 
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learning, use of decision trees or logistic regression – where the resulting model is sufficiently 
simple that some transparency can be achieved. 

In contrast, black-box models such as deep neural networks do not admit an inherent explanation 
of logic. Post-model explainability methods seek to shed light on predictions made by such 
black-box models, at a local (i.e., a single prediction) or global level. Typical examples include: 
visualizations, explanations by example, feature relevance, and outcome explanations. 
Explainability is a cornerstone of many governance strategies; however, recent work has 
established a strong relationship between explainability and security. Moreover, the ongoing 
development of perturbation-based explainability methods has demonstrated the utility of such 
techniques as an anomaly detection approach in their own right. 

5.3. Challenges in Achieving Explainability 

Producing adequate and appropriate explanations in AI systems is not straightforward. Current 
techniques support only specific array of activities, roles, filtering, etc., resulting in only partial 
coverage of the framework requirements [11,23-25]. Transparent or interpretable methods are 
explainable by design; however, this characteristic often tends to negatively impact the 
predictive performance of the model. Furthermore, the explainability of a method is sometimes 
subjective; that is, what one particular stakeholder finds acceptable may not satisfy another. For 
example, customers use different types of explanations to justify and assign responsibility for AI 
decisions. Several explanations that accompany models are precise and accurate but not always 
understandable, given the cognitive limitations and mental models of human users. 

6. Anomaly Detection in AI Systems 
In the AI and machine learning landscapes, anomaly detection denotes the process wherein AI 
systems automatically classify and identify suspicious activities. The term "anomaly detection" 
arises from the nature of the data being analyzed; some types of data, such as medical images, 
bank transactions, and time series, can be used to detect abnormal situations. A prevailing 
category of AI security threats are the adversarial data attacks that can deceive or deceive 
production-trained AI models. Over the last two decades, multiple defense techniques have been 
presented to successfully build robust AI models through algorithmic adaptation. 

Anomaly detection also involves recognizing abnormal operations and behaviors within AI 
systems themselves. AI auditing aims to detect AI-related issues and risks within production AI 
systems by examining system behaviors and accessing AI system operation logs. An AI system 
breach, by definition, undermines the goal and reliability of an AI system, which is to generate 
trustworthy outputs and intelligence. Anomaly detection models continuously monitor AI system 
conditions as an ongoing defensive procedure, analyzing AI system operational data using 
AI/ML techniques. Intrusion-detection techniques and existing anomaly detection models can be 
applied. Alerts generated by the anomaly detection model can serve as early-warning indicators 
to preempt potential AI security breaches. 
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6.1. Methods of Anomaly Detection 

AI systems face an array of anomalies, ranging from attacks and system faults to policy 
violations and unexpected business events. While anomalies such as attacks and faults 
compromise the AI system's security, privacy, or safety, other types of anomalies underscore the 
importance of governance. Regardless of an anomaly's nature, prompt detection and explanation 
are crucial. Anomaly detection techniques identify instances or sequences of AI operation 
deviating from expected normal behavior, while anomalous event prediction methods forecast 
pairs of time points that may mark the ranging boundaries of potentially anomalous operation. 

In AI systems governance, anomaly detection methods contribute across all roles and activities. 
They verify the adequate operational status of policy controls defined for implemented policies; 
penalize violators; derive model adjustment actions when necessary to ensure policy adherence; 
explain anomalies; and report the state of AI system operation to responsible parties. 

6.2. Applications of Anomaly Detection 

Anomaly detection can help harden AI systems against failure and data breaches. Examples 
illustrate how AI anomaly detection constraints result in specific use cases. A company trained a 
language model on their technical architecture documents. The service used production data to 
generate diagrams if the user input syntax was correct and contained only entities present in the 
architecture design documents. The data contained no sensitive information. The system failed 
when users asked for diagrams that required entity relationships independent of the company 
data, because the language model produced diagrams without those relationships. Another 
company used a Bayesian model to assign confidence scores for a sensitive classification use 
case. The service returned only high-confidence labels. However, a side-channel attack revealed 
sensitive data. Bayesian labels minimized leakage but did not mitigate the threat as a whole. 

Anomaly detection in AI systems enables broader risk-detection frameworks. Detecting AI 
anomalies can prevent or reduce consequences of AI failures, data breaches, and misuse. 
Examine practices for anomaly detection. Languages for rule-based detection can express 
metrics governing AI in production. Operators can specify and evaluate AI constraints and detect 
possible anomalies. Practices for constraint programming in AI systems are outlined, exploring 
reasons for constraint creation and the impact of missing constraints. 

6.3. Impact on Security and Governance 

While developers and business managers of AI have security objectives, AI systems are also 
increasingly exploited as vectors of attack. Anomaly detection in input data, logic, and output 
both enables sophisticated new systems and mitigates threats and misuse. In addition, the 
explosion in AI system design components, styles, and vendors has created a “composition 
problem” in that it is difficult to specify and enforce control policies for each component of a 
complex AI system. Data lineage enables the tracking and tracing of AI data through its 
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lifecycle, so that governance policies can be developed and executed on the data being used at 
each point. 

Security and governance objectives are heavily influenced by the trend toward higher levels of 
explainability for AI systems. Explainable AI (XAI) is the third pillar of responsible AI together 
with bias reduction and robustness. Techniques for achieving XAI provide real-time detection of 
AI attacks and result in governance policies that accelerate audit support and exploit lesson 
learning. Explainability mitigates liability threats by revealing bias and gaps in AI training and 
inference data. Regulatory requirement with XAI is very important in finance, health and public 
sector domain. Balancing between how well you are governed, secured, and explained will 
ultimately maximize productivity and minimize costs.. 

7. Data Lineage in AI Systems 
In particular, tracing the input data that pass through an AI process can offer significant 
knowledge of the decision made by AI systems. The outputs of the AI system are typically 
influenced by two sources: the current input to which the system gives a reference and makes a 
decision, and the dataset on which it was trained. Each of the input and training data sets yields 
elements vital to establish the 'right' qualityliness and reliability of the decision. 

Data lineage is a term familiar to anyone involved in data management, and it is concerned with 
exposing the original source of a dataset, as well as tracking how that dataset has changed or 
been moved around over time. Data Lineage in an AI Environment In the context of AI, data 
lineage is the ability to track and trace how both training and input data change over time. The 
capability to record and explain the data within AI processes as it changes over time is a key part 
of any governance framework, which in turn enables adherence to local regulations for use of AI 
or internal corporate policies.”. 

7.1. Understanding Data Lineage 

Data lineage is the life cycle of data: from where it came, how it moves through an organization 
and what becomes of it. Which is all cataloging, curating and visualizing flows of data. Data 
lineage is used to track the movement of data around an AI infrastructure, following it from its 
raw source location all the way through pre-processing, analysis and modelling to reports 
produced [26-28].. The information recorded in a data lineage can contain many details; for 
example, the time when the model or report was generated, the geographical origin of a dataset 
or model, the physical and organisational environment in which the AI system has been trained 
and executed, or the range of phenomena represented in the data. 

The increasing reliance of businesses on AI systems has led managers and regulators to pay 
special attention to the explainability and governance of AI. Several regulations for the 
Explainable AI highlight the need to record and supervise the flows of data from and to both the 
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AI models and reports. Ensuring the availability of detailed data lineage information becomes 
then the first step towards the compliance with the ExAI regulations. 

7.2. Tools for Tracking Data Lineage 

Tools for tracking data lineage are software systems that maintain, trace, and manage the origin 
and path of data assets throughout an enterprise environment. Data lineage focuses on the flow of 
data on a more granular level than data provenance, yet it remains a closely related use case that 
involves tracking the exact source of data sets. In the context of AI, it is important to trace and 
explain the lineage of data fed into, flowing inside, and powering data-driven models. Defining 
explainability in terms of the data utilized by AI systems emerges as a promising approach. 
However, responsible AI practices demand more comprehensive governance that covers all 
components of an AI pipeline. 

Data architectures and job scheduling are fundamental for constructing data pipelines, and 
related open source tools like Apache Nifi provide data lineage tracking. Many open source 
libraries, such as Pandera and OpenLineage, can also provide end-to-end data lineage for AI 
pipelines. Enterprise-level data warehouses often build data lineage frameworks upon 
OpenLineage. Additionally, data flow modes within AI systems can be uncovered through 
general dependency analysis—controlling data flow and usage is a key security practice 
associated with Artificial Intelligence of Things Compliance (AIoTC). Tools that allow querying 
data dependencies within AI pipelines can thus bolster overall security and governance. 

7.3. Importance for Compliance and Governance 

Explainability has become a critical governance requirement, with several jurisdictions 
mandating organizations capable of making automated decisions to provide meaningful 
information about how those decisions were made. Currently, emerging regulations include the 
European AI Act, the European GDPR, and the New York City Automated Decision Systems 
Law. Data lineage is a core practice for broader governance, where it is used to trace the flow of 
data from decision output back through the transformation steps and ultimately to the origin of 
the data. By combining data lineage, governance, and anomaly detection, organizations can 
address a powerful use case for compliance and governance with data. 

The European AI Act: The future of AI applications and opportunities in Europe (and globally) 
The European Commission has recently released the potential regulatory act on AI, known as a 
prop ASS.On 21st April 2021. The bill, which was released in 2021, examines how A.I. 
algorithms are created and deployed in detail. In particular, it categorizes AI uses based on the 
risk to rights and freedoms which they may entail and imposes specific obligations and 
requirements in relation to high-risk AI applications with a view to ensuring trustworthiness. The 
nyc automated decision systems law: It applies to all city agencies, including those in control of 
a contract with the city or created by government entities. It sets responsibilities for how 
automated decision systems (ADS) are used, including public policy applications, human 
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overrule, primary and secondary use.. Similarly, The US Federal Trade Commission has 
recommended that organizations employ explainable AI to avoid risks associated with non-
explainability. It also suggests that using explainable AI can improve algorithmic auditability, 
assist with bias detection, and support ongoing compliance. 

8. Compliance with Explainable AI 
Explainability AI tools are critical to meeting governance principles as well as requirements for 
responsible and ethical AI. Explainability methods allow compliance by making transparent and 
revealing how an AI system comes to a decision. In areas where explainable AI is required by 
law, such as credit risk assessment, explainability is a regulatory compliance enabler that can be 
a part of AI governance [29]. 

Explainability can be selected as a governance focus for an AI workflow or a governance profile 
can specify a focus on explainability. Compliance patterns for explainability determine the 
explainability techniques and modes to be used periodically throughout the AI lifecycle. 
Explainability is commonly discussed in the context of a specific use case, for example, in a 
healthcare application or assessing credit risk. These use case-specific compliance patterns can 
create an audit trail with the activities in an AI lifecycle. 

8.1. Regulatory Requirements 

Explainability is an increasingly important subject as AI systems are regulated. This section 
looks at the regulatory environment for AI, the requirements of explainability in AI compliance, 
and considerations for the development of a compliance program. 

The global regulatory landscape comprises many regulations and initiatives that impose varying 
forms of governance requirements on the development and implementation of AI systems. 
Although the regulations are for the most part different, they all contain similar fundamental 
principles that encourage principles of transparency, fairness, ethics, explicability, mitigation of 
implicit bias, protection of fundamental rights, the ability to challenge decisions, consideration of 
health and safety, data protection and privacy, and data quality and well-being. These principles, 
which are also among AI principles defined in the IEEE Standard, should be incorporated within 
an organization's overarching AI governance program, which will typically be developed at an 
organizational level and then applied per jurisdiction. 

8.2. Best Practices for Compliance 

Under various compliance regulations, organizations that use artificial intelligence technologies 
must demonstrate integral explainability during the development and implementation phases. 
Considerable thought and attention are therefore required when designing explainability 
capabilities for these organizations. Organizations can begin by establishing specific objectives 
for the Explainable AI (XAI) capabilities most pertinent to their AI solutions, noting that the 
objectives chosen directly influence the selection of suitable XAI techniques. 
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For example, if the primary concern is for security and governance staff to receive information 
that aids in the identification and analysis of anomalous AI behaviour, then they are likely to 
require different explanations than if their interest lies in ensuring the AI systems are fair, 
ethical, and compliant with internal and external regulations. In these latter cases, the explanation 
information needs to be suitable for business stakeholders (perhaps even the customers impacted 
by the decisions) rather than focusing solely on the technical description of the AI systems. The 
explainability framework proposed by Moore and Anderson presents one approach that 
organizations can adopt to integrate XAI objectives into the broader governance controls 
associated with AI deployment. 

8.3. Case Studies on Compliance Issues 

Several compliance issues encountered while developing real-world explainability frameworks 
call for attention. Adversarial scenarios must be considered, and countermeasures integrated into 
deployable systems. For example, a framework that detects anomalous data inputs entering AI 
models governing crime rates alleviates the risk of spurious predictions. Correlated anomaly 
scores also help in tracking the lineage of the suspicious data back to the responsible data 
source/operator, and thus assist in enforcing policies for trusted AI. 

More compliance-centric questions arise in context of datasets and their distributions, such as 
"how trustworthy is the policy explanation for a particular request?" Regulations like GDPR 
mandate the use of only non-sensitive or anonymized data during model development. When a 
policy is requested for sensitive information, either within the training dataset or the data 
distributions underpinning the dataset, it is essential to verify whether the model predictions are 
indeed reliable for the specific policy generated [30]. Likewise, when a set of rules explaining a 
policy are generated for a sub-region of the data distribution, the trustworthiness of those rules 
should be confirmed. Existing tools like the Health Learner Angle (healthLENS) enable such 
compliance evaluations on an Adverse Impact analysis basis. 

9. Integration of Security, Governance, and Explainability 
AI is a complex of technologies that allows computers and software to imitate human intellectual 
abilities electronically. Depending on its functionality, it can be divided into reactive machines, 
limited memory, theory of mind, and self-conscious. The bedrock domains of AI are computer 
vision, speech recognition and synthesis, natural language processing, robotics, machine 
learning, and deep learning. The potential of AI can be deployed in the fields of education, 
military, finance, governments, healthcare, and so on. AI needs proper safeguards. Ignorance or 
lack of AI foresight can lead the world into a dystopian future. 

The design and development of AI technologies has a severe impact on modern society in the 
form of security, governance, explainability, and ethics. Governing AI is concerned with how 
society decides what its development should look like in light of its broader societal implications 
for progress and development. AI policy is the practice of developing appropriate rules and 
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regulations for AI development and deployment. Anomaly detection, the identification of 
unexpected items or events in datasets. Data lineage is the ability to track where data comes 
from, what becomes of it and where it goes. Explainability is interested in the dataexplain and 
descent ology explain levels. Compliance tackles the how, why, what, when and who of AI 
decision making. 

9.1. Holistic Approach to AI Management 

Rise of AI-generated content has created a need for tools that can control origin (provenance) 
and application rules (classification) ruling out the usage for training AI systems copyrighted or 
sensitive data. With the escalating use of AI around the world, governments around the world 
have published an array of AI governance policies to mitigate risks such as bias, opacity, job 
displacement, disinformation and more. AI Explainability (XAI) is an emerging field that aims to 
let AI decision be explainable to different stakeholders in order to mitigate risks in various 
domains. 

Deep learning models are susceptible to different attacks, and the diverse behaviors of deep-
learning models lead them into being challenging to be trusted in the context of security for their 
deployment. To solve these challenges, the AI community is concentrating on Anomaly 
Detection in AI Systems, Data Lineage in AI Systems and Compliant Explainable AI. 

9.2. Interdependencies Among Security, Governance, and Explainability 

The aforementioned three pillars are all about the discipline of making it work and successfully 
managing and running AI powered systems. Each of these pillars is designed to advance a 
particular aspect in order to equip AI practitioners with the requisite means to address the 
associated challenges. Hence, an ambitious approach that integrates all three perspectives will 
naturally contribute significantly to the advancement of AI as well. 

10. Future Directions in AI Systems 
Governance: It needs to be the hot topic in AI if researchers want to diminish blackbox models 
Let’s talk about roles and duties, governance policies, anomalies (e.g. anomaly detection in deep 
neural networks) etc. Besides, the explainability in AI requires attention to compliance 
considerations thus leading us to explore regulations, guidelines for ensuring compliance and 
how lineage can help with AAI compliance. It is important that integrating of these new topics in 
the AI literature can be achieved. 

AI scrutiny has stepped up as use case deployments have pushed into virtually every industry. 
“AI technologies are a set of techniques, tools and methods that can enable you to do the sort of 
things that we would normally associate with human intelligence. In the last decade a fast- 
growing process was observed in this field due to deep learning methods, that make possible 
work directly with raw data from physical world and also to train highly complex systems while 
simulating human-brain mechanisms. Nowadays, AI can categorize objects, make sense of 
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images or text without relying on people at all and it’s a break from Artificial Narrow 
Intelligence followers. The extreme level of automation and decision-making inherent in AI 
systems amplifies the importance of security; even minor faults, errors, or attacks can produce 
significant impact, jeopardizing AI projects and their alignment with business objectives. 

10.1. Emerging Trends 

With the growing intertwining of artificial intelligence (AI) in our daily lives, new trends emerge 
that raises hopes and concerns for the current governance levels. Recent work Reimers and 
Gurevych (2019) on large language models donors' ability to mimic truthfulness of human 
behavior, with LLMs pretrained using large amounts of natural language. LLMs are multimodal 
models, which have the ability to comprehend and generate text, they encode human-like fine-
grained meaning of written language by binding with image or code. What’s more, an active 
research direction concerns adapting base LLMs to the interests of users. Reinforcement learning 
with human feedback (RLHF) optimizes LLMs for human preferences; then models harness their 
language generation abilities to provide self-collected feedback in future iterations. But other 
than that there are some worrying signs: data breaches, attacks via prompts, malicious jailbreaks 
and politicking chatbot responses.  

Future research must address trustworthy AI, focusing on governance, control, and alignment. 
Emerging trends in AI continue to facilitate control over the model's generated content. For 
example, textual inversion enables the embedding of synthesized subjects in text-to-image 
diffusion models. Finegrained captioning and grounding generate detailed captions with spatial 
relationships, while textual guidance establishes spatial properties for generated images. 
Moreover, developments in generative AI and explainable AI enhance model transparency and 
user understanding. Notwithstanding these innovations, comprehensive actions and guidance for 
trustworthy AI remain limited, and research community interest in governance and control risks 
diminishing if subsequent issues remain unaddressed. 

10.2. Research Opportunities 

Anomaly detection techniques are very useful in many applications, and several studies show 
that no one method or model can detect all kinds of anomalies. Although currently non-
explainable AI techniques, such as deep learning models, achieve very accurate results, the main 
drawback is that such models hide the internal decision-making process and cannot explain why 
a sample is marked as an anomaly. This is why explainable AI techniques for anomaly detection 
should be further explored. In particular, methods should be developed to not only explain the 
reasons why a model detects anomalies but also explain why samples are classified as specific 
types of anomalies. This level of explanation would significantly assist practitioners and analysts 
during the denoising and cleansing process, helping them identify the root causes behind 
abnormal instances. Data lineage is one of the most important aspects surrounding AI 
governance. It offers detailed information about the flow of data, including details about the 
transformation or creation of data, data science models, and software items along pipelines. The 
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literature does not address data lineage and its use in AI governance, although it does describe 
how to trace data elements or explain different levels of lineage. Therefore, lineage information 
across different pipeline components should be maintained and used for governance, supervision, 
and control purposes. Supporting full tracing across pipelines would help the auditing process of 
AI systems by granting control, supervision, and anomaly detection of all pipeline elements. 
These AI security, governance and explainable AI research fields have tremendous potential to 
be deployed in real advanced AI systems. 

10.3. Ethical Considerations 

Ethical challenges are emerging in the AI era and rapid growth of artificial intelligence (AI) 
make these concerns even more urgent to govern for potential harm to prevent. Three major 
issues are the spread of bogus news and bias or disinformation — such as the notorious 
‘‘deepfakes’’: highly realistic images, sound, video or text generated by AI techniques that can 
be used to produce lies and defamation; the automation of warfare through lethal autonomous 
machines and other weapons systems; and how human work will be displaced by AI as 
employment is lost to automation [31]. Policy makers also must anticipate and address risks of 
this kind, along with more familiar dangers such as bias amplified by AI decision-making. 

Yet in all these areas, AI, when used judiciously, can offer substantial advantages. For example, 
it can make a contribution to solving the problems caused by climate changes: new material or 
energy systems using AI eventually called TfI (Technology for the Imagination), improve 
people’s health as a result of accurate medical diagnosis and therapy, human rights in terms of 
detecting contemporary slavery by processing visual information concerning hate risk attack. 
Regulating AI thus necessitates us to take a nuanced approach and actively monitor for 
potentially positive outcomes while regulating to moderate and prevent negative outcomes. 

11. Conclusion 
We believe that governance, security, and explainability of AI systems are key to shaping an 
enduring AI economy. With AI systems taking over decision making for various firms and 
organizations, the issue of governance becomes apparent. Re-imagine the types of harms that an 
AI system can incur in cases where it is biased, or vulnerable to manipulation and attack. 
Maintaining governance in AI systems demands the ability to query and interrogate the provided 
results and decisions of an AI system. They use their approach for anomaly detection to 
scrutinize an AI system in operation, determining if the outcomes are based largely on biases or 
adversarial attacks. The data lineage of a AI system, including queries on training data to train an 
model, the model that is trained and the resulting decision provides important aspects at different 
levels of the how its processed by an AI system. Anomalies can then be reported for critical parts 
as disturbances, etc. Moreover, compliance with explainable AI, such as the EU directive for AI 
and other proposed legislation, requires explainability of AI. Explainable AI techniques can 
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explain how an AI system came to a decision or result, thereby enabling scrutiny, fault detection, 
and correction of AI systems. 
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Chapter 7: Exploring Case Studies, Industry 
Implementations, and Future Research Directions in AI, Big 
Data, and Blockchain Technologies

1. Introduction
While the terms ‘‘Artificial Intelligence’’ (AI), ‘‘Big Data,’’ and ‘‘Blockchain’’ constitute three 
distinct disciplines, recent developments centered on the implementation of these technologies 
demonstrate their strong mutual interaction. AI in its many manifestations—Machine Learning, 
Natural Language Processing, and Computer Vision—creates the data that Big Data then 
analyzes to detect latent patterns. Other disciplines also build on Big Data’s outputs; Blockchain 
is one such area. Properly designed, deployed, and administered, Blockchain technology 
introduces an infrastructure extracted from the norms of computer science, cryptography, and 
economics. The purpose of the present contribution is precisely to provide case studies and 
industry implementations for these three disciplines, address the challenges encountered in their 
deployment, and finally indicate promising directions for future research.

Advanced technologies are frequently underestimated—even undervalued—because their 
ultimate implementation is sometimes partially lost in translation. Practical applications and real-
world implementation often represent the final destination of a discovery, so the journey should 
be recorded for the sake of future research. Practitioners need to be convinced that the 
technology they are using or plan to implement—described in so many written contributions—
should indeed be implemented. The first portfolio supports this approach. It offers a series of 
examples of AI, Big Data, and Blockchain implementation across different industries. Real-life 
AI application is shown in healthcare, finance, and retail; Big Data is depicted in 
telecommunications, manufacturing, and marketing analytics; and Blockchain is demonstrated in 
the supply chain, real estate, and voting. Grounded in a wide range of different applied contexts, 
these cases provide complementary insights into the uses of the technologies discussed.

2. Overview of AI Technologies
Artificial Intelligence (AI) refers to the simulation of human intelligence in machines, allowing 
them to perform tasks that typically require human intellect. It encompasses Planning, Learning, 
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Reasoning, Problem-solving, and Language Processing.skills. The section explores the roles of 
three subfields in contemporary AI applications [1]. 

Machine Learning (ML) involves training algorithms on data to make predictions without 
explicit programming. Supervised, Unsupervised, and Reinforcement Learning are key types. 
Recent progress in Deep Learning, leveraging Deep Neural Networks (DNNs), has led to 
breakthroughs in image and speech recognition. Natural Language Processing (NLP) equips 
machines with the ability to understand and respond to human language, enabling sentiment 
analysis, chatbots, and language translation. Computer Vision enables machines to analyze visual 
inputs, facilitating applications like face recognition, image detection, and Optical Character 
Recognition (OCR). 

2.1. Machine Learning 

Machine learning (ML) is a branch of artificial intelligence (AI) that studies computer algorithms 
that improve automatically through experience and the use of data. These algorithms operate by 
building mathematical models from sample data—also known as training data—to make 
predictions [1-2]. Some ML algorithms make decisions and provide answers in response to data 
entered by users. Machine learning includes both supervised learning, where the algorithm is 
presented with example inputs and outputs in order to learn a general rule, and unsupervised 
learning, where only example inputs are given, and the model attempts to find patterns directly in 
the data. 

ML algorithms are used in a wide variety of applications, such as speech recognition, computer 
vision, medical diagnosis, and forecasting. Machine learning can be applied anywhere where 
tasks are accomplished through analysis of data. ML applies the principles of statistics, data 
mining, and knowledge discovery in databases (KDD). 

2.2. Natural Language Processing 

Natural Language Processing (NLP) is a subfield of AI that studies the interaction between 
computers and human natural languages. The ultimate objective of NLP is to read, decipher, 
understand, and make sense of human languages in a manner that is valuable. NLP is significant 
because it enables computers to perform useful tasks, such as text translation, sentiment analysis, 
chatbot interactions, and market intelligence. Numerous NLP applications are found in fan 
fiction recommendation systems, fake news detection, question answerers, part of speech 
taggers, and space domain search engines. 

Advanced Language Models (ALMs) refer to a collection of pre-trained text generation models, 
each boasting billions of input parameters. These models employ transformer architecture and 
attention mechanisms to improve learning accuracy and speed. ALMs exhibit the ability to 
generate creative content without explicit input from humans, writing lyrics, scripts, business 
plans, stories, and source code. The most popular ALMs are GPT-4, LaMBDA, BERT, LLaMa, 
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and ChatGPT, which are impacting society in areas such as content creation, language 
translation, question answering, and sentiment analysis. 

2.3. Computer Vision 

Machine vision and computer vision are closely related but distinct fields. Machine vision entails 
imaging-based automatic inspection and analysis and places particular emphasis on the control 
aspect of the system. Machine vision systems are often designed to replace human visual 
inspection during operations such as manufacturing, assembly, or printing. 

On the other hand, computer vision is concerned with the theory behind artificial systems that 
extract information from images. Its overarching goal is to create an artificial system with visual 
sensing capabilities that parallel or surpass those of a human observer. In practical terms, it deals 
with the automatic construction of realistic or abstract description of objects, scenes, and events 
from images. Despite these differences, both disciplines share the use of computers to automate 
tasks that the human visual system can do. 

3. Big Data Fundamentals 
The term “Big Data” refers to the volume of structured and unstructured data being generated 
and stored, forming the foundation of data-driven enterprises and business processes [7]. Big 
Data analysis involves searching through vast amounts of data to identify hidden patterns or 
correlations, thereby enhancing organizational team efficiency. Big Data methods process large 
datasets that traditional databases cannot, enabling companies to predict trends and customer 
preferences [3-5]. 

The Internet of Things (IoT) significantly contributes to the generation of Big Data, coupled with 
decreasing storage costs and continuous improvements in data warehousing and analytics 
technologies. Over recent years, organizations have increasingly invested in Big Data analysis to 
optimize their business strategies. Unlike conventional data processing techniques, the new 
capabilities offered by Big Data analytics facilitate the processing of unstructured data at high 
velocities. Meantime, the traditional data processing steps of collection, transmission, storage, 
and analysis are no longer adequate for real-time Big Data requirements. The growing volume of 
digital data worldwide brings significant benefits but also introduces complex risks and hidden 
vulnerabilities. 

3.1. Data Collection Techniques 

Organizations collect Big Data from a variety of sources, including social media platforms such 
as Twitter, Facebook, and Instagram; web platforms like Google and YouTube; commercial 
sources that provide financial information; health-care sources that publish records and scan 
results; investment sources; weather repositories; multimedia data; and scientific projects page 
publications. The proprietary dataset of a company depends on the nature of its business. The 
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objective of data-collection techniques is to identify such sources and select the right sources on 
the basis of the business objective. 

A number of techniques are implemented when collecting Big Data, especially information/web 
scraping, application programming interface (API) based techniques, scraping the Google trends 
website, web scraping on Medium, and Reddit web scraping. Web scraping techniques create a 
small program to collect information from a web page. These techniques extract specific 
information, like Liu numbers, followers, and total blogs from different websites. 

3.2. Data Storage Solutions 

Major technological advancements create the need for efficient data storage solutions, which 
help companies store, access, and manage data effectively. Data storage solutions range from 
traditional on-premise storage to modern cloud-based storage. Innovations in cloud computing 
have led to cloud storage solutions, enabling users to save and backup data on the cloud. Cloud 
service providers manage data centres and offer shared resources, allowing users to store data 
and access it whenever needed. In addition to cloud storage, companies also rely on data 
warehouses and data lakes, which can be hosted on-premise or on the cloud. Data warehouses 
use a structured format to store data, while data lakes can handle unstructured data. Important 
considerations in choosing a data storage solution include cost, scalability, data accessibility, and 
security. 

Once data has been collected and stored, companies can analyse it to gain valuable insights. The 
goal of big data analytics is to provide actionable intelligence to decision-makers in a timely and 
cost-effective manner. Big data analytics solutions vary widely and include business intelligence, 
data mining, and data science. Business intelligence requires structured data as input and usually 
generates reports with rich visualisations for executives [6-8]. Data mining aims to discover 
patterns and trends, enabling organisations to support business objectives. Data science focuses 
on creating predictive models for automation and improving efficiency across different areas of a 
business. 

3.3. Data Analysis Methods 

Data analysis is basically the process of transforming useful data into valuable, insightful, and 
valuable information. Using a variety of analysis techniques, the data collected is subjected to an 
examination. It makes it possible to draw effective conclusions. Data analysis is the most 
difficult step in decision-making. It aids in evaluation, planning series of actions, controls that 
implementation. 

Data analysis can be accomplished in a variety of ways. An effective technique is chosen based 
on the data collection. Data structure, goal of analysis, and many other elements. The explained 
techniques are appropriate in relation to decision-making issues in the telecom and 
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manufacturing industries. Decision tree and market basket analysis are two frequently employed 
techniques. Additionally, data analysis can fall into one of these three categories: 

Descriptive Analysis: This analysis reconstructs and describes the history of analyzed data: what, 
when, where, how many, and how often something happened. 

Diagnostic Analysis: The analysis takes a deeper dive into the data to figure out why something 
happened. 

Predictive Analysis: Although it requires a ton of data, an extensive predictive analysis sheds 
light on what will probably happen in the future. 

4. Blockchain Technology Overview 
Bitcoin, a cryptocurrency in which transactions are verified and records maintained by a 
decentralized system using cryptography rather than by a centralized authority, was proposed in 
2008 by Satoshi Nakamoto. Subsequently, Nakamoto also proposed a consensus mechanism 
called Proof-of-Work (PoW). PoW has also been applied on several other cryptocurrency 
protocols like Ethereum, Litecoin, and Bitcoin Cash. During the last decade or so, Nakamoto’s 
Bitcoin blockchain was extended to incorporate a feature called smart contract, and the new 
blockchain was called Ethereum [9]. A smart contract contains a specific set of instructions that 
trigger contract terms and conditions. 

Several consensus mechanisms have been proposed in the new blockchain. Apart from PoW, 
others include Proof-of-Stake (PoS), Delegated-(D)PoS, Proof-of-Elapsed Time (PoET), Raft, 
Practical Byzantine Fault Tolerance (PBFT), and Federated Byzantine Agreement (FBA). PoS is 
used on board cryptocurrencies like Cardano, Nxt, and Peercoin. DPoS, the delegated version of 
PoS, is used on Steem and BitShares. The new version of the PoW, Litecoin, uses the proof-of-
capacity (PoC), which is based on mining cluster capacity. Quorum Bitcoin employs Raft and 
Istanbul BFT. The SEC blockchain uses PBFT, and Ripple employs FBA. 

4.1. Decentralization 

The most prominent feature of blockchain technology is decentralized consensus. Decentralized 
storage Data is spread out in a decentralized way and stored on multiple devices of the 
participants that belong to different parts of the world. This decentralized structure is intended to 
reduce the ability for any one entity to dictate rate data, and in thus doing accelerates fair order 
execution across the board by avoiding acting parties tampering said data. The lack of a central 
authority implies that all members have the same standing in the network. Decentralized systems 
are fault-tolerant as well; if one computer goes down, the others chug on. Also, with 
decentralization, there is no single point of failure [7,9-10]. 

Other benefits of decentralized systems include greater security, self-executing smart contracts, 
and the lack of reliance on trusted third parties. Blockchain is preferred over others because it 
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can provide the additional benefits of immutable database, distributed consensus and enhanced 
security even though there are known weaknesses that can be exploited. This technology forms 
the foundation of such categories as crypto-currency and digital currency. Smart contracts 
implemented by blockchain enable authorized transactions automatically, and its token creation 
capability allows enterprises to design and launch their own tokens for various applications. 

4.2. Smart Contracts 

Smart contracts are computer programs or digital protocols which manage automatically, control 
and enforce the performance of specific kind of agreements (or any other conditional statements) 
on a blockchain. Leveraging blockchain’s unique properties — namely, decentralization, 
autonomy, transparency, immutability and trust — they allow for parties in a transaction to be 
able to forge trust without the need for an intermediary. After 2013, smart contracts are used in 
domains including finance, healthcare, government, crisis management and IoT. 

Smart contracts on a blockchain involve three parts: the decentralized ledger, the infrastructure 
behind it (the ledgers and support systems etc., which must all be running seamlessly) and lastly 
the business rules that manage industries and enterprises. The Ethereum ecosystem and its 
Solidity programming language is the most popular for writing contracts. It is also necessary to 
implement the business rules, in the decentralized context, into Solidity language in order to 
develop the smart contract. Consensus mechanism guarantees that business rules are correctly 
enforced despite of the complexity and possible mischief of the underlying network gridding. A 
summary of smart contract applications existing in these different industrial reviewing sectors is 
presented in the table. 

4.3. Consensus Mechanisms 

Consensus algorithms including PoW, PoS, BFT and PBFT are essential part of a blockchain 
system [1,11-14]. They are a processing module which is responsible for transactions, record-
keeping, credit and asset control in the economy. Fault tolerance, Sybil attack resistance, and 
double-spending attacks prevention are some of the main properties we hope to achieve with a 
consensus mechanism. 

PoW demands that all miners "race" to solve a mathematical challenge and the first one to find 
an answer is entitled to create the next block in a given blockchain. PBFT and BFT adopt 
primary replica selection for achieving consensus for permissioned blockchains. PoS does not 
heavily rely on computational power; rather, the probability of a node being elected for block 
generation increases with the amount of digital-assets it possesses. 

5. Case Studies in AI 
Artificial Intelligence (AI) is a domain of Computer Science—offering an application that 
enables machines to intelligently act like humans—training and building Computers and 
software for performing various operations such as recognition, learning, reasoning, and problem 
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solving. A broad branch of AI is Machine Learning (ML), which performs pattern recognition 
through detailed data analysis. Natural Language Processing (NLP) is employed for training the 
Machine with languages trained by humans, so it can recognize and understand human-written or 
spoken text. Furthermore, Computer Vision (CV) is used to train a Computer to view the 
enactment of an environment [13,15-17]. 

AI is more recognized for its distribution than any other system and has gradually spread to 
every business and market. Different companies are performing the implementation of artificial 
intelligence technology to fulfill business needs and their requirements to handle and detect 
several things in daily life. AI Technology in different service industries, such as Healthcare, 
Finance, and Retail is also being used for several purposes; for example, AI in Healthcare helps 
facilitate the early prediction and detection of cancer and also helps in the detection of 
anomalies; AI in Finance is widely used by Banks in several operations such as customer care, 
operational risk management, fraud detection, and several other operations; AI in Retail is being 
used specifically for customer behavior analysis. 

5.1. Healthcare Applications 

The healthcare industry has always been at the forefront of the AI revolution. The rapid adoption 
of AI-enabled systems is evident, with the online AI in Healthcare Market Growth Report 2022, 
which predicted that AI in healthcare will continue to be a lucrative business, revealing the steep 
increase in the market size—from US $8.23 billion in 2020 to a projected US $120.2 billion by 
2028, at an extraordinary CAGR of 45.8% (Fortune Business Insights 2022). Some specific 
instances of those use cases that are already growing and in research include using AI for 
emergency response (TimelySense2021),patient data, patient risk and safety, patient 
engagement, diagnosing conditions, aftercare. Healthcare organizations can harness the power of 
AI to transform and enhance the quality of care and improve relationships and communication 
with patients and clients. This will soon contribute to the aim of Revolutionizing Human Health 
through Artificial Intelligence. 

AI systems are the key to effective and efficient delivery of diverse health and wellness services. 
Voice recognition algorithms help doctors in setting reminders and taking notes on the go, 
enabling better coordination of care, improved staff productivity, better patient monitoring, and 
faster response in emergency situations and personalized service delivery. Varieties of 
algorithms generate hyper-personalized experiences for patients and customers and simulate 
high-level thinking and many human cognitive functions. During the COVID-19 pandemic, AI 
technologies deployed across the globe to make response and mitigation more effective through 
discovery of new drugs and treatment models, creating a distributed ledger of diagnostic reports, 
providing clinical decision support to doctors, identifying high-risk patients, and averting disease 
transmission through scanning, reporting, and analysing incoming data and information [18-20]. 
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5.2. Financial Services 

Financial institutions are turning to AI to develop advanced trading algorithms and predictive 
models capable of extracting patterns in historical data to prevent fraud, conduct risk 
assessments, forecast market trends, and manage hedging strategies. These functions lead to 
remarkable improvements in efficiency, enabling more accurate predictions, faster execution, 
and substantial cost reductions. 

Additionally, AI is being applied in retail banking to enhance customer experience. Chatbots, for 
instance, offer instant support, affordability and 24/7 availability. These sophisticated virtual 
assistants communicate with customers through voice and/ or text, in real time (over the phone 
and chat). Through NLP, users can receive help for common services or the newly revised tax 
and law knowledge. Personalize information to help customers The understanding of customers 
contexts and moods via Deep Learning, bedeutet Personal Advice for the best banking products. 

5.3. Retail Innovations 

Data insights and algorithms are to be had, and being used more, in the retail industry decision-
making process. Use cases run the gamut, from prediction and anomaly detection to sentiment 
analysis and customer profiling. Tactically leveraging AI-powered solutions helps retailers 
derive drive significant business value by evolving according to the constantly changing 
preferences of their shoppers. 

The ability of AI to pick out, categorize and interpret images — and even facial expressions -- is 
already having an increasing use case in retail. But in addition to enhancing an in-store 
experience – including but not limited to brand-based deployments and customer interactions – 
the role of those tools have transformed how returns and complaints are managed in e-
commerce, driving substantial improvements in customer satisfaction [19,21-22]. What’s more, 
AI ensures that customers are engaged with personally relevant interactions, engenders loyalty, 
and supports cross-seeling and up-selling by effectively identifying well-defined customer 
segments with offers tailored to those needs. The future with AI technologies is even more 
exciting – leveraging large volumes of data to get a 360 degree view of all aspects of the 
business, front or back-end.. 

6. Industry Implementations of Big Data 
Organizations collect terabytes of data every minute from customers, partners, and the business 
environment. It is essential to store, process, organize, and analyze this huge amount of data to 
extract useful information, which is vital for making good business decisions. The telecom 
industry is a pioneer in using Big Data for storing and processing millions of transactions daily. 
The objective is to realize, identify, leverage, and forecast customer needs. 

Analyzing industrial manufacturing Big Data has the potential to improve efficiency, decrease 
costs, and predict and prevent downtime. Supporting data scientists and stakeholders in gaining 
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high-quality insights into manufacturing processes requires a solid Big Data infrastructure. 
Industry 4.0 functions in marketing and sales benefit from Big Data. Market strategists can 
develop modern and innovative products to gain complete customer satisfaction by utilizing Big 
Data techniques such as data warehousing, data mining, and Customer Relationship Management 
Software. The rapid growth of online business draws the attention of both customers and 
companies. 

6.1. Telecommunications 

With new data generation mechanisms, such as the Internet of Things (IoT), Big Data in the 
telecommunications industry has grown exponentially. The deployment of smart meters in power 
grid systems produces massive data, referred to as smart meter data (SMD), which is difficult to 
recognize, analyze, utilize, and protect. The diverse formats of generated data include the 
documents and files generated by smart meters themselves, remote control commands of smart 
meters, and multimedia data (schematic diagrams and photos of meters, multimedia messages 
containing customer information). A method for storing these diverse types of SMD and related 
security safeguards has been proposed. 

The application of big data in operations, administration, and maintenance (OA&M) in the 
telecommunications sector has been proposed. Traditional OA&M systems usually handle data 
generated at each stage sequentially, which is time-consuming, operator-dependent, and 
incomplete. Big-data-based OA&M systems analyze and process data generated in each stage 
comprehensively, enabling automatic generation of the optimal plan that meets operations 
requirements through automatic analysis and judgment, supporting a comprehensive forecast of 
the entire life cycle of network elements. Several other applications of big data in OA&M have 
been proposed. Customer analytics has a key role in retaining existing customers and acquiring 
new ones [11,23-25]. Big-data analytics is widely used to detect the customer's profile, behavior, 
and frauds, and thereby achieve enhanced customer satisfaction. Campaign management 
analyses a customer's response toward a specific campaign, and telecommunication companies 
can identify whether the response is positive or negative; on the basis of this, necessary and 
suitable actions are taken. 

6.2. Manufacturing 

Manufacturing is an area that benefits significantly from Big Data analysis. Besides optimizing 
production, Big Data supports supply chain management, product quality, customer feedback, 
and data collected from sensors. Consistent and rapid production line operation necessitates 
constant monitoring. Early identification of potential production errors ensures a fully 
operational factory and optimal resources. Enabling predictive maintenance in factories and 
providing operators and engineers with instructions can reduce breakdown times and extend 
machinery lifespan. Advanced defect detection processes, superior to human inspection, improve 
the quality of manufactured products. 
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A novel Big Data logistics-based approach ensures transparency, efficiency, and agility of 
manufacturing processes throughout the plant's supply chain. A Big Data framework for the real-
time condition analysis of automated manufacturing systems helps decision-makers enhance 
production processes and implement corrective actions. Big Data analytics in automotive 
manufacturing improves engine speed, vehicle idling, application prioritization, and job 
scheduling. Optimizing operations planning through Big Data analysis involves collecting and 
processing datasets related to operations, plant layouts, and machinery status. The big data 
repository integrates Big Data and Internet of Things (IoT) concepts to provide continuous real-
time information on production and machinery health. Predictive analytics enhances just-in-time 
inventory strategies by forecasting future demand, replenishment requirements, and warehouse 
stock levels. Data from the production process is employed to analyze, improve, and shape 
planned product maintenance activities and schedules. In the end, a BD framework able to offer 
that support to manufacturers in terms of analysis of usage patterns on which their products are 
used collects such customer-related data while being utilized by them whenever required for this 
use-case. 

6.3. Marketing Analytics 

Marketing is now heavily infused with big data technology, as companies constantly collect and 
analyze a metric ton of consumer data in order to inform effective business/marketing strategies. 
Marketing analysis results in more effective customer segmentation and profiling, the ability to 
design targeted communications, increased sales rates, higher customer retention and so much 
more. With Big Data analytics, marketers can tailor campaigns and offers to suit the needs of 
individual customers, creating a personal experience that customers appreciate and giving the 
company a distinct competitive advantage. 

Predictive analytics enable marketers to forecast customer demand, avoid stock-outs, reduce 
costs, and fulfil customers’ needs in a more timely fashion. Marketing practitioners can also use 
sentiment analysis to assess the proportion of positive and negative feedback on their products 
during new launches, thereby optimizing the marketing mix [26-28]. Furthermore, marketers are 
increasingly employing clickstream analysis to identify their customers’ motives. The harvesting 
of information agents’ clickstream trails, recording their browsing behaviour and examining their 
favoured websites, assists marketers in the understanding of consumers’ search and purchase 
behaviours. Specific research studies of clickstream trails have enabled the development of 
predictive models of consumer behaviour parameters including click-through rates, probability 
of purchase forecasting, consumer segmentation, and frequency of visits, among others. 

7. Blockchain in Various Industries 
Blockchain Models, Smart Contract Models, and Consensus Mechanism Models, along with 
their applications in real-world scenarios, illustrate the transformative potential of decentralized 
technologies. Leveraging these case studies can demonstrate the practical advantages in different 
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sectors, facilitating an understanding of their wide applications. Supply Chain Management Case 
Studies elucidate the use of Blockchain to enhance provenance tracking and inventory 
management. Real Estate lends itself to improvements in property transactions and title searches. 
Meanwhile, the Voting domain ensures voter verification and protects ballot legitimacy. 
Experiences in these areas provide numerous avenues for further exploration and development. 

Despite the compelling advantages indicated by the various studies, Blockchain faces its share of 
challenges, particularly in terms of Scalable Storage, Economic Model construction, Security 
Systems, and Regulatory Frameworks. Therefore, Future Research Directions should include the 
deployment of lightweight storage models, the establishment of incentive-compatible stakeholder 
games, the design of advanced permission mechanisms for blockchains, and the development of 
regulatory systems that promote healthy ecosystem growth. Additional meaningful research 
areas encompass Blockchain for Social Good, the Blockchain-Internet of Things intersection, 
and Cross-chain Technology. Furthermore, the synergy between Artificial Intelligence, 
Blockchain, and Big Data is of great interest. In this regard, the potential of blockchain is 
explored both as an independent research agenda and as a complementary technology that 
enables and enhances the capabilities of the other two technologies. 

7.1. Supply Chain Management 

Today’s users are very demanding and do not want to wait. Before buying a product (for 
example, a car), they search for information about it on the Internet and evaluate comments made 
by other users, either in the online store of the company or on social networks such as Facebook 
or Twitter. The question that must arise in the mind of any user before buying a product is, “How 
was it made?”, “Is it original?”, “Is this product manufactured by a reliable company?” 

Blockchain could be the answer to these questions. A blockchain-based system could provide 
users with a safe way to understand how their product has been manufactured and whether it is 
original [29-32]. The fact that every transaction made by companies can be registered and 
checked by users would offer them transparency about their purchase, adding value to the 
product and, more important, to the company delivering it. SupChain is a blockchain framework 
applied to supply chain management systems using a decentralised platform that integrates the 
Ethereum public blockchain and an internal private blockchain with smart contracts transmitted 
in a digitalised manner. 

7.2. Real Estate Transactions 

Several efforts have been made to address the challenges of the real estate industry. Real estate 
transactions need to collect, organize, and analyze a massive number of documents and 
transaction records that are normally stored by banks and real estate agents. Blockchain helps 
collect, track, and record real estate transactions and property information securely and 
transparently. Concurrently, applications of AI technologies to the real estate industry have also 
started. One example is Umbra, which leverages a collection of economic and social factors, 
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such as demographics and life expectancy. The machine learning model captures a property’s 
potential and generates an annual risk and value score. A risk and value score report is provided 
in a business intelligence format. Real estate investors can make intelligent decisions based on 
the property risk and value scores. 

Real estate investors highly rely on property history information. To make more informed 
investment decisions, it is essential to dig out the potential investment risks, such as property 
foreclosures, previous damages, and thefts, from the properties’ historical records. Recent 
advances in blockchain have enabled the property record network to be fully developed with the 
capacity to gain the public’s trust because of the immutability of blockchain records. 

7.3. Voting Systems 

Prior to the 2016 United States presidential election, presidential candidate Vladimir Putin 
suggested the implementation of blockchain voting for the election. However, the need for 
electoral security, voter privacy, and other potential problems, such as "digital divides" and a 
lack of a paper ballot for recounts, prompted the Russian government to decline the proposal. 
The Russian government later promoted other usages of blockchain technology and eventually 
implemented a blockchain voting system for the 2020 Russian constitutional referendum. 

Beyond Russia, many countries have tested or implemented blockchain voting systems, 
including the United States, Switzerland, Estonia, Ukraine, Australia, Canada, and the United 
Arab Emirates. The Emirates Blockchain Strategy 2021 aims to move 50% of government 
transactions to blockchain by 2021. In Australia, the city of Fremantle in Western Australia 
enabled online voting with a blockchain-based voting system, in collaboration between Horizon 
State and Voatz. Some voting systems support not only voting but also identity verification and 
voting result detection. Societies are exploring the possibility of implementing national election 
voting and referendum voting using blockchain voting systems; for instance, Switzerland 
allowed citizens to test blockchain e-voting during the 2018 political voting season in the city of 
Zug. 

8. Challenges in AI Implementation 
The groundbreaking capabilities demonstrated by AI in sectors such as healthcare and climate 
change have been documented. The most successful AI systems thrive on intelligence produced 
by large datasets. As AI grows, concerns become more urgent about the security of sensitive 
data, protection of privacy, ethics, and possible biases. These cutting-edge issues should be 
addressed through public education and the development of improved data protection legislation. 

Example applications include disease diagnosis and treatment recommendations through analysis 
of medical images, lab data, and genetic information. Aiding COVID-19 diagnosis and prognosis 
through evaluation of imaging studies, cell count and enzyme levels, age, sex-women, 
chickenpox—linked to databases of signs and symptoms, can help diagnose new diseases, 
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evaluating signs, and symptoms of patients and provide diagnostic suspicion and decision 
support systems. AI naturally complements data-intensive fields such as cyberspace and big data. 
Areas of application in the field of cybersecurity include the development of IDS in both 
physical and cyber-cognitive domains, malware, anomaly threat detection and classification as 
well as situational awareness, and alert prioritization. 

8.1. Ethical Considerations 

Ethical challenges are prevalent in Artificial Intelligence (AI) implementation due to its ability to 
extract in-depth knowledge about individuals from large datasets. Potential issues surround 
concerns on privacy, automated decision making, transparency, and bias. Individuals retain a 
right to privacy, and the use of AI must indirectly overpower the right to privacy in order to 
achieve social or individual benefits. However, such issues can be managed with legal and 
ethical measures on individual and societal levels by adapting data sharing and processing 
policies; however, the discussion on the appropriate level required for the management of these 
problems continues. That is the reason that the most current analyses admit explicit ethical 
agreements so that individuals and states are aware of the generated compromises and therefore 
of the acceptance of the consequences." 

Data bias can considerably impact the accuracy of AI models. It is essential to carefully select 
the source data to ensure it is neutral and free from gender, regional, or age-related biases. The 
quality of source data largely determines the quality of the model produced. Ethical issues also 
arise when robotic agents replace humans. Despite the removal of menial and repetitive tasks 
from the job market, the displacement of personnel from existing positions raises ethical 
considerations. Transparency of decision-making processes, especially in sensitive areas such as 
insurance and private credit scoring, is also crucial in the acceptance of AI technology. Recent 
developments in explainable AI also contribute to overcoming this challenge. Towards a multi-
modal framework, it enables the integration of complementary information beyond pure textual 
and linguistic metadata, such as temporal, spatial, and emotional metadata. The literature closely 
linked to the establishment of corpora of AIMFs consists of two complementary research lines 
[31,33-35]. The first involves interdisciplinary areas such as digital humanities, social sciences, 
and political sciences; the second is grounded in the work related to the design of resources for 
automatic multilingual processing of social media texts in general. 

8.2. Data Privacy Issues 

Artificial Intelligence Models use vast amounts of personal information during training, resulting 
in data privacy concerns. These AI Models require extensive amounts of training data to perform 
their acceptable role. Usually, the training dataset consists of users' personal information such as 
ID number, phone number, bank account number, email address, location information, and other 
sensitive or confidential information. When the trained model is directly exposed to the external 
environment, privacy problems arise. Therefore, research on the training process without 
disclosing private training data has been actively conducted in various AI fields. 
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The use of data degrades privacy. People get thickly involved in various AI services and require 
their data to be safe from privacy issues. For example, data sales or data hacking, etc., are 
threatening the privacy of data. Buyers of the data take advantage of it in unfair ways, such as 
discrimination and increased risk in insurance companies, insurance applications, bank credits 
and job advertisements. At this stage, Methodologies connected with Big Data raise user interest 
and alert in protecting their private data from misuse. Therefore, there is an interest in using Big 
Data to create machine learning models without violating the training data privacy. Privacy 
concerns for both individuals and businesses have been addressed explicitly in an efficient 
manner. 

8.3. Algorithmic Bias 

This subsection showcases how the tech industry tackles algorithmic bias in AI. Firstly, it 
highlights Google's approach to making trade-offs between bias and accuracy. Secondly, it 
discusses Facebook’s problem of biased classifiers and explains why Facebook cannot sidestep 
this issue. The following content is based on the interview with Kate Crawford. 

Because Google has fast access to extremely large dataset, it produces better classifier. Better 
classifiers tend to be less biased for race, gender and thus it helps reduce algorithmic bias. 
However, as Kate points out, algorithmic bias not always goes hand in hand with accuracy. 
According to Kate, Google is aware of that and trying to find a way to make trade-offs between 
bias and accuracy. With better classification accuracy, the algorithm becomes more "equal" with 
less bias embedded. However, when the topic comes to Facebook, it is about bias reduction. 
Facebook uses facial recognition to give people a better user experience. Yet bad classifiers tend 
to be more biased in terms of race and gender because most of the training data is from the 
United States with predominance of white people. The biased face algorithm leads to cognisant 
of the unfair treatment of discrimination to people from developing countries. As a result, 
Facebook needs to debug the facial recognition but in the meantime it cannot not use the 
algorithm. 

9. Big Data Challenges 
Big Data has been implemented throughout many different areas. Even simple industries, such as 
telecommunications and manufacturing, can benefit largely. In manufacturing, Big Data can be 
used to forecast when equipment is likely to wear and fail, allowing for just-in-time maintenance, 
thereby reducing downtime, lowering maintenance costs, and preventing missed delivery 
deadlines. Telecommunications companies utilize Big Data to collect information about their 
offerings and customers, enabling the creation of products tailored to customer needs while 
significantly reducing provider churn rate [36-38]. 

At the other end of the spectrum is marketing analytics, an aspect of Big Data that involves 
collecting and analyzing customer feedback directed to market products and services in a way 
that promotes brand loyalty and entices a larger market share. The collection of these data points 
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enables an organization to identify who is buying their products, determine the most effective 
channels for marketing to that audience, and enhance customer experience. Despite these 
practical applications, businesses may be underutilizing, mismanagering, or missing key aspects 
of Big Data. Challenges such as poor data quality, real-time data collection, integration with 
legacy systems, scalability, and the reuse of data across multiple departments or business 
functions remain impediments to Big Data's full potential. 

9.1. Data Quality Management 

Research into data quality management in large data has been presented. Google BigQuery was 
used to test big data algorithms and assess the quality of big data. This service allows users to 
perform SQL-like queries on vast amounts of data. Quality assessment is performed in the 
solution stages: data gathering, disorganized patterns, viewpoint, preparation for analysis and 
processing, modeling, and transformation. 

The description of stored data must be clear and easy to understand. Milanovic et al. investigated 
the method of establishing metadata, whereas Zhang et al. adapted the OLAP method in big data. 
Additionally, the semantic method offers numerous possibilities because it describes the content 
of stored data, their properties, and the inferring ability. 

9.2. Scalability Issues 

Addressing scalability in blockchain technology is essential for future innovation and widespread 
adoption across various sectors. The first concern is that increased block size and faster block 
interval times can challenge the capacity of hand-held devices to serve as full nodes. If a full 
node requires too much storage space, it suffers from limited distribution, resulting in the loss of 
decentralized advantages. Moreover, it can lead to the centralization of mining powers and the 
weakening of network security. Faster block times can amplify the proof of processes, hindering 
adaptation to the Internet of Things and the latencies of smart contracts. The second aspect 
relates to the design choice of different consensus algorithms in different blockchain 
architectures. The selection from proof of work, proof of stake, proof of storage, and other 
algorithms is typically related to the demands for throughput, response time, and finality. 
Furthermore, when the health care and IoT industries merge with blockchain, blockchain 
applications involve multiple communities, such as users, businesses, and service providers. To 
address the issue, the innovative cliques—namely, data sharding, transaction sharding, state 
sharding, and functional sharding—have been proposed. The third aspect pertains to the increase 
in scalability issues associated with the growth of the underlying block size. The size of the 
blockchain, which is currently approximately 300 GB, continues to grow every day, making it 
impractical to download and verify at regular intervals. A similar issue arises due to inefficient 
consensus algorithms. Although transactions are adequately validated by high-powered devices, 
the process remains inefficient for mobile nodes with limited computation power and battery life. 
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9.3. Integration with Legacy Systems 

Despite challenges with legacy systems—such as data growth, tightly coupled technologies, 
security vulnerabilities, and process inefficiencies—large organizations continue to generate 
comprehensive Big Data. Many remain reluctant to store new data in cloud environments, opting 
instead to place a Big Data layer on top of their mainframe system, effectively extending 
automatic mainframe support with a NoSQL environment that stores Big Data outside the core 
database. Legacy systems can receive mainframe data via MQ or FTP and send it as files through 
a file system. However, this approach introduces additional files that require specific data 
management and maintenance. Moreover, an FTP system stores Big Data outside the firewall, 
further complicating security requirements. 

Data quality issues—such as missing values, outliers, and imbalanced data—further complicate 
the ability to generate accurate insights. Incorporating the entire data pool might not be feasible 
for real-time decision-making and action. These problems are exacerbated in cumulative 
analyses, leading to progressively erroneous outcomes. A potential solution involves automatic 
data cleansing, which identifies the nature of inaccuracies and performs necessary formatting 
changes, including the removal of inappropriate data elements. Solutions might incorporate basic 
statistical functions: measures like mean, median, and mode address missing values; percentile 
calculations correct outliers; and implementing boundary points with upper and lower limits 
converts imbalanced values into correct forms. The classification and cleaning are based on 
specific business rules. 

10. Blockchain Challenges 
Blockchain has recently attracted lots of attention among academicians, industry experts, and 
governments because of the inherent features of blockchain technology, such as transparency, 
resilience, trust among dynamically forming consortium components, immutability, and 
decouple trust from a centralized third party. However, despite these advantages, the blockchain 
technology is yet to reach the next level of practical implementations and market boom. Recent 
research has identified some of the outstanding issues with the blockchain technology, including 
scalability, regulations, cyber-security, privacy and data protection, cybercrime, governance, and 
interoperability. 

This paragraph continues with specific scholarly challenges. Scaling of blockchain is one of the 
major issues as it prevents a high throughput rate for processing transactions. For example, 
wang2021evaluating have pointed out several cost barriers in deploying cryptocurrencies by 
using blockchain technology, and argued that only 20% of the countries are favorable in their 
environment for adopting cryptocurrency, which reduces the potential of revenue generation 
through the transaction fees. As a result, the supply and demand gap tends to remain wide. 
Moreover, with growing users and transaction rates, legacy cryptocurrencies lack the capability 
to beat the traditional payment providers such as Visa or Mastercard in terms of speed and 
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efficiency. The study by eenigha2020regulatory have suggested that there should be some 
regulations for dealing with cryptocurrencies, otherwise, it may lead to dirty money in the 
system. In addition, cyber-security is another important concern, especially in the use of private 
key for access and retrieval of bitcoin wallet. Hence, according to issam2020blockchain there is 
a lack of appropriate preparedness toward malware that affects the existing cryptosystem. User 
privacy and anonymize quality of cryptocurrencies also raises doubts. 
tatarner2018cryptocurrency have suggested that in Europe, the General Data Protection 
Regulation (GDPR) may conflict with the core characteristics of blockchain technology. Besides, 
as the blockchain technology is still in nascent stage, it has started attracting the criminals by 
maliciously utilizing it for money for ransom. 

The preceding paragraph continues to supply detail from the literature. As argued by 
lee2019blockchain, the absence of governance framework in blockchain and lack of government 
supervision may provide opportunities to misuse blockchain for illegal activities, as criminals 
can easily exchange money from one cryptocurrency to another. Moreover, banks face serious 
challenges due to the presence of cryptocurrencies as they provide service without any 
regulations. A famous rumor says that Nigeria has experienced the second largest drop in bank 
account holding, and the highest increase of mobile wallet users in the world, because about 15 
million Nigerians trade cryptocurrencies on various websites. Again, the degree of 
interoperability among various blockchain platforms is also crucial for its effective operation, 
and proper implementation of these issues could lead to exploring a new arena in the field of 
blockchain technology. 

Research directions are also presented. Within the emerging domain of Blockchain Technology, 
a domain that has recently attracted a lot of attention due to its intrinsic characteristics such as 
transparency, resilience, trust among dynamically forming consortium members, immutability, 
and the decoupling of trust from a centralized third party, several open issues have been 
identified. These include scalability, regulations, cyber-security, privacy and data protection, 
cybercrime, governance, and interoperability. In line with the challenges previously highlighted, 
promising future research opportunities exist for addressing these areas, all of which are crucial 
for advancing the field towards broader practical adoption and market success. 

10.1. Scalability 

Blockchain technology offers a decentralized and distributed ecosystem where various parties 
can transact online without a central authority. The integrity, transparency, immutability, 
privacy, and security of data within the blockchain network are maintained by utilizing multiple 
technologies in the underlying layers, including cryptography, consensus mechanisms, and 
computer networks [1,39-40]. However, blockchain systems face scalability challenges similar to 
other distributed systems. Such challenges are especially pronounced when the number of 
techniques and services implemented over the blockchain grows at a high rate. The limited 
processing speed of the system results in delays in validating transactions. Therefore, before 
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implementing any blockchain service or technique, it is advisable to consider the scalability 
aspects to avoid performance-level challenges. 

Currently, various solutions—for instance, Lightning Network, sidechains, Plasma, Raiden 
Network, sharding, and off-chain state channels for Bitcoin and Ethereum-based blockchain 
systems—have been proposed and implemented to alleviate scalability issues. Although these 
solutions can effectively tackle blockchain scalability, potential issues such as latency, 
transaction costs, and multi-hop payments may arise. Moreover, not all solutions are suitable for 
scalability issues in specific blockchain platforms. For example, Plasma and sharding have been 
primarily implemented for Ethereum. Consequently, a well-defined scalability solution for 
scalable blockchain ecosystems remains an open research problem. 

10.2. Regulatory Compliance 

Maintaining regulatory compliance is often challenging when deploying applications in a public 
cloud infrastructure. Issues related to customer data ownership can arise because, physically, the 
data may be stored in any part of the world. This situation creates security concerns because the 
applicable law depends on the location of the data. Certain regulations require that the data 
cannot leave the country or its borders. In some scenarios, regulations specify the country of 
incorporation for the cloud provider. 

Currently, no single public cloud provider can meet the above-mentioned compliance 
requirements alone; however, a federation of public cloud providers can do so. In such a case, 
the customer data is stored in a public cloud depending upon the conditions specified by the 
governing regulations for that particular industry, although these conditions can be satisfied one 
after another in a single cloud setup or simultaneously in a multi-cloud setup, depending upon 
the data-storage requirements. Public cloud providers do not support these compliance 
requirements natively. Therefore, the customer is responsible for ensuring regulatory compliance 
before outsourcing its applications and data, which increases management overhead and 
deployment complexity for application developers. 

10.3. Interoperability 

With numerous active blockchain projects operating on different platforms, each using different 
blockchains with different protocols, communication between these individual blockchains offers 
a great hurdle. The lack of a method or protocol that enables different blockchains to 
communicate and share data with one another leads to difficulties in scaling the technology. 
Interoperability in blockchain technology refers to the ability to exchange and develop 
information or utility without restriction and effectively perform cross-chain transactions. 

New solutions for blockchain interoperability Methodological approaches for blockchain 
interoperability can be largely categorized into three groups: explorer solutions, notary schemes 
and relays. An explorer, such as BitMetrics, scans the blockchain for all relevant transactions and 
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their information in order to display it to the user in a specified form. Notaries have the ability 
and the submission of the transactions that need to be forwarded to the other chain. They act as 
trusted third parties that accomplish cross-blockchain proof and accompanying functions. 
Examples of equistructural notary schemes include the Pegged Sidechains, the Liquid sidechain 
and Sidechains, the Wrapped Tokens as well as the Drivechain Protocol. They essentially 
represent two-way pegs that enable certification of assets between two networks in both 
directions. Single-structural notary schemes like Atomic Cross-Chain Swaps on the other hand 
work without any links established on one side of the system and be accompanied by the 
disclosure of the private key that controls the funds in exchange for the funds on the other 
blockchain. 

Another type of notary scheme operates on the basis of central notaries: the Custodians. As a 
third-party holding the assets involved in a transaction, Custodians play the role of a traditional 
bank. XAPO and BitGo are representative examples of this approach. Relays are smart contracts 
that verify the validity of transactions on other blockchains and inform the communicating chain 
accordingly. Blockchains are able to check the authenticity of the underlying records directly via 
a relay. Both chains therefore must offer the ability to access their own data resources in order to 
implement a relay. To reduce the blockchain interoperability problem, the use of standardization 
and regulation should be considered. Common rules, norms and language for the entire sector 
can enable side-to-side discourse. Blockchain protocols like ERC-20 or ERC-721 allow different 
projects to develop within the Ethereum network. The scalability of Ethereum and Bitcoin’s 
networks, which play an essential part in overall blockchain adoption, also remains a key factor 
to achieve the interoperability of blockchains. 

11. Future Research Directions in AI 
The phenomenal growth of artificial intelligence in recent years has initiated a wave of disruptive 
innovation, creating a unique momentum and flood of interest in its application across numerous 
sectors. Present-day work on large-scale, diverse-curated-data inputs has provided novel avenues 
for addressing the AI open challenges. Many recent investigations have demonstrated AI 
applications for use in preventing general diseases, COVID-19, and in forecasting diseases. One 
of the promising future directions for AI can be in climate actions. Explainable artificial 
intelligence (XAI) is another aspect receiving significant research attention, aimed at enhancing 
the trustworthiness of machine-based decisions among humans. Additionally, issues related to 
privacy, security, and cyber-attack detection remain open topics for further exploration. 

Future studies may also target the development of advanced, transformative AI methods that are 
highly interpretable, transparent, robust, cost-effective, and privacy-preserving. The COVID-19 
pandemic has revealed that reassuring the public of the reliability and trustworthiness of AI 
results is a critical concern. Research into human-centric AI, focusing on integrating human 
expertise with machine intelligence through human–AI interaction, can enhance the overall 
quality of machine learning models. Cybersecurity, being a serious challenge, requires the 
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implementation of more sophisticated AI algorithms capable of detecting all types of network-
based cyber-attacks. 

11.1. Explainable AI 

Explainable AI (XAI) endeavors to make the operations of AI-based systems more transparent, 
intelligible, and thus more understandable and explainable to users. Despite the proliferation of 
AI applications, there is a conspicuous knowledge gap among many users regarding the 
mechanisms, functions, and decision processes of these systems. This lack of understanding can 
engender a sense of distrust or fear toward AI technologies. The inability of complex AI or 
machine learning models to provide rationale for their decisions, often identified as the “black 
box” issue, constitutes a significant representation problem that challenges user acceptance. 

Recent scholarly investigations have incorporated analysis of content published by industry-
leading companies and individuals tasked with marketing AI solutions to public users. The 
findings reveal that while a substantial proportion of corporate content emphasizes AI's 
opportunities and potential benefits, comparatively fewer communications address the dangers or 
ethical concerns associated with artificial intelligence. 

11.2. AI in Climate Change 

Societal and concerns are becoming important topics in AI. The application of AI for climate 
change is illustrated here. AI can contribute to climate change mitigation and adaptation in 
several ways. AI models can be very useful for the prediction of future effects of global warming 
and support in engineering and developing carbon mitigation technologies, as well as analyzing 
and developing novel renewable energy sources such as wind and solar energy. Finally, AI can 
help to reduce and optimize energy consumption in homes, industries, energy networks, and 
transport and distribution systems. The following case study of the United Nations demonstrates 
that Machine Learning models contribute to the prediction tasks based on climate change data 
and focusing on greenhouse gas emissions, fossil fuel production, and reforestation. These tasks 
can efficiently support decision making and policies for climate change. 

An outlined approach to understand the current climate situation and perform a prediction of 
what might happen in the future is proposed. Emissions dataset for coal, gas, oil, peat 
combustion, non–energy use by the U.S.A. states, and fossil fuels production dataset for the 
U.S.A. states during the last decades are merged and analyzed through Exploratory Data 
Analysis. Daily temperature and CO2 concentration affecting the reforestation process in the 
U.S.A. during 10 years have also been considered. Finally, predictions of U.S.A. states’ 
greenhouse gas emissions and fossil fuel production are made up to the year 2050 through 
Machine Learning models such as Artificial Neural Networks and Gradient Boosting Machine. 
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11.3. AI for Cybersecurity 

Cybersecurity remains one of the major challenges in the information systems field and AI 
techniques are being used to provide new solutions. Always-on monitoring generates huge 
amounts of data that can be used for Security Information and Event Management (SIEM). 
However, compared to other industries, cyber-attacks generate, by definition, very modest 
amounts of data. The Cyber Battlefield is still «a primacy of the attack». When attacker data will 
be more abundant, other Cybersecurity strategies will emerge. It is inevitable that a lot of 
research will be needed on issues related to the CIARDS that will have to protect industrial, 
commercial, financial Big Data. 

AI and ML infrastructures are already being used for cyber-attack detection, identification and 
response, including spam detection, malware categorization, intrusion detection, traffic analysis, 
attack analysis and mitigation, and vulnerability assessment. Hacking techniques that use Big 
Data analysis to target individuals or to identify the services accessed by Home/Business Users 
are also developing. 

12. Future Research Directions in Big Data 
Concluding the exploration of Big Data, the discussion now focuses on future research 
directions. Big Data refers to the voluminous information that inundates organisations on a daily 
basis. It is principled on the ‘four V’s’: velocity, variety, volume and veracity—in other words, 
the generation of data in real time of myriad types—stemming from millions and billions of 
sources worldwide—such that it clearly enables new and innovative capitalisation of the data 
sets created. Modern organisations are making use of this information to identify risks and gain 
insights that can be utilised to predict and solve problems. The deluge of data, however, seldom 
comes in completely uniform, neatly organised and easily digestible form, warning researchers to 
be cautious of the real value of Big Data. 

A massive explosion in computing devices, which are able to collect evermore complex data, as 
well as increasingly sophisticated algorithms to derive different types of knowledge, requires the 
utilisation of existing and emerging techniques, as well as the development of new algorithms for 
real-time processing of Big Data. In many domains, Big Data has the potential to transform 
existing functions by delivering richer, faster and deeper insights. However, there are technical 
and non-technical limitations related to Big Data. Therefore, innovative ideas and methodologies 
are essential to further progress. These requirements need focused research attention and effort. 
To cultivate a better understanding of these issues, scholars have examined the effect of Big Data 
on individuals and society in general, e.g., by addressing the Big Data ethical problems of 
privacy and security. The research agenda is wide and extensive, ranging from frameworks for 
Big Data checklists to support marketing decision-making to the utilisation of advanced Big Data 
predictive analytics to identify potential suppliers, and product–market opportunities. 
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12.1. Real-time Data Processing 

Providing a real-time streaming analysis for big data in a Hadoop framework is a challenge; 
Hadoop has an extremely high access cost and is not fit for real-time analysis. The use of the 
Superconducting QUantum Interference Device (SQUID) allows the transformation of a 
superconducting quantum bit to detect real time analysis in the Hadoop framework. Using Spark 
Streaming, a high-performance platform for real-time data processing and real-time data analysis 
in all industries, including real-time sensor analysis, is examined. Machine-to-machine 
communication has become an area of focus in recent years. Emotion is one event in 
communication that has vital importance for human beings, and Dempster–Shafer Evidence 
Theory was used for question selecting. 

New trends in artificial intelligence techniques have proven that machine intelligence offers 
promising solutions in the decision-making process for a diverse range of applications. AI has 
thus been recognized as a support tool that provides human decision-makers with relevant 
information and enhances their reasoning ability in complex environments. Focus areas for 
future research in AI include explainable AI, using AI to tackle climate change and protect 
biodiversity, and applying AI for cybersecurity. Future research directions in big data should be 
considered in model processing and streaming analytics; ethical and legal concerns related to 
planned and operational models; and predictive modeling with big data. Employing AI and big 
data to serve environmental protection presents the challenges and opportunities in the field. 

12.2. Data Ethics and Governance 

Within the field of Big Data, ethical considerations are broadly defined and include aspects 
related to the nature and personal information content of the data, cultural elements, and the 
processing and manipulation of such data [126]. As an example, a survey-based study confirmed 
that data collected for a particular purpose should not be used for another purpose, even in the 
presence of anonymization, due to residual concerns about sensitive data [127]. These issues can 
be addressed by formulating and implementing appropriate data privacy policies. Techniques 
such as abstraction and aggregation can enforce distributed responsibility, incentivize users, and 
limit the side effects of broad data accessibility [128]. To address data-related concerns, 
strategies such as formalizing a data life cycle for collecting and managing personal information; 
building an organizational framework to regulate data collection, organization, analysis, and 
exhibition; and developing contextual integrity interpretations can be employed [129]. 

Data governance relates to a set of responsibilities and practices designed to ensure the quality, 
availability, usability, consistency, auditability, and security of the data employed in an 
organization. In China and the United States, the Privacy Protection Model for Information 
Management (PM4IM) method systematically collects user requirements to help organizations 
improve information privacy and governance by considering the technical, management, 
strategic, and social aspects of data privacy protection [130]. However, a significant challenge 
identified is that organizations attempt to minimize risk and related costs rather than establish an 
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efficient and transparent information-privacy infrastructure. An information management model 
applies Big Data in the product development field to enhance operational effectiveness, taking 
into account regulatory and privacy constraints, competitive threats, and the need for 
organizations to protect their actions from competitors. Organizations must be long-term oriented 
and have the capacity to manage and control the risks involved with Big Data. 

12.3. Predictive Analytics 

The emphasis on real-time analytics and AI has resulted in myriad solutions that purport to 
support the prediction of future trends, be it in the context of weather forecasting, earthquakes, or 
diseases. These represent significant paradigms in data-driven analyses. Predictive analytics 
exercises its influence across a plethora of applications, from the forecasting of natural disasters 
and at-risk public health environments to crime prevention. The reported results highlight the 
ability to provide substantial forecasting within these areas. However, the ever-increasing 
availability of multimodal data, both in terms of structural properties and semantic content, 
dictates a novel challenge for predictive analytics, which will centre upon the integration of 
knowledge across multiple heterogeneous data sources. 

As an investigation in ethics, the researchers explore the undesirable or potentially harmful side-
effects that may arise from instructions contained in product manuals, as a predictive feature 
designed to reduce the occurrence of erroneous user behaviour. Such errors can lead to adverse 
impacts upon the system that they support, both in a physical and a cyber context. This line of 
inquiry reflects the importance of ethical considerations within technologies that employ 
predictive analytics and serves as an appendix to the broader exposition of ethical issues 
concerning privacy and surveillance. 

13. Future Research Directions in Blockchain 
Multiple challenges still need to be solved in blockchain performance, regulation, and business 
models, namely scalability, sustainable regulation, and integration with legacy systems. Pursuing 
blockchain for social good also represents an important area of future study. Topics investigated 
include the integration of blockchain with the Internet of Things, cross-chain and side-chain 
mechanisms, and solutions that safeguard privacy. 

Decentralized applications offer benefits but face limitations regarding privacy, operational 
costs, and throughput. Challenges arise when transgender individuals attempt to participate in 
blockchain-based voting or finance systems without disclosure of their transgender identity. 
While various mechanisms have been proposed for combating fake news, implementing these in 
a decentralized manner remains an open issue. The popularity of peer-to-peer systems coupled 
with the global rise in artificial intelligence provides opportunities for collaboration between P2P 
and AI technologies; creative proposals along these lines are welcome. 
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Figure 1: Generic applications of blockchain 

13.1. Blockchain for Social Good 

Blockchain technology can be used to address important social issues such as poverty, 
inequality, and climate change. Examples of Blockchain for Social Good initiatives include 
platforms that enable transparent charitable donations, microfinance loans for underserved 
communities, and decentralized renewable energy projects. Despite its potential, there is still 
debate about whether Blockchain is the most adequate technology for achieving these social 
goals. 

Currently, challenges associated with the implementation of Blockchain-based initiatives for 
social good include scalability issues, the lack of regulatory clarity, and the need for 
interoperability between different platforms. Several questions remain unanswered. Is 
Blockchain really necessary for addressing social challenges? Do existing applications suffer 
from data fragmentation? Additionally, how do FinTech and DeFi contribute to the central 
banking system during a crisis period? Furthermore, how could the integration of Blockchain 
with other technologies, such as the Internet of Things (IoT), support social initiatives? 
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13.2. Integration with IoT 

Blockchain technology serves as a natural solution to many challenges inherent in the Internet of 
Things (IoT) industry by providing decentralization, autonomy, and robust security mechanisms 
to its devices. Recently, blockchain was designated as a top investment area in IoT. Industry 
players are harnessing blockchain’s unique properties to resolve multiple complex issues, 
including tamper-proof data storage and uniform, robust infrastructural connectivity across the 
globe  

 

Figure 2: Taxonomy of IoT security and privacy 

The problem areas that can be addressed by combining blockchain and IoT solutions. Juniper 
Research predicts that, by 2023, over 700,000 active blockchain networks will be managing 
billions of connected devices, with the combined IoT–blockchain market set to exceed $12 
billion in value. Nevertheless, as with many novel technologies, the IoT–blockchain integration 
remains in its nascent stages, with many promising avenues yet to be explored and developed. 

13.3. Cross-chain Solutions 

Many blockchain platforms can be forked and modified, resulting in separate blockchains with 
mostly similar internal structures but carrying some differences. These distinct blockchains 
coexist simultaneously, and users can collaborate and transact across platforms that can provide 
complementary features and/or services. Cross-chain techniques enable interoperability across 
multiple blockchain platforms through cross-chain transactions, cross-chain routing, and cross-
chain communication protocols by connecting independent blockchains. A set of business 
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applications that leverage two or more blockchains’ characteristics and lending each other’s help 
to support the operation or execution of a transaction is known as cross-chain business. A notable 
example of a cross-chain business is the use of Bitcoin for payment on the Ethereum blockchain. 

Some examples of cross-chain protocols are the J.P. Morgan Interbank Information Network, 
measuring transactions and trades between banks and corporations; Zilliqa, a high-throughput 
blockchain supporting cross-chain communications; Hadera, offering a decentralized public 
ledger for the Internet of Things via the hashgraph consensus algorithm; and Tesla, working with 
Dogecoin to permit transactions in the company’s retail operations. By leveraging the properties 
of these blockchains, emerging blockchain-based applications unlock new value dimensions 
across different industries, such as finance, insurance, manufacturing, and supply chain 
management [2,3]. 

14. Interdisciplinary Approaches 
Implementation of the AI, Big Data, and Blockchain technologies are considered very important 
throughout many industries. Challenges in the implementation of these technologies are explored 
and analysed in sections 8, 9, and 10, respectively. These challenges are then related to future 
research directions in sections 11, 12, and 13. In the activities of interdisciplinary research, AI 
can be combined with those of Big Data and Blockchain. For example, from the GPT series of 
ChatGPT (Chat Generative Pre-trained Transformer), research can apply the technology to 
COVID-19-related problems with COVID-19 textual big data (such as research disease 
spreading models) and publishing records on coin-based blockchain (such as a decentralized 
publishing model). Exploring case studies and practical application examples of AI, Big Data, 
and Blockchain technologies yields practical implications in various application areas. 
Consideration of compelling challenges facilitates the identification of emerging research 
directions. 

AI can be denoted as intelligence exhibited by machines or software. AI subfields include 
predicate logic, search algorithms, knowledge deduction, neural networks, expert systems, 
Machine Learning, Natural Language Processing (NLP), and Computer Vision. Machine 
Learning focuses on teaching machines to learn from historical data. NLP enables computers to 
understand human language. Computer Vision supports extraction of meaningful information 
from images and videos. Big Data involves the processes of data collection, data storage, and 
data analysis. Since Big Data can be collected and stored in large quantities, its analysis often 
requires advanced analysis techniques such as Artificial Intelligence. Blockchain ensures secure 
transactional lookup without information tampering by distributing ledgers across a network, 
with the nodes making collective pairwise decisions on new blocks of information added to the 
chain. 
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14.1. Collaboration between AI, Big Data, and Blockchain 

Artificial Intelligence, Big Data, and Blockchain are among the most popular technologies of our 
time, with numerous studies exploring their technical characteristics and industrial applications. 
Combination also helps reveal emerging challenges and upcoming research directions in these 
fields. Examples of joint integration are demonstrated by several implementations and associated 
challenges across the three technologies. A recent study presents case studies, industry 
implementations, challenges, and future research directions related to artificial intelligence, big 
data, and blockchain. 

Artificial intelligence provides the foundation and technology for creating intelligent robots that 
mimic human brains. Machine learning, natural language processing, and computer vision are 
fundamental branches of artificial intelligence. Healthcare, finance, and retail services industries 
have adopted machine-learning algorithms in their daily operations. Big data involves gathering 
huge amounts of data and drawing meaningful inferences from raw data. Big data 
implementation areas include telecommunication companies, manufacturing industry, and 
customer behavior analysis. Blockchain technology allows a decentralized system to eliminate 
central authority by implementing distributed ledgers and ledgers. Smart contracts, consensus 
mechanisms, and transaction blocks are foundational components of blockchain technology. 
Blockchain has been integrated into various industries, including supply chain management, land 
registration, and e-voting systems. 

14.2. Case Studies of Interdisciplinary Projects 

Infrastructure management companies are exploring the application of AI, Big Data, and 
Blockchain technologies in various sectors. An approach that combines public administration 
with AI and Big Data analyses was developed at a Dutch land registry company—it 
automatically determines the priority of client requests. In the Netherlands, AI assists education 
providers in adapting offerings to learners’ wishes and needs. The Public Utilities Department in 
Toronto addresses electricity outages with an AI model that uses data on weather and past 
interruptions for prediction. Quality assessment of customers’ experiences is also performed with 
NLP. 

Big Data analyses applied to public administration in the Netherlands involve the use of 
advanced graphical representations and visualization of complex relationships of clients and 
requests. In the United States, Big Data analysis powers Telecom providers in resolving issues 
and planning services for rarer types of catastrophes. Integrating customer calls and transactional 
data generates insights on customer experience, which, when combined with modeling and data 
visualization, support operations, marketing, and advocacy, as in a Belgian bank. A 
manufacturing company in Italy applies Big Data analysis to monitor and predict machine status, 
including maintenance warnings. And in Australia, Big Data enables providers of home and 
community care services to obtain a better understanding of client needs for improved care 
planning. 
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Fig 3.Future directions 

15. Conclusion 
The three technologies discussed here—AI, Big Data, and Blockchain—are complementing one 
another and witnessing exponential growth in new research and innovations. Many new and 
specialized interdisciplinary directions are being constructed at the intersection of these 
technologies. Fresh sets of challenges emerge for these technologies whenever they become 
intertwined. The interdisciplinary topics of ‘‘opportunities and challenges’’ and ‘‘future research 
directions’’ of these three technologies, AI, Big Data, and Blockchain, are indeed fascinating. 

The final section of this study selected and briefly presented possible future research directions 
and challenges of these three technologies. For the detailed analysis of these remaining topics, 
readers are encouraged to consult other specialized sources. This approach allows a focus on 
practical applications and emerging trends, in line with the preference for including case studies 
and proposed research directions. 
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