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1 Introduction: Introduction to Computer Vision 

and AI at the Edge 

Recent advances in computer vision are paving the way for smarter artificial intelligence 

at the edge. These advances are rapidly enhancing the capacity of IoT devices to analyze 

images beyond basic recognition tasks. Object detection techniques enable cameras to 

identify not only the presence of objects but also their precise locations, while image 

segmentation can differentiate between the object and its background [1-3]. 

Furthermore, generative models possess the ability to create images based on learned 

examples. Object detection involves locating objects within an image and classifying 

them. Originally implemented through traditional image processing techniques, state-of-

the-art methods now rely on deep-learning-based techniques [2,4,5]. Image 

segmentation divides an image into superpixels—meaningful regions or objects. By 

focusing on the primary objects, it simplifies the background. Semantic segmentation 

classifies each pixel into a category, while instance segmentation classifies pixels 

belonging to different instances of the same class. Generative models are capable of 

creating images that resemble those from the training dataset. To fully grasp the 

importance of these techniques, it is essential to understand the challenges of AI at the 

edge and the principles behind IoT. 
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2. Fundamentals of Internet of Things (IoT) 

The Internet of Things (IoT) is an interconnected network of physical objects embedded 

with sensors, software, and hardware infrastructure. These connected things not only 

sense and collect data but also communicate it for monitoring, control, and analysis. IoT 

devices come in a variety of forms within varying industries and domains, including 

smart homes, connected cars, industrial applications, and many more. The IoT value 

chain connects multiple industry segments and areas of expertise for effective 

functioning and uptake [6-8]. IoT deployments comprise the things that generate, act 

upon and process data, the networking infrastructure, and the IoT hub and platform that 

correlate and augment the data. A common pattern emerges in most of the industrial and 

consumer IoT applications: the connected things collect telemetry data through sensors 

and cameras and transmit the data for further processing and analysis. The analysis often 

involves combining the data with other sources of information, including historical data 

and data coming from other related connected things. 

The major problem with performing data transmission and processing in centralized 

locations such as the cloud or traditional data centers is the increasing latency and 

bandwidth usage generated by the volume of data sent from connected things. 

Traditional data centers are not ideally suited for real-time control, as the request from 

control equipment to the data center and the data center’s response both have different 

hops to handle through the private or public networks [9,10]. The long distance between 

the compute power and the control equipment will generate additional latency and 

affecting the real-time control and reaction of the system. One effort to overcome this 

challenge is performing data processing closer to the sensors, instead of in centralized 

locations. This physical proximity of processing resources to the connected things 

generating or acting upon the data has led to the terms “mobile cloud computing” and 

“cloudlet”. Bringing the AI models—specifically the AI inference—to the edge where 

the data is captured is “AI at the edge”. Typically, the IoT is associated with definitions 

for an ecosystem of connected physical things that can collect, communicate, analyze 

and act on data [11-13]. IoT uses data created by connected sensors and IoT devices, 

along with AI models, to add business insight; AI-at-the-edge is the delivery of such AI 

models—specifically for inference—to the edge of an enterprise or service provider 

network or into an end-user device. 

3. Advancements in Object Detection Techniques 

Object Detection — which entails localization-plus-identification — has always enticed 

researchers and developers. Traditional detection algorithms use a sliding-window 

method for generating bounding box proposals. These proposals are classified using 
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extracted features such as Haar, HOG, CIFAR. Deep Learning also enables object 

detection by combining the detection and classification steps, producing rich and robust 

feature maps for class prediction [2,14-17]. Although it achieved higher accuracy and 

precision, its computations for training and inference make the end system slower. Still, 

resource-hungry and latency-sensitive applications require the feasibility of Video 

Analytics with inference-on-the-edge, and this conflict leaves space for innovation. 

Researchers have developed custom object-detection CNN architectures and other tricks 

to enhance performance on edge devices. 

Today’s world runs on connectedness, and Computer Vision forms an integral part of 

this equation — cameras in diverse locations generate a vast amount of real-time 

intelligence, yet real-time decisions are lacking due to computational cost [9,18-21]. The 

growing Internet of Things (IoT) ecosystem has advanced Smart Surveillance with 

automation requirements, but Smart Cities are equally eager for Object Detection to 

supply smart data for traffic lights, accident alerts, and warning indicators. Object 

Detection's high accuracy and precision also make it suitable for imaging in neurology, 

gastroenterology, and medical robotics. A related fundamental task, Image 

Segmentation, generates predictions pixel-by-pixel on the image and finds application 

in disease diagnosis and treatment, environmental health assessment, and prosthetics 

design. 

3.1. Deep Learning Approaches 

Object detection is the task of locating notable instances of predefined classes within an 

input image. Much research in object detection has focused on bounding box detection, 

which involves detecting objects within the surrounding rectangle, rather than 

specifically outlining the boundaries to encompass its entirety [22,23]. This is in contrast 

to object segmentation, which involves outlining the actual boundaries of the detected 

objects. 

Advancements in object detection have relied heavily on deep learning models, notably 

DCNNs such as AlexNet, VGG, GoogleNet, and the Residual Net. Faster R-CNN 

pioneered a two-stage approach with dedicated proposal and detection subnetworks. 

Single-shot-detection (SSD) and You Only Look Once (YOLO) employ a single-stage 

detection model for real-time constraints. More recently, RetinaNet incorporated the 

focal loss function to mitigate the class imbalance encountered during single-stage object 

detection. These developments facilitated accurate, real-time object detection in IoT 

environments. 
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3.2. Traditional Methods 

Handcrafted algorithms played an important role in object detection before deep learning 

became popular. The idea of handcrafted features is mimicking the human visual cortex, 

where lower-level neurons act as edge and bar detectors. Filter banks are applied against 

an image to extract low-level features that encode the image in different ways [24-26]. 

Some common filter banks include: the Gabor filter bank, Gaussian derivatives, and the 

Leung-Malik filter bank. 

One of the most standard filter banks is the Gabor filter bank, which consists of multiple 

even and odd symmetric Gabor filters at different scales and orientations. This filter bank 

is biologically inspired and mimics the orientation columns in the primary visual cortex. 

Other feature extractors, such as Scale-Invariant Feature Transform (SIFT) and 

Histogram of Oriented Gradients (HOG), create histograms based on the output of these 

filters. HOG is generally used as a feature descriptor for shape, while SIFT is often used 

to detect interest points in images. 

3.3. Real-Time Object Detection 

In recent years, the field of object detection has seen significant progress. Research is 

currently focused on the detection of a large number of classes, the detection of tiny 

objects, and real-time object detection. Deep learning approaches outperform traditional 

computer vision methods on every objective. Nevertheless, traditional approaches such 

as Template Matching, which is used as a baseline, continue to be relevant due to their 

low inference time and simplicity. 

Object detection applied to the Internet of Things must account for the latency implied 

by inference. Devices based on Raspberry Pi, for example, are limited in power supply, 

size, and cost, making them attractive candidates for smart devices that rely on computer 

vision. They are suited to the development of integrated systems capable of controlling 

object detection with the possibility of managing other sensors. 

4. Image Segmentation: Techniques and 

Applications 

Image segmentation involves dividing an image into multiple regions or sections to 

simplify and facilitate solving various computer vision problems [27,28]. This process 

can extract distinct objects within images and describe the relationship between them. 
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Techniques include semantic segmentation, which partitions images into semantically 

memorable parts, and instance segmentation, which locates and classifies all objects in 

the image at the pixel level. Current research also explores simultaneous 3D 

reconstruction, pose estimation, and image labeling for images depicting multiple 

persons. 

Like most computer vision problems, image segmentation has witnessed the introduction 

of many CNN-based algorithms. In healthcare, for example, image segmentation can 

assist in the early detection and classification of diseases by segmenting medical images. 

In computed tomography, CT images of lung cancer patients can be thus segmented to 

help assess the progress of the disease during treatment. The segmented images can be 

used to analyze variations in volume, size, and position of the lesions during radiation 

therapy, which can help predict the patients’ response to the therapy, bringing about 

significant improvements in diagnosis and treatment planning. 

4.1. Semantic Segmentation 

Semantic segmentation is the process of grouping similar pixels in an image into a set of 

classes. Unlike object detection, segmentation indicates precisely the location of the 

object or person in the image. In segmentation, each pixel in the image is allocated a 

class label, and hence, each pixel of the image is classified. Taking the previous example 

of the street scene in object detection, the segmentation output would be the group of 

pixels belonging to the car, group of pixels belonging to the road, and so on. The main 

types of segmentation used in computer vision are semantic and instance segmentation. 

Semantic segmentation classifies each pixel in the image belonging to a particular class, 

for example, car, road, building, and so on. Instance segmentation distinguishes different 

objects in the image by classifying each pixel belonging to a particular object. For 

example, in a street scene, two cars that differ from each other but belong to the same 

category will be assigned different labels [19,29-31]. Hence, instance segmentation is 

also called panoptic segmentation. Semantic segmentation has found widespread use in 

medical imaging. Broadly segments like the heart, the lungs, the spine, etc. are predicted. 

Specific organs or cell segmentation like the heart, liver, red blood cells, white blood 

cells, etc., are also undertaken. 

4.2. Instance Segmentation 

Instance segmentation methods largely rely on deep learning due to their high demand 

for diverse training data. Fully convolutional instance-aware semantic segmentation 
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proposes an end-to-end fully convolutional framework for accurate and efficient instance 

segmentation. In a different approach, fully convolutional neural networks classify each 

pixel of the feature representation into different instances [32,33]. The Mask-RCNN 

approach combines a Faster-RCNN architecture and semantic segmentation, tackling 

both tasks simultaneously for improved performance. 

Several studies target real-time instance segmentation, often emphasizing inference 

speed at the expense of accuracy. For instance, YOLACT employs parallel prototype 

masks with per-instance mask coefficients. In the same vein, a real-time approach 

utilizes deconvolution layers and an upsampling mask branch for instance mask 

prediction. Other methods incorporate a multi-task loss function to balance bounding-

box detection, mask prediction, and classification. Within these approaches, the edge 

detection network operates first; subsequently, an edge refinement network reconstructs 

boundary details, generating a precise mask for the detected object. Enhanced Residual 

Networks are also proposed for practical reasons, demonstrating improved real-time 

performance in specific datasets. 

4.3. Applications in Healthcare 

The medical field also profits from image segmentation. For instance, in studying 

tumors, the aim is to identify the tumor and see if it has been affected by cancer, so the 

disease might or might not spread [34-36]. If primary features in the tumor can be 

correctly identified, various mathematical methods can be applied on detected features 

for diagnosis and assessment of patients’ healthcare. Semantic-level segmentation of 

medical images in a real-time manner would help doctors be more effective and efficient 

while working towards an accurate diagnosis. 

Another application area in the medical field is the segmentation of large 3D medical 

images. In this case, the computer generates hierarchical brain segments by using 

radiological atlases and assesses pathological tissues and abnormalities in the images. 

Image segmentation is broadly used in hospital areas, from diagnostics involving 

neurocysticercosis and capsule endoscopy to community radiological screening tests for 

population health research in the healthcare field. 

5. Generative Models in Computer Vision 

Section 5 covers generative models in computer vision, with an overview of generative 

adversarial networks (GANs) and variational autoencoders (VAEs), two state-of-the-art 

techniques typically employed by neural networks capable of generating novel images 

[37-40]. Additional considerations include the underlying mechanisms of these 

approaches and their applications in image synthesis, thereby completing the landscape 

addressed by the preceding segmentation section. 
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Generative models present a novel approach to image synthesis. Typically, in machine 

learning, a model is trained to classify an input image into one of several possible 

categories, a challenge known as a discriminative task [41-43]. The alternative, known 

as a generative task, involves presenting the model with an image that belongs to a 

particular class and requesting it to generate novel images that belong to the same class. 

From a technical standpoint, generative models represent the conditional distribution 

P(x|y) of the input image x given the class y, whereas discriminative models represent 

the conditional distribution P(y|x) of the class y given the input image x. 

5.1. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) comprise a class of neural networks 

conceived for unsupervised machine learning. Their core architecture features two 

models—the generator and the discriminator—which compete in a zero-sum game 

framework. The generator aims to yield realistic, synthetic data samples, while the 

discriminator endeavors to differentiate between genuine and artificial samples of a 

particular class. The rivalry between the generator and discriminator motivates the 

creation of increasingly realistic samples. 

The initial development of generative models utilizing adversarial training is often 

attributed to the work of Schmidhuber. However, the seminal approach known as 

Generative Adversarial Networks was introduced by Goodfellow et al. in 2014. The 

impact of this generative framework has been substantial; numerous variants and 

enhancements have emerged, enabling the creation of photorealistic images of human 

faces, facial transformation, the generation of 3D objects, and artistic style generation. 

In essence, the goal of a GAN model is to generate samples that appear convincingly 

real to a human observer. 

5.2. Variational Autoencoders (VAEs) 

Deep learning has also significantly impacted generative models, as previously 

demonstrated in Sect. 3.4 that introduced Generative Adversarial Networks (GANs). In 

contrast to the discriminator-generator adversarial setup of GANs, Variational 

Autoencoders (VAEs) approach their objective probabilistically. Adopting the encoder-

decoder framework of traditional Autoencoders, VAEs model the encoder output 

distribution at the latent space, rather than individual values. This probabilistic modeling 

facilitates the generation of new images by decoding Gaussian samples, yielding high-

quality results. 

Given these merits, VAEs have occasionally been employed to support image synthesis. 

The VAE loss comprises a supervised reconstruction component and an additional 

Gaussian prior. Unlike GANs—renowned as the fastest and highest-quality method for 

raw image synthesis—VAEs often rely on optical flow or probabilistic maps. Optical 
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flow charts the spatial displacement of each image pixel, clarifying movement directions 

from one frame to the next. Probabilistic maps depict a distribution of possible next pixel 

positions, each assigned a likelihood, thus aiding in planning for varying scenarios. 

Examples of VAE application include the VMeta model for forecasting future 

viewpoints. 

5.3. Applications in Image Synthesis 

Image generation primarily employs two generative model families: Generative 

Adversarial Networks (GANs) and Variational Autoencoders (VAEs). A GAN 

comprises a generative model mapping encoded latent vectors to images, and an 

adversarial discriminator tasked with discerning real images from generated counterparts 

[28,44-47]. In contrast, a VAE consists of an encoder that transposes images into a latent 

space meant to emulate a standard normal distribution, and a decoder that reconstructs 

images from sampled latent vectors. The operational dynamics of VAEs and GANs 

differ markedly. VAEs tend to yield images exhibiting a degree of blur, attributable to 

the training process focused on minimizing pixel-wise deviations between 

reconstructions and original inputs. Conversely, GAN-generated images are rendered 

with considerable sharpness, a quality stemming from the discriminator's penalty on 

generated images it identifies as artificial. 

Models in image synthesis frequently utilize a conditional mechanism, wherein the latent 

vector or generation process incorporates specific informational cues—such as textual 

descriptions or class labels—to guide outcomes [48,49]. Application domains for image 

synthesis encompass attribute-to-face translation, semantic image synthesis, text-to-

image generation, and harmonic image completion, among others. Each area harnesses 

generative models tailored to fulfill particular creative or restorative objectives. 

6. AI at the Edge: Challenges and Solutions 

Artificial intelligence has found its way into many uses in society, including financial, 

health-care and others. One of the most explored areas of AI is computer vision, mainly 

the understanding of images. Along with this, the recent improvement of Internet of 

Things (IoT) brings higher connectivity and quantity of low-cost sensors [3,50-52]. 

These sensors, when combined, are able to identify information in the environment, 

connect one to another and send it to the cloud for further processing. The development 

of Internet Protocol version 6 (IPv6) brought the possibility of providing a unique IP 

addresses to countless newly created devices and the expansion of the Internet. 



  

76 
 

The AI at the edge topic indexes recent researches relating to the execution of Artificial 

Intelligence on edge devices, where the problems are how to fit the inference in resource-

constrained devices and how to handle the latency when connecting to the cloud. The 

advent of Deep Learning last decade changed the scenario for Computer Vision, so many 

problems in the area have been tackled, especially object detection, image segmentation 

and generation of images generated by Generative Adversarial Networks (GANs). 

6.1. Resource Constraints 

Recent years have witnessed tremendous advances in computer-vision methods, in 

particular object-detection and image-segmentation algorithms based on deep-learning 

techniques. The huge demand for new applications requiring the capabilities of powerful 

object-detection and image-segmentation algorithms and the wide adoption of artificial-

intelligence (AI) techniques by the industry have promoted the deployment of neural-

network-based applications on the resource-constrained devices currently found in the 

so-called Internet of Things (IoT) [53-57]. These new AI-at-the-edge deployments are 

characterized by inference deployment on low-power, low-memory devices, which can 

also be subject to low-latency constraints. 

IoT also demands object detection with very low detection latency that, in some cases, 

is impossible to achieve because images have to be sent to a remote server first. This 

leads to efforts devoted to the development of AI at the edge, where AI inference is 

performed on the resource-constrained device itself, without communicating the 

information to a powerful but remote server level. This provisioning of AI at the edge 

addresses power-consumption issues because images do not have to be sent to a remote 

server all the time. Regarding image segmentation, several algorithms for accurately 

outlining the regions of the objects of interest have emerged in recent years. Only deep-

learning methods have been considered, because traditional methods are lacking in 

accuracy for a wide range of general-purpose applications. In particular, the most 

important approaches, based on a convolutional encoder–decoder architecture, are 

reviewed. New applications requiring the capabilities of powerful object-detection and 

image-segmentation algorithms, and the wide adoption of AI techniques by industry, 

have promoted the deployment of neural-network-based applications on the resource-

constrained devices currently found in the IoT [58,59]. 

6.2. Latency Issues 

Latency is inevitable when performing AI-related inference. For some applications—

such as seated-car security or grocery-store basket calculations—latency is not a 
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significant concern. When the results are needed in real time, such as with autonomous 

driving or patient diagnosis, latency is critical. Latency at the edge can be broken into 

two types. First, the object’s distance from the edge device impacts latency due to the 

proximity of the edge device. Second, the capability of the edge device also has an 

impact on latency because each device has various specifications (e.g., memory size and 

processing capability); 

during inference, the larger the model, the more computing power is required for the 

edge device to finish making its prediction in a reasonable amount of time. When an 

edge device has insufficient resources to perform inference, the recommendation is to 

use cloud services. Cloud services have the resources and capabilities to run larger deep-

learning models; however, severe latency increases are experienced due to the physical 

distance between the cloud service and the client device. Low latency can be achieved 

with powerful and small models at the edge. However, the downside is that smaller 

models usually lead to lower accuracy. 

7. Integration of Computer Vision with IoT 

With the increasing ubiquity of IoT wireless connectivity and the tremendous growth of 

the Internet of Things, these two technologies converge in practical smart-functionality 

setups. The main challenges for intelligent computer-vision and IoT integration reside 

in the differing domains and scales of the two. Connection links and networking 

processes in the context of IoT need to ensure reliability, low latency, adaptability, and 

flexibility [2,5]. At the same time, IoT-enabled services frequently require robust 

decision-making, significant understanding of the surrounding environment and context, 

as well as supporting highly dynamic real-time interactions. Semantic information 

derived from video sensors can complement key technologies in other fields and serve 

as a new kind of IoT data. Vision sensors provide semantically rich contextual 

information, whereas classic sensors mainly collect physical information. Examples of 

prototypes successfully integrating computer vision and IoT can be found in smart 

surveillance systems, industrial Internet, and smart cities. 

Computer vision services have many application scenarios in the smart city context. 

Typical applications include intelligent construction-site surveillance, traffic monitoring 

and control, public-safety monitoring, and smart home security. These use cases 

combine sophisticated decision-making with real-time responses and often rely on the 

integration of external information to provide better explanation and understanding of 

the scene. Industrial Internet of Things (IIoT) applications share some of these 

requirements but involve a different operating environment. Typically, responses are 

shorter for IIoT applications, and the environment and context are also less dynamic in 
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general. Currently, documented case studies tend to concentrate on the integration of IoT 

data with a layer of domain knowledge to support rapid decision-making. Additionally, 

the integration of IoT and computer vision technologies enables the implementation of 

innovative real-world applications, such as flooding disaster prevention. 

7.1. Smart Surveillance Systems 

With the rapid expansion of the Internet of Things, smart surveillance systems have 

attracted interest from both academic institutions and industrial firms. These systems are 

typically comprised of smart IoT cameras that: (1) monitor a wide area, (2) capture 

images continuously, (3) detect unsafe or suspicious situations, and (4) send alerts 

immediately. Recent developments in object detection have contributed to the 

effectiveness and reliability of smart surveillance. However, the continuous monitoring 

and immediate alert requirements pose major challenges to implementations. 

The first challenge derives from the tight latency requirement and limited 

communication bandwidth of LTE networks. Consider a large area covered by 

surveillance systems. When the system captures an alarm, it immediately sends the 

information to the emergency responder. The time for executing the object-detection 

algorithm, compressing and transmitting the images, and generating the response must 

be minimized. Typically, the network bandwidth is scarce, and so the image-data 

transmission time can be unacceptably long. The second challenge stems from the 

requirement of continuous monitoring and detection. When dangerous events are 

detected, the captured images or videos must be promptly transmitted to the emergency 

responder. However, continuous transmission of the surveillance-image/video streams 

can consume excessive network bandwidth. Consequently, existing surveillance systems 

generally either perform the analysis on the cloud, or transmit the captured images or 

videos to the cloud for analysis. In the former case, the system cannot meet the tight 

latency requirement of emergency-response services; in the latter, it cannot operate 

continuously. Lastly, execution of state-of-the-art object-detection algorithms on IoT 

cameras may exceed the computing power of fabricated smart devices. 

7.2. Industrial Automation 

An essential step towards Industry 4.0 is the digitization of the manufacturing process 

with the aid of sensors, IoT, and deep learning, among others. These transformations 

form a highly connected, real-time changing factory that integrates all the pieces of the 

manufacturing process. In this context, certain visual concepts need to be addressed, 
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such as parcel and product identification, defect detection, person detection, and robotic 

grasping. 

The integration of artificial intelligence systems with human work has given rise to a 

new concept called Industry 5.0. This approach involves systems working alongside the 

worker, assisting with repetitive, laborious, and physically demanding tasks, thereby 

improving the workers’ quality of life and safety. AI cameras can also help measure the 

effectiveness of a production system by monitoring aspects such as product quality, 

worker performance, machine state, and waste. This monitoring enables predictive 

maintenance, minimizing the negative impacts of equipment failures. AI cameras can 

also measure the consumption of materials and fluids in real time, classifying them as 

necessary or wasteful. Information collected by AI cameras can be combined with other 

sensor data to respond quickly to unplanned events and ensure industrial safety. 

8. Case Studies in Object Detection and Image 

Segmentation 

The concurrent surge of Internet of Things (IoT) components, sensors, and connectivity 

technologies has ignited the use of computer vision. Smart surveillance, object locating 

and tracking, activity analysis and recognition, face recognition, autonomous vehicle, 

face identification, visual assistants, and various healthcare imaging applications are 

mostly related to object detection, image segmentation, and categorization. In recent 

years, object detection has become the foundation of image processing. A large number 

of deep learning methods for the object detection task have emerged. The recent growth 

in IoT devices has created an ever more connected and heterogeneous environment. The 

collecting, processing, and exchanging of data have changed the way people 

communicate and interact with each other. The growing number of detectors, sensors 

and generating data create massive amounts of data produced at the edge of the network. 

The expansion of applications for IoT systems, for instance, smart city and smart home, 

requires the integration of AI into IoT systems. 

High demand in AI performance results in additional computing power and higher 

latency during the inference process to achieve the quality of service from the cloud. 

Compared to the on-cloud approach, AI at the edge approach decreases service latency 

and network costs, increases data privacy, and can finish computing even when the 

connection between edges and the cloud is broken. On the other hand, inference on edge 

devices tends to be resource-limited due to the lightweight and smaller AI model 

requirements. Operations on compressed, low-quality images often degrade accuracy in 

the computer vision task by using models trained with high-quality images. The process 
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of creating synthetic images with a high visual quality is the fundamental problem for 

various image-processing applications. 

8.1. Autonomous Vehicles 

Autonomous Vehicles (AVs) represent a successful realization of the Internet of Things 

(IoT) vision. Connected to a continually growing network of other vehicles and road 

infrastructure, AVs are able to collect scans of their surroundings, make smart decisions, 

and plan their path within the environment [1,12]. Their contributions to safety, 

efficiency, and sustainability in urban and traffic domains are very well established, with 

reductions of accidents by up to 50%, fuel consumption by 15%, and increased road 

capacity by 25%. The principal objective of autonomous vehicles is to sense external 

conditions and make real-time decision-making. Driving involves a stream of decision-

making, linking the past with the present to make a plan for the near future. However, in 

an ever-changing environment, these decisions must be made moment by moment, 

without a pause, accounting for the current situation and temporal references. Prediction 

of the future is required for the success of these decisions, whether the future is moments 

ahead for factoring distance-shift in vehicles, or seconds in the near future for 

determining where a vehicle should head in a dense highway scenario. 

The primary objectives of different Advanced Driver Assistance Systems (ADAS) 

include maintaining the vehicle in the center of the lane, avoiding collisions with other 

vehicles and pedestrians, controlling the speed of the vehicle, and accurately predicting 

the state of the road and the presence of other external objects. However, accurate 

prediction of the behavior of other agents may seem as though it will only be possible in 

the hypothesis of a fully autonomous scenario. Yet, prediction of the future is necessary 

even if the vehicle is not being driven by a fully autonomous system. For example, 

whenever a vehicle changes a lane in a highway or city traffic scenario, it would be 

natural and plausible for the driver to look into the mirror to check if changing lanes is 

possible without causing accidents. This type of evaluation requires a sense of the future, 

asking the questions: will the other vehicles on the road be in this predicted position? 

What trajectory or path are they projecting? Why is the other vehicle decelerating in 

front of me? Do the pedestrians look like they are in a hurry to cross the road? Is the 

vehicle indicating a turn? Is the bus slowing down for pick-up or for a stop? Many of 

these questions require future prediction; thus, understanding the current scenario is not 

enough, and optimal and safe driving requires knowledge of the possible future. 
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8.2. Smart Cities 

Smart City cities and towns use Internet of Things (IoT) sensors to collect their internal 

data to all share. AI at the edge can analyze the data that flows from the city and 

proactively take action to improve environmental conditions for its inhabitants. One area 

that has seen a lot of interest for Smart City applications is Object Segmentation. 

Semantic or Instance Segmentation of images from autonomous vehicles provides a 

holistic understanding of the scene. When applied to identify buildings with solar panels, 

environment agencies can strategize effectively on effective use of available space. Self-

driving cars can avoid pedestrians for safety, and avoid potholes and other damaged parts 

of the road. 

Smart traffic management for autonomous vehicles can also rely on instance 

segmentation results to detect the traffic signs and identify their status. Masks allow 

isolation of the traffic signs from the background, making it easier to apply pattern 

recognition techniques to determine the signs. Semantic segmentation can also be 

applied to medical images. Image segmentation is used to detect infected areas or 

anatomical features like blood vessels and organs. 

9. Ethical Considerations in AI and Computer 

Vision 

Computer vision and AI at the edge raise a number of ethical issues related to intrusive 

surveillance, racial or gender bias in algorithms, as well as other privacy and social 

concerns. Modern ethics require that such systems are implemented with proper security 

mechanisms, assure anonymity of subjects, include bias mitigation stages, and provide 

clear information to the public and authorities before use. 

The Internet of Things and associated Industrial Internet of Things can help democratize 

a whole sphere of Machine Learning and Object Detection Applications in Computer 

Vision. These interconnect societies, cultural events, the media, social relations, and 

even public and industrial services in a way that would not be possible without this 

technology. However, the deployment of computer vision algorithms in an IoT 

environment requires special attention to a set of challenges such as resource-constraint 

devices, low latency, regulatory compliance, issues of connectivity, security, and data 

privacy. 
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10. Future Trends in Computer Vision and AI at 

the Edge 

Artificial intelligence (AI), it will inevitably continue its conquest into other specific 

sub-areas of robotics and automation. A clear example of a trend that is already in motion 

is the implementation of AI techniques on mobile robots with a high level of self-

management, better known as drones. These aerial devices find their natural applications 

in disaster relief, surveillance, precision agriculture, forestry, and more. Except for 

multifactorial disasters, the use of AI in many of these tasks is generally to facilitate the 

intelligent control of these robots and thus reduce the workload of human operators. 

However, it is essential to highlight applications in smart cities such as maintenance, 

infrastructure monitoring, and waste collection. Even in situations like forest fires, AI is 

exploited to fly the drone in a «leader-follower» formation, reaching their destination 

faster. 

However, the AI revolution is not limited to robotic applications or automation. In the 

domain of smart cities or smart homes, the irresistible proliferation of diverse IoT and 

other mobile/portable smart devices with powerful sensing, computing, and 

communication capabilities has generated a new interaction pattern called the Intelligent 

Mobile Crowd Sensing (IMCS). The essential benefits of this interaction pattern are the 

low cost of sensing, the greater coverage area, and the diversity of data generated. On 

the other hand, the data generated by each node varies in nature due to the ad hoc 

deployment, heterogeneity, and autonomy of the devices. At the same time, there is a 

growing concern about data privacy at all levels, whether it is the transmitted information 

(location, bank information, preferences) or who the audience is. During this period, an 

urgent need for AI was born, not only to classify and analyze the massive information 

generated but also to address privacy and heterogeneity in the different collaboration 

scenarios. 

10.1. Edge Computing Innovations 

The concept of edge computing has existed for many years, but only recently has it 

gained widespread attention. The rapid growth of connected IoT devices, commonly 

seen in applications such as smart homes and smart cities, has led to an increase in the 

quantities of data, enabling new innovations based on pattern recognition. The challenge 

lies in implementing these tasks near the sensors, where the data is generated. Indeed, 

the sensors in an AIoT ecosystem provide the input necessary for AI models to learn 

how to recognize patterns in data, which allows IoT devices to provide decision-making 

support to end users. Examples include surveillance and monitoring applications in 
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buildings, community areas, airports, coastal and marine areas, roads, and highways. 

Other areas where the need for high-quality image/video analysis is growing are in robots 

and autonomous vehicles, such as self-driving cars. In these last examples, decision-

making support is crucial for the safe operation of these vehicles in publicly accessible 

environments. 

Common image/video analysis techniques include object detection and classification, 

image captioning, and image segmentation. These problems have been studied for 

several years, with initial attempts based on traditional computer vision algorithms that 

rely on the mathematical and statistical analysis of image and video pixel information to 

detect and classify objects or areas/regions of interest. With the recent advancements of 

deep learning and CNNs, the state of the art has shifted toward powerful algorithms that 

provide much better results, but with a high compute cost. To date, the high demand for 

high resources means that many of the edge devices are still employed as data-gathering 

and sensing entities, with processing and analytics services provided close to, but not at 

the edge, in fog computing nodes or cloud data centers. 

10.2. Evolving IoT Applications 

The Internet of Things infrastructure aims to connect numerous devices, vehicles, 

buildings, and other consumer products for data collection and communications. 

Connected security cameras, VICs, and traditional motion sensors collaborate to keep 

homes, offices, factories, and cities secure and protected. Other prominent adjacency 

applications include urban noise monitoring, overpressure detection in autoseismology, 

and protection of natural resources, such as forests, water resources, and green areas. 

One primary focus is the quality of collected data. 

With 24×7 active monitoring supported by dedicated sensors and data acquisition 

boards, the challenge is to understand the information needed for a specific security 

problem or needed to support decision making in complex circumstances. Sensors 

provide ample information, and cyber-physical systems (e.g., Internet of Robotic 

Things) act as sensing and performing units to complete different tasks (e.g., patrolling, 

protecting, helping) in the most challenging environments. Understanding the 

relationships between events detected by the sensors and the context of decision making 

to support responsive actions is fundamental when categorizing the data coming from a 

multitude of sources. 
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11. Conclusion 

This examination emphasized the intersection of computer vision and AI at the edge, 

key enablers of the paradigm shift brought about by IoT. After introducing computer 

vision, IoT, and AI at the edge, particular attention was paid to object detection, image 

segmentation, and generative models. The specific challenges for AI at the edge, 

including detection and segmentation, were then discussed, as was the use and 

implementation of AI at the edge in an IoT environment. Real-world examples for object 

detection and image segmentation were highlighted. 

Computer vision endows IoT sensor data with meaning and context, ushering in true 

artificial intelligence within the IoT paradigm. Object detection pinpoints regions of 

interest, enabling the system to recognize vehicles, persons, dangerous or non-compliant 

behavior, fires, and more. Image segmentation introduces pixel-level accuracy, further 

detailing current conditions. Generative models complement the two by concealing 

identity in camera images while still providing analytical capabilities. The constraints of 

the IoT landscape demand inference in near real time very close to the camera, a task 

fraught with challenges but critical for a broad array of IoT applications. When the sensor 

is also the computer, AI at the edge makes the AIoT. 
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