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1. Introduction to Machine Learning 

Machine learning is a branch of artificial intelligence. It enables computers to 

automatically learn and improve from experience without being explicitly 

programmed [1]. Machine learning algorithms are usually classified into 

supervised, unsupervised, neural network-based, and reinforcement learning 

methods. Supervised learning methods build a mathematical model from a set of 

data that contains both the inputs and the desired outputs. The model is studied 

to predict the output values for given inputs [1-2]. These methods can also be 

used to find patterns (usually called classes) in data and assign new data points 

to one of the predefined classes. The goal of unsupervised learning is to find 

meaningful patterns in a set of data points that correspond closely to some 

intuitive notion of similarity. Neural network-based methods belong to the class 

of algorithms inspired by biological neural networks [2-4]. Neural networks 

replace a simulated neuron's simple threshold function with a real-valued 

differentiable function that gives the neuron the ability to output a real number. 

Reinforcement learning is an area of machine learning concerned with how an 

agent should take actions in an environment to maximize a reward signal. 
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2. Supervised Learning 

Because of its ability to predict the outcome of never-seen-before data with 

various uncertainties, supervised learning is the most popular paradigm of 

machine learning. The objective in supervised learning is to achieve the best 

possible prediction performance on explanatory unlabelled testing data [5-6]. 

Linear regression is a classical algorithm for indicating the relationship between 

a scalar dependent variable y and one or more explanatory variables denoted 

together as a vector x in the form y = w⋅x + b, where w and b are respectively the 

weight vector and the bias term. For a classification task, logistic regression 

employs a logistic transformation of the linear-regression formulation to 

represent the conditional probability of a certain class label y for an input x in a 

binary format. Provided with a set of explanatory variables, decision trees rely 

on thresholds to divide data into categories. Based on the concept of decision 

trees, random forests utilize several individual decision trees to solve a problem 

and first classify the input to the determined label by majority voting and then to 

the mean value in regression. The other useful supervised-learning algorithms 

include support vector machines (SVMs), artificial neural networks (ANNs), 

Gaussian processes (GPs), gradient boosting decision trees, and so on. 

2.1. Linear Regression 

Linear Regression is a supervised machine learning algorithm for predicting the 

value of a continuous target variable from multiple predictor variables. It belongs 

to the category of supervised learning, where the algorithm is trained on labelled 

data—in this case, a set of points on a graph—and used to estimate the 

relationships between the predictor variables and the target variable. The basic 

model assumes that the target variable y can be expressed as a linear combination 

of the predictor variables x₁, x₂, ..., x_p, weighted by coefficients β₁, β₂, ..., β_p 

and shifted by an intercept β₀: 

y = β₀ + β₁ x₁ + ... + β_p x_p + ε 

where ε represents the residual error, the difference between the predicted value 

and the true value. 
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Fig 1 . Linear Regression 

The coefficients in a linear regression model are of interest because they provide 

insight into the importance of each predictor variable in relation to the target 

variable. The goal in training is to find the set of coefficients β that minimizes 
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the residual error on the training data. This optimization is usually performed by 

minimizing the sum of the squares of the residual errors, known as the loss. 

2.2. Logistic Regression 

Although termed "logistic regression," this algorithm is largely employed for 

classification rather than regression. Logistic regression is designed for 

categorical dependent variables, typically dichotomous with two classes—

though it can be adapted for multiple classes. The sigmoid function maps any real 

number input to the (0,1) interval, making it suitable for expressing a probability. 

Logistic regression can also be viewed as a single-layer neural network with a 

sigmoid activation. Cross-entropy, a measure reflecting the difference between 

predicted and actual labels, serves as the loss function, quantifying how observed 

labels diverge from the predictions. 

The sigmoid function σ is defined by σ(z) = 1/(1 + e^{−z}). Logistic regression 

is well suited for the supervised classification of labeled data—where each data 

point is paired with a corresponding label—and can be trained with gradient 

descent. Unlike linear regression, which employs mean square error as a loss 

function, logistic regression uses cross-entropy, defined as L = −∑_i[o_i log(p_i) 

+ (1 − o_i) log(1 − p_i)], where o_i represents the observed label and p_i the 

predicted probability. 

2.3. Decision Trees 

Decision trees constitute a methodology for supervised learning. Using a 

recursive partitioning procedure, they identify homogeneous sets of cases, 

whether classification categories or regression values, on the basis of a set of 

predictor variables [7,8]. Their decision tree analogy stems from the fact that they 

recursively split the predictors into two or more child nodes until the point that 

not enough data remain to continue. The algorithm then assigns a class to a child 

node (for classification) or a value (for regression). 

These algorithms prove easy to understand, interpret, and implement with 

different types of variables for both classification and regression [9-12]. They are 

fast and involve only a small fraction of predictor variables at each split in the 

tree-building process. Although binary splits remain the most common, some 

algorithms search for splits into three or more child nodes. Besides that, they do 

not require any feature standardization [7,13-15]. Because of their relative 

simplicity, individual trees rarely provide the most accurate predictor. To tackle 

this shortcoming, ensemble models such as random forests and gradient boosting 

combine multiple trees into more accurate, robust predictors. 
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2.4. Random Forests 

The Random Forest algorithm is an ensemble learning model based on Decision 

Trees. It operates by constructing multiple Decision Trees during training and 

combining their outputs—either through majority voting for classification tasks 

or by averaging for regression problems. Random Forests excel in handling both 

regression and classification problems, facilitating tasks from medicine to stock-

market predictions, while also providing insights into feature importance [9,16-

18]. 

The algorithm enhances the basic Decision Tree by adding a bagging technique. 

It generates subsets of the training data by sampling with replacement, ensuring 

each subset contains samples from all classes. The training subset for each tree is 

typically 70% of the data, with duplication ensured through sampling with 

replacement. Subsequently, a tree model is fitted on each constructed training 

subset, with the final output derived by merging predictions across all trees. 

3. Unsupervised Learning 

Algorithms belonging to the Unsupervised Learning family do not require 

training data with labeled outcomes. They are useful in circumstances when one 

wishes to discover structure and patterns in the data. Typically, these algorithms 

are applied to clustering and dimensionality reduction problems. 

A clustering technique such as K-means creates disjoint groups of data points 

based on a distance measure. Each data point belongs to the cluster with the 

nearest mean in the feature space [2,19-20]. Hierarchical clustering organizes 

data points in a multi-level hierarchy, which can be represented by a dendrogram. 

The dendrogram can be cut to obtain the desired number of clusters. In the 

reducing dimensionality paradigm, principal component analysis (PCA) 

transforms the data variables into a new feature space defined by a set of 

orthogonal axes, along which the data variance is maximized. 

3.1. K-Means Clustering 

K-Means Clustering is perhaps the algorithm most simply and classically 

associated with unsupervised learning. It is a centroid-based clustering technique 

that attempts to discover clusters that minimize within-cluster distance and 

maximize between-cluster distance. Algorithmically, K-Means seeks to find k 

groups in the data, where k is several clusters predefined by the user. 
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Fig 1. Unsupervised Learning 

 

K-Means Clustering is relatively simple and straightforward to implement, but it 

is not without pitfalls. The number of clusters needs to be known in advance, 

making K-Means unsuitable for applications where explorative cluster discovery 

is the goal. It is also susceptible to the problem of local minima due to a 

suboptimal initialization. Several other issues plague K-Means; the algorithm 

performs badly on clusters with varying sizes, densities, and non-globular shapes. 

3.2. Hierarchical Clustering 

Hierarchical clustering produces a nested series of partitions, resembling the 

structure of a tree. A root cluster includes all objects, and the leaves each contain 

one object only. Each cluster that is not a leaf is a parent of other clusters [9,21-
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23]. The parent is a superset of its clusters. Hierarchies are displayed in 

dendrograms. 

There are two types. Agglomerative hierarchical clustering is a bottom-up 

approach. Every observation on its own is a cluster. Pairs of clusters are merged 

as one moves up the hierarchy. Divisive hierarchical clustering is a top-down 

approach. All observations start in one cluster, which is recursively split as one 

moves down the hierarchy. The latter procedure is not much used though, as it is 

Harder to compute. Nevertheless, it allows the use of arbitrary distances. 

Indifferent to the linkage criterion, agglomerative hierarchical algorithms possess 

the locality property in the sense that decisions are irrevocable: Once two clusters 

have been merged, this cannot be undone in subsequent iterations. This causes 

the extrema linkage methods to be sensitive to anomalous points. Complete 

linkage tends to produce compact clusters. It reduces the effect of anomalous 

points, but it is still sensitive to noise. Single linkage can follow concavities or 

holes in the data [24-26]. However, it is also sensitive to anomalous points and 

tends to produce elongated clusters. 

3.3. Principal Component Analysis (PCA) 

A special case of Linear Discriminant Analysis has been Principal Component 

Analysis (PCA), which is, however, not a classification method but addresses 

dimensionality reduction. In many contexts, particularly those addressed by 

unsupervised learning techniques, data points are labelled. Principal Component 

Analysis also falls under this category and has several applications. The goal of 

PCA is to represent the data graphically and to reduce the dimensionality (the 

number of features) by removing redundant features. It achieves this by 

projecting the original n-dimensional dataset onto a k-dimensional space, where 

k < n, in a manner that the greatest variance by some projection of the data lies 

on the first coordinate (called the first principal component); the second greatest 

variance—as orthogonal to the first principle component as possible—on the 

second coordinate; the third greatest variance on the third coordinate; and so on. 

The resultant k-dimensional feature subspace will be made up of a set of k derived 

features, called the principal components [8,27-30]. 

PCA searches for the directions of maximum variability in high-dimensional data 

and projects the data onto a smaller-dimensional subspace while retaining most 

of the information. For example, in two-dimensional data, the first Principal 

Component (PC1) defines the first axis of maximum variance, and the second 

Principal Component (PC2) has the second largest variance under the constraint 

of being orthogonal to PC1. Figure 4 below shows the representation of the first 
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two components in PCA. This projected data can then be used in machine 

learning algorithms to achieve the benefits listed above. No information is lost 

when k = n, but by selecting k such that k < n, dimensionality reduction is 

completed by minimizing the loss of information. 

4. Neural Networks 

Deep learning techniques have come to dominate many applications of machine 

learning. Despite early exploration by researchers such as Hubert Dreyfus, who 

also highlighted significant limitations, the field continued to grow. The 

introduction of convolutional neural networks (CNNs) saw a resurgence of 

interest, and sequences of recurrent neural networks. More recently, the 

transformer architecture became the main deep learning model for natural-

language processing [9,31-33]. 

Neural networks are deeply connected with two other important groups of 

machine-learning algorithms. Backpropagation is the fundamental algorithm for 

training neural networks. Reinforcement learning trains an agent within an 

environment to maximize its reward; when agents are represented by neural 

networks, the corresponding sub-field is called deep reinforcement learning. 

4.1. Introduction to Neural Networks 

Three main categories of artificial neural networks are currently in use, but these 

are bestconsidered subcategories of the broad family of machine-learning 

algorithms, since they lie at thecore of the more famous deep learning machine-

learning methods. Although their architecturesand properties vary, all artificial 

neurons operate in a similar fashion: a neuron accepts multipleinputs and 

produces a single output, guided by a corresponding output function [34-36]. 

Supervised learning algorithms generate predictive models for labeled training 

data; hence, theycan locate patterns within the training examples but not in the 

properties of the examples themselves [3,37-39]. Similarly, unsupervised 

learning methods find patterns within the properties of the training setrather than 

within the data examples. In the reinforcement-learning approach, the learning 

agentcan adopt various heuristic policies toward solving the problem. In turn, the 

agent developsstrategies that optimize the summed reward for sequential 

decision-making, within an environmentthat can be fully or partially observable. 

A summary of choices in reinforcement learning isgiven, before introducing a 

second main category of machine-learning algorithms—the artificialneural 

networks—as a precursor to the section on Q-learning. For a detailed study, see. 
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4.2. Deep Learning Techniques 

Convolutional Neural Networks Convolutional Neural Networks (CNNs) are a 

powerful type of neural networks widely and successfully used in image 

processing and computer vision. Mathematically, CNNs perform an 

approximation of a function f : , where the output is a multidimensional 

classification or regression. CNNs are designed to take advantage of 2D structure 

of the input data and use fewer parameters compared to fully connected networks. 

The major modification that differentiates CNNs from fully connected networks 

is the neural architecture. Tensor inputs are connected with filters that slide with 

intervals of 1 over the image followed by nonlinear activation layers. Every 

activated unit generates a single value for a specific region of the image and 

therefore produces an activation map where the activations represent detected 

features from the image. Stacking several layers of these feature detectors allows 

the model to discover the structure and representation of the image automatically. 

In addition to convolutional and nonlinear layers, there are also pooling and fully 

connected layers. Pooling layers lower the dimensionality of feature maps 

produced by detectors, while also keeping the most important information. In this 

way, pooling layers help to reduce memory and computational cost. Fully 

connected layers can still be included in CNNs and are located as the last layers 

of the models [36,40-42]. The softmax function at the last layer creates a score 

distribution over the output classes. 

Recurrent Neural Networks Recurrent Neural Networks (RNNs) are a powerful 

neural architecture widely used in Natural Language Processing (NLP) and 

speech recognition. The recurrent structure is what makes an RNN different from 

a feed-forward network. The output depends not only on the input data at a given 

step but also on the previous step’s output. The information is passed from the 

past to the future in a directed cycle (hence the temporal nature of RNNs). This 

directed cycle allows for the strong modeling of sequential data. 

4.3. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a particular type of neural network 

distinguished by the incorporation of one or more convolutional layers. These 

layers are inhospitable to inputs of arbitrary size. Thus, although fully connected 

networks can operate only on fixed-size inputs, Convolutional Neural Networks 

can be applied to inputs of diverse sizes, provided they contain at least one 

convolutional layer [40,43-44]. 

Convolutional layers were introduced to recognize features at spatial locations in 

the input image. This property is called spatial invariance—the ability to detect 
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the same feature, irrespective of its location. Spatial invariance arises from two 

attributes of convolutional layers: sparse connectivity and parameter sharing. 

Sparse connectivity significantly reduces the number of parameters in 

convolutional networks, enabling the construction and training of deep 

architectures without overfitting. Parameter sharing implies a translation-

equivariant property or shifting property—shifting the input results in a 

corresponding shift in the feature maps. 

4.4. Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a class of artificial neural networks in 

which connections between nodes form a directed graph along a temporal 

sequence. This structure allows RNNs to exhibit temporal dynamic behavior. 

Unlike feedforward neural networks, RNNs can use their internal state (memory) 

to process sequences of inputs, making them applicable to tasks such as 

unsegmented connected handwriting recognition or speech recognition. 

In a standard RNN architecture, one or more hidden layers communicate among 

themselves through directed connections aiming to remember temporal 

sequences. The RNN may also have directed connections from the last hidden 

layer back to the input layer, allowing richness in the state model; however, 

hidden layers are usually connected back only to themselves, forming a self-loop 

that propagates information through time [3,45-48]. 

4.5. Transformers 

The name Transformer derives from the architecture introduced in the seminal 

2017 article by Vaswani et al. Transformer model captures similar context as a 

Bi-directional RNN can, but it can be trained more transparently and efficiently. 

The model is designed to transform one sequence into another through an 

attention mechanism that relates different positions of the input and output 

sequences, without relying on sequence-aligned RNNs or convolution. 

A key point of a model based on self-attention is that all convolutional operations 

over the sequence used to compensate for the lack of sequence-alignment and 

caching in Transformer are eliminated, resulting in reduced training times. The 

Transformer architecture is divided into an encoder and a decoder, like the 

sequence-to-sequence model. Vanishing gradients in deep neural networks can, 

in principle, make them very hard to train [5,19,49-50]. Residual connections 

enable the model to maintain both the same distribution across all layers and 

allow lower layer representations to flow through the network. Batch 

Normalization uses the information learned from the dataset, helping the model 

to converge faster in deep neural networks. 
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4.6. Backpropagation 

In the late 1980s, several networks shaped the development of deep learning 

techniques. Convolutional Neural Networks (CNNs) became the only deep 

learning method specializing in two-dimensional data, such as pictures and video. 

Recurrent Networks (RNNs) had loops in their structure, making them suitable 

for utilizing earlier information to influence later outputs in sequence data like 

speech or sentences. By 2017, Transformers evolved based on sequence-to-

sequence models. 

The Backpropagation algorithm, a supervised learning method suitable for 

training feedforward networks, existed prior to the development of deep learning. 

It is referred to as the fundamental algorithm for deep learning. 

Reinforcement Learning 

Deep reinforcement learning utilizes neural networks and backpropagation 

within the reinforcement learning framework [29,51-53]. 

Backpropagation 

The algorithm, developed independently in the early 1960s and 1970s under the 

names "symmetric backpropagation algorithm" and "backpropagation of errors," 

targets feedforward neural networks using supervised learning. Indeed, it 

propagates backward the errors or differences between expected labels and 

outputs. 

5. Reinforcement Learning 

Reinforcement learning deals with training agents to make sequences of 

decisions in pursuit of a goal. An agent interacts with an environment, making 

observations through a set of precepts. Based on its current observations and 

experience, an agent will perform an action that will influence the state of the 

environment and lead to a state transition. An agent’s goal is to maximize the 

expected return, or, more informally, the amount of reward it experiences (Sutton 

and Barto 2018). 

Markov decision processes (MDPs) provide a mathematical framework for 

modelling decision making in situations where outcomes are partly random and 

partly under the control of a decision maker. In reinforcement learning, the 

decision maker interacts with its environment through actions and receives 

feedback from the environment in terms of rewards. MDP algorithms find the 
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best actions to maximize the expected long-term cumulative rewards. The agent 

uses MDPs to model a sequential decision-making process. Q-learning is a 

popular algorithm for model-free reinforcement learning [54-56]. It computes an 

optimal action-selection policy to reach the maximum future discounted rewards 

by learning the action representation value Q from the previous experience. 

Policy gradient methods take a policy as a parameterized distribution and perform 

gradient ascent on the expected return. These methods have been widely applied 

to many learning tasks in spoken language understanding, computer vision, and 

natural language processing. 

5.1. Markov Decision Processes 

Reinforcement Learning is a paradigm in machine learning in which an artificial 

agent is trained by interacting with the provided environment, to accomplish a 

given objective. The agent needs to learn a mapping from states to actions which 

maximizes the cumulative reward. The central question is how to learn a good 

mapping to maximize the long-term cumulative reward, when the model does not 

know what the model of the environment is. 

The Markov Decision Process is a formal mathematical concept that is used for 

modelling decision making situations when the outcomes are partly under the 

control of the agent and partly stochastic. It provides a foundation for many 

results in the domain of reinforcement learning. A Markov Decision Process is 

defined as a tuple (S, A, P, R), where S is a set of states, A is a set of actions, P 

is the set of transition probabilities and R is the reward function. A policy is a 

mapping from states to actions, and the objective is to find the policy which 

maximizes the expected sum of discounted rewards obtained in the long run, i.e., 

the optimal policy. 

5.2. Q-Learning 

Reinforcement learning is a machine-learning paradigm in which agents learn to 

make sequences of decisions. An agent takes actions in an environment that 

ultimately maximizes a specified reward signal (feedback) and tries to predict 

actions and them 

5.3. Policy Gradients 

Policy gradient methods differ from Q-learning techniques in the way that they 

explicitly define and optimize the policy. Instead of learning a value function, 

policy gradient approaches adjust the parameters of a policy represented by π_θ(a 

| s). The objective is to find parameters θ that maximize the expected cumulative 

reward J(θ) by applying some gradient update rule. 
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With the policy gradient theorem, a mathematically tractable gradient estimator 

for J(θ) can be derived and used together with gradient ascent methods. The aim 

of policy gradient methods is to tune the parameters θ of a policy π_θ(a | s) that 

directly maps states to actions, optimizing a performance measure J(θ). This 

performance measure is defined as the expected sum of discounted rewards over 

an episode: J(θ) = E_{τ ∼ p_θ(τ)} [r(τ)] = ∑_{t=0}^T E_{s_t, a_t ∼ p_θ(s_t, 

a_t)} [γ^t r(s_t, a_t)], where τ represents a trajectory. Applying the logarithmic 

derivative trick allows the gradient of J(θ) with respect to θ to be expressed as an 

expectation over trajectories involving the gradient of the log-policy multiplied 

by the returns. Although unbiased, this estimate can suffer from high variance; a 

baseline function b(s_t) is typically subtracted from the returns to reduce variance 

without introducing bias. 

6. Comparison of Learning Methods 

Machine Learning Algorithms differ from one another due to different strengths, 

weaknesses, and appropriate applications. The following sections summarize 

these differences. 

Supervised Learning Algorithms predict or classify future or previously-unseen 

examples, based on labelled examples. Unsupervised Learning Algorithms find 

clusters and latent factors among their examples. Neural Networks and 

Reinforcement-Learning Algorithms interact with the environment in a 

sequential manner. They choose an action, observe the reward for it, and update 

their parameters accordingly. Comparing the quality of algorithms across these 

different methods amounts to comparing apples and oranges. 

7. Applications of Machine Learning Algorithms 

The diverse algorithmic landscape of machine learning enables its application 

across a multitude of domains. Perhaps the broadest classification scheme 

distinguishes algorithms by learning style, resulting in four categories: 

Supervised, Unsupervised, Neural Networks, and Reinforcement. Subcategories 

within the third and fourth often leverage Deep Learning techniques [5,6]. 

Supervised learning algorithms use knowledge of the category or numerical 

values of input data to build discriminant functions. The results then classify 

unknown input. Supervised techniques seek predictability in labelled data as a 
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basis for classification and prediction. Unsupervised methods strive to discover 

hidden structures that may exist in unlabelled data, concentrating on data 

description and data abstraction. The dominant functions implemented by 

unsupervised algorithms include clustering and dimensionality reduction. 

 

Fig 1. Machine Learning Algorithms 
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8. Challenges in Machine Learning 

Multiple challenges complicate the use of machine learning. The selected model 

and methodology heavily influence its success and precise outcomes. The field 

has evolved in response to specific needs, with varying solutions developed by 

researchers and practitioners. As machine learning applications become more 

widespread, new users with limited expertise may find it difficult to keep pace 

with developments across all categories and domains. 

Other obstacles are inherent to the applications themselves, such as the 

availability of appropriately formatted data with sufficient characteristics and 

quality to build accurate and robust models. Strong changes and trends 

periodically impact learning algorithms, including the need for precise 

interpretability, noise reduction, robust and scalable models, and the integration 

of prior knowledge for lifelong, transfer, and semi-supervised learning. 

9. Future Trends in Machine Learning 

Despite the significant research efforts in the past decades, machine learning is 

far from being solved. In fact, future trends have been already identified within 

the broader field of data analysis and computer-science problems. Together with 

the gradual elimination of formal methodologies that aim at fitting probability 

distributions—not only the normal ones—but also nonparametric types, more 

and more learning methods are emerging for overcoming architecture problems; 

for analysing many data; for developing generalizations and abstraction 

capabilities; for increasing the ability to find sensitive patterns among the features 

during the training phase; finally, for making the best use of prior knowledge 

incorporated in the training phase [7,9]. Furthermore, hybrid solutions have been 

also proposed for exploiting the best components of different learning methods: 

It is likely that many other hybrid combinations will be developed in the future 

for facing still unexplored problems. 

Hybrid algorithms are often used for solving language modelling problems in 

speech recognition. According to this principle, language models should be 

learned by hybrid probabilistic automata–probabilistic neural networks 

combined with a very-long-memory mechanism for storing the recent context of 

the conversation, which is necessary for calculating the exact transition 

probabilities. Other interesting directions have been proposed for actively 

training different neural networks for different problems in different time. This 
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type of architecture is particularly suited to multiple speech recognition 

problems, where different neural networks are devoted to different speakers, 

whose recognition difficulty varies in time. 

10. Conclusion 

Machine learning algorithms have root in computer science, mathematics, and 

statistics. The first algorithm discussed appears in Computer Methods for 

Mathematical Computations by Forsythe, Malcolm, and Moler, published in 

1977. Many other algorithms were developed by researchers in computer science 

and statistics over the following decades. Since the adoption of the name “deep 

learning” in 2006, the field has been dominated by study of neural networks. 

The body of work is organized by the four primary machine learning categories. 

Supervised Learning defines the most popular models presenting Linear 

Regression, Logistic Regression, Decision Tree, and Random Forest. 

Unsupervised Learning presents the models used for clustering and dimension 

reduction through K-Means, Hierarchical Clustering, and Principal Component 

Analysis. Deep Learning Techniques summarizes the development of 

Convolutional Neural Networks, Recurrent Neural Networks, and Transformers. 

Backpropagation, the fundamental algorithm used to train neural networks, is 

also explained. Reinforcement Learning then defines the agent-environment 

interaction from a Markov Decision Process, presenting Q-Learning and Policy 

Gradients as the most popular methods for deciding behaviour. Each category − 

Supervised, Unsupervised, Deep Learning, and Reinforcement − are then 

compared. 
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