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Abstract: Digital twins, virtual replicas of physical systems, combine real-time data, advanced 

analytics led by Artificial Intelligence (AI) to improve operations, forecast failure and create new 

products. Digital twins add value to manufacturing processes using smart automation in the 

industry 4.0 era and this aids predictive maintenance, real-time monitoring, and integration of 

Internet of things (IoT) devices. This results in more throughput, less down time and saves a bundle 

of money. Automation is easing transitions into Industry 5.0, where digital twins will further 

human-machine collaboration through individualized manufacturing and worker safety. With AI 

and robotics, digital twins can adaptively learn and interact between users and machines, enabling 

a high-rate of innovation and customization. If the concept of digital twins can be further broadened 

to social systems., such as individual people and industrial systems in Society 4.0 becoming part 

of Society 5.0, this eventually leads to a concept of Society 5.0. Healthcare applications includes 

digital twins of human patients for personalized medicine and continuous health monitoring and 

predictive maintenance of health. In addition, digital twins help to improve environmental 

sustainability by simulating ecosystems and forecasting the effects of global climate change for 

strategic planning on wildlife conservation. Digital Twins in association with AI, IoT, Big Data 

analytics catapult the road from Industry 4.0 to Society 5.0 The integration of these systems not 

just improve industrial productivity, rather it also helps the society to uplift their living standards 

and contribute to building a sustainable and smart future. 
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3.1 Introduction  

Digital Twins provides a sophisticated technology used in industry that enables a physical 

object to be represented dynamically in a digital space and simulated this way, for the 

purpose of being able to predict future maintenance scenarios and to reduce production 

friction through optimization (Javaid et l., 2023; Su et al., 2023; Wang et al., 2024). With 

industries moving towards Industry 5.0 human centric solution becomes, mixing human 

intelligence and creativity, along with sophisticated tools (Leng et al., 2023; Wang et al., 

2024; Rane et al., 2024a). Digital Twins in this view enable enhanced human-machine 

collaboration that will promote innovation with sustainable calibrations (Wang et al., 

2023; Papacharalampopoulos, et al., 2023). Information derived from Digital Twins can 

be used to create smarter cities, healthcare, and public services ensuring higher quality of 

life, making digital twins a foundational element in urban planning (Utku et al., 2023; 

Kataria et al., 2024; Paramesha et al., 2024a). Digital Twins with a virtual face of the 

physical systems intend to allow us to take data-driven decisions, a new height to mitigate 

societal challenges and enable balance between the technology and the human values. 

This study adds to the collective of knowledge by performing a detailed literature review 

and highlighting the main themes and tendencies of Digital Twins in regard to Industry 

4.0, Industry 5.0 and Society 5.0. This research takes advantage of methodologies namely 

keyword analysis, co-occurrence mapping, as well as cluster analysis to systematically 

classify and understand the growing narrative on Digital Twins. The results shed light on 

the versatility of Digital Twins in various fields and offer the transformative power they 

contain, as well as guide the focus of future research. This detailed study reveals the 

cutting-edge research as well as provides insights into academic and industry practices 

that would enable exploitation of Digital Twins in advancing both industrial and societal 

paradigms. 

3.2 Methodology 

The searched academic databases include Scopus, Web of Science, and IEEE Xplore with 

certain keywords in the topic such as "digital twins," "Industry 4.0," "Industry 5.0," and 

"Society 5.0." However, the inclusion criteria were limited to peer-reviewed journal 

articles, conference papers and book chapters relevant to the field of study. Based on the 

relevant literature extracted, a co-occurrence analysis was conducted using VOSviewer 

software. It consisted of an extraction of keywords from the titles and abstracts of the 

selected papers in order to identify this most repeated terms and how they relate. The 

network was then processed to provide an overview on the predominant topics and 

patterns of the field of research. The underlying themes that emerged within the clusters 

were analysed in terms of associated relevance to digital twins in the contexts of Industry 

4.0, Industry 5.0 and Society 5.0. 
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3.3 Results and discussions 

Co-occurrence and cluster analysis of the keywords 

The node of interest is “industry 4.0”, clearly indicated by the use of red shading (Fig. 

3.1). Industry 4.0 signifies the current trend of automation and data exchange in 

manufacturing technology, which include cyber-physical systems, IoT, and cloud 

computing. The vast number of connections is a demonstration of its centrality and wide 

implication and application areas. The closely related nodes include “digital twin. 

Artificial intelligence,” “machine learning,” and “IoT.” The short distance from these 

other nodes means that the development and growth of industries require the technologies 

interpreted by the terminologies. Digital twins feature prominently in the expanded view 

of the node of interest, indicating its value and significance. The key reason for its 

importance is the ability to provide real-time data and analytical insight, which 

revolutionizes decision-making and operation efficiency. The surrounding terminologies 

“life cycle,” “optimization,” and “performance” send a signal of the integration of digital 

twins to every aspect of the product lifecycle, from design to decommissioning. 

On the other side of the industry 4.0 cluster is a green cluster that focuses mostly on 

"cyber-physical systems" and "embedded systems". This cluster underlines the 

connection between computational algorithms and physical processes, which underlies 

the evolution of smart and interconnected industrial systems. Furthermore, the different 

terms used such as predictive maintenance, interoperability and network architecture 

indicate that communication, and maintenance of communication between the systems is 

critical to ensuring reliability and efficiency of the cyber-physical systems. In 'deep 

learning' and 'e-learning' also suggests a progression towards to increasingly more 

advanced learning algorithms and training systems to enhance the potential of such 

systems. 

The blue cluster shows the importance of connectivity and data exchange in modern 

industrial environments especially Internet of Thing (IoT) and industrial internet of things 

(IIoT), This class includes terms like, cloud computing, big data, and blockchain, 

illustrating how these technologies are leveraged for robust, secure, and scalable IoT 

networks. Calling this cluster "cybersecurity" is highlighting how vulnerable these 

interrelated systems are to cyber threats, and how increasingly valuable it is to secure. On 

top of that, reference to the "5G mobile communication system" is pointing to the fact that 

modern communication networks are instrumental in making the high amount of data that 

IoT generates deliverable. 
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Fig. 3.1 Co-occurrence analysis of the keywords in literature 

The amount of "artificial intelligence" and "machine learning" in the yellow cluster is 

likely to be a result of the industry cluster being where the emphasis in the importance of 

both terms also exists. Digital twin processes, along with the data producers such as IoT 

devices etc. are complex systems and require extensive use of these technologies to be 

functional. It is essentially data handling, data acquisition, and data analytics, showing 

how data-driven industries have become in the present era. The terms "virtual reality" and 

"augmented reality" might suggest that immersive technologies are used to enhance the 

visualization of and interaction with digital twin models, thus blurring the distinction 

between the virtual and the physical worlds. The concept of "Industry 5.0"-which is 

synonymous with human-centricity and sustainable development-is introduced within the 

purple cluster. This cluster connected to ideas of "supply chain management," 

"sustainable development," and "energy efficiency," that suggest a turn to greener and 
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more socially responsible forms of industry. The between intelligent robots and robotics 

indicates a continued role of automation but with more focus on collaboration between 

humans and machines for enhanced efficiency and innovation. 

The blue group represents the impact of digital technologies on the construction industry 

and engineering education. Digital twin technology and Industry 4.0 principles serve a 

wide spectrum of applications, much broader than traditional manufacturing - spanning 

construction and education - which are exemplified in this cluster. Making the cluster 

more engaging with words such as "engineering education" and "case studies", to educate 

individuals to make them future fit in the digital transformation age. The clusters are also 

present with a very smooth evolution from the core technologies of Industry 4.0 that are 

based on automation and data exchange, towards the industry 5.0 more interested about 

humans and the sustainable penetration. This validates the trend that has been gaining 

momentum, to consider technology advancements through a socio-environmental lens. It 

ensures that economic returns from digital transformation are more evenly shared in line 

with broader social objectives. 

 

Methodologies for implementing digital twins 

Technological Foundations 

The Internet of Things (IoT) is instrumental in providing the mechanism to connect 

physical assets to their digital twins (Al-Ali et al., 2020; Jacoby, & Usländer, 2020; 

Baghalzadeh Shishehgarkhaneh et al., 2022). Physical systems are instrumented by IoT 

sensors and devices, collecting huge amounts of data sent to the digital twin (Steinmetz 

et al., 2018; Baghalzadeh Shishehgarkhaneh et al., 2022; Paramesha et al., 2024b; Rane 

et al., 2024b). This real-time data is critical to having a correct, current digital 

representation. Another pillar of Digital Twin technology; cloud computing whereas the 

cloud offers the infrastructure required to store and process all of the data delivered by 

countless IoT devices. In addition, it enables scalability, whereby digital twin applications 

can become more complex and cover different scales without the need for physical 

machines. In addition, edge computing is more often being added to digital twin designs 

to help perform data analysis closer to where it actually resides, which helps cut latency 

and gives the digital twin trail real-time decision-making authority. To deep dive and 

process the collected data from digital twins one of the Key things is Artificial Intelligence 

(AI) and Machine Learning (ML) (Alexopoulos et al., 2020; Kaur et al., 2020; Ritto, & 

Rochinha, 2021; Paramesha et al., 2024c). The system determine behaviours and patterns 

which may not resonate logically on their own and recommend maintenance and 

efficiencies in areas where they are needed once the system and all its moving components 

are properly up and running. 
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Table 3.1 Methodologies for implementing digital twins 

Reference

s 

Methodolog

y 

Description Key 

Component

s 

Applications Benefits 

Stojanovic

, & 

Milenovic

, (2018); 

Hui et al., 

(2022); 

Bariah, & 

Debbah, 

2024); 

Shi, et al., 

(2024) 

Data-Driven 

Modeling 

Utilizes real-

time and 

historical 

data to create 

and refine the 

digital twin 

model. 

Sensors, IoT, 

Data 

Analytics 

Predictive 

Maintenance, 

Process 

Optimization 

Real-time 

insights, 

improved 

decision-

making 

Phanden 

et al., 

(2021); 

Ritto, & 

Rochinha, 

(2021); 

Somers et 

al., 

(2023); 

Rane et 

al., 

(2024c) 

Simulation-

Based 

Uses physics-

based models 

and 

simulations 

to replicate 

the behavior 

of physical 

systems. 

CAD 

Models, 

Simulation 

Software, 

Physics 

Engines 

Product Design, 

Performance 

Testing 

Accurate 

predictions, 

risk 

mitigation 

Kaur et 

al., 

(2020); 

Ritto, & 

Rochinha, 

(2021); 

Alexopoul

os et al., 

(2020) 

Machine 

Learning 

Employs 

machine 

learning 

algorithms to 

analyze data 

and predict 

system 

behavior. 

ML 

Algorithms, 

Training 

Data, 

Computation

al Resources 

Anomaly 

Detection, 

Predictive 

Analytics 

Automated 

insights, 

enhanced 

predictive 

power 

Lin et al., 

(2021); 

Yang e al., 

2022; 

Huang et 

al., (2023) 

Hybrid 

Approach 

Combines 

data-driven, 

simulation-

based, and 

machine 

learning 

Mixed 

components 

from other 

methodologi

es 

Complex 

Systems, 

Multidisciplinar

y Applications 

Comprehens

ive 

modeling, 

versatility 
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methodologie

s for 

comprehensi

ve models. 

Orozco-

Romero et 

al., 

(2020); 

Qiu, et al., 

(2023); 

Marah, & 

Challenge

r, (2023) 

Agent-Based 

Modeling 

Uses 

autonomous 

agents to 

simulate 

interactions 

and behaviors 

within a 

system. 

Agent 

Software, 

Behavioral 

Rules 

Urban Planning, 

Supply Chain 

Management 

Dynamic 

interaction 

modeling, 

scenario 

testing 

Bondaren

ko, & 

Fukuda, 

(2020); 

Gejo-

García et 

al., (2022) 

System 

Dynamics 

Focuses on 

understandin

g and 

modeling the 

feedback 

loops and 

time delays in 

complex 

systems. 

Feedback 

Loops, 

Dynamic 

Models 

Policy Making, 

Strategic 

Planning 

Holistic 

view, long-

term analysis 

Liu et al., 

(2021); 

Zhang et 

al., (2023) 

Process-

Oriented 

Models the 

workflow and 

processes of a 

system to 

optimize and 

simulate 

operations. 

BPM Tools, 

Workflow 

Software 

Manufacturing, 

Business 

Processes 

Efficiency 

improvemen

t, process 

optimization 

Wang et 

al., 

(2020); 

Wen et al., 

(2022); 

Almasan 

et al., 

(2022) 

Network-

Based 

Models the 

interconnecti

ons and 

dependencies 

within a 

network of 

components. 

Network 

Analysis 

Tools, Graph 

Theory 

Telecommunicat

ion, 

Transportation 

Systems 

Improved 

network 

reliability, 

optimization 

Karakra et 

al., 

(2018); 

Flores-

García 

Discrete 

Event 

Simulation 

Models 

systems 

where state 

changes 

occur at 

Discrete 

Event 

Simulation 

Software 

Logistics, 

Operations 

Management 

Detailed 

process 

analysis, 

resource 

optimization 
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(2020); 

Qiu et al., 

(2023) 

discrete 

points in 

time. 

Ugarte et 

al., 

(2022); 

Ugarte 

Querejeta 

et al., 

(2022); 

Wang et 

al., (2023) 

Virtual 

Commission

ing 

Simulates the 

commissioni

ng of systems 

to ensure they 

function 

correctly 

before 

physical 

deployment. 

Virtual 

Commission

ing 

Software, 

Simulators 

Industrial 

Automation, 

Robotics 

Reduced 

commissioni

ng time, 

early error 

detection 

 

 

Modeling techniques 

Physics-based modeling: 

Physic based models describe systems behaviour in terms of a set of physical laws and 

they use mathematical rule that define a system to predict the physical behaviour of 

system. These models are often accurate and can be useful in predicting how systems will 

respond to different conditions (Sun, & Shi, 2022; Rios, & Bolander, 2023; Paramesha et 

al., 2024d). For example, physics-based models for aerodynamics of an aircraft to help 

engineers finally carry out tests on various configuration design in a virtual world in 

aerospace engineering. Table 3.1 shows methodologies for implementing digital twins. 

Data-driven modeling: 

This type of model is data-driven which uses historical as well as real-time data to provide 

a predictive representation of the system (Bariah, & Debbah, 2024; Shi, et al., 2024). This 

data analysis work is frequently done with machine learning algorithms (Stojanovic, & 

Milenovic, 2018; Hui et al., 2022). It could be a powerful tool in scenarios where getting 

a comprehensive physical model is difficult or unfeasible. Data-driven models may 

optimize traffic flow in smart cities by making use of patterns derived from all sorts of 

sensors across city boundaries for instance. 

Hybrid modeling: 

As the name suggests, hybrid modeling is a combination of physics-based and data-driven 

modeling methods and takes advantage of benefits of both. This method can produce more 

general and accurate models, particularly in complex systems where either physics-based 

models or data-driven models (Lin et al., 2021; Yang e al., 2022; Huang et al., 2023; 
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Paramesha et al., 2024e). Personalized digital twins combining physiological models with 

patient-specific data are also being used to tailor treatments and predict health outcomes 

in the healthcare domain using hybrid models. 

 

Integration strategies 

Interoperability: 

Interoperability is important for the integration of digital twins with other systems and 

platforms (Jacoby, & Usländer, 2020; Schmidt et al., 2023). Standardized protocols and 

data formats make sure that digital twins communicate with IoT devices, cloud platforms, 

and enterprise systems.  

Application Programming Interfaces (API) -driven integration: 

Digital twins should interact and integrate all the other software applications and service 

hence it should be API based (Redeker et al., 2021; Redeker et al., 2022). APIs make the 

connection between the digital twin data from a third-party tool and actions to be 

triggered; standardizing the way for digital twins to consume and act on data. In the auto 

space, APIs permit digital twins of vehicles to speak to fleet management systems, 

relaying live statuses on performance and need for maintenance. 

Cybersecurity: 

With digital twins managing sensitive data and having the ability to impact physical 

systems, security is one of the priority areas and must be approached very carefully. It is 

and will be necessary to adopt strong cyber security measures such as encryption, 

authentication, and access control to protect digital twins from cyber threats. Regular 

security assessments and continuous monitoring also must be in place to recognize and 

solve vulnerabilities as they may arise. 

Scalability: 

For larger and more complex digital twins, scalability is of utmost concern (Monteiro et 

al., 2023; Jia et al., 2022). Historically, expanding digital twin applications required large 

hardware investments, but with cloud computing, a scalable infrastructure is available. 

On top of that, modular architectures allow for scalable change of a system piece-by-

piece, where new functionality, new components can be grafted in line without disrupting 

the older components. 

Real-time data integration: 
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Value realization from digital twins is rooted in real-time and predictive analytics. Real-

time data from sensors in IoT and other sources is integrated to ensure digital twins remain 

updated and accurately reflect the physical asset. Edge computing and real-time data 

streaming platforms make it easier to handle all fast moving real-time data streams. 

Digital twin platform for smart cities 

The framework of the digital twin platform (Table 3.2) provides an aggregated approach 

to management and optimization in urban environments. By integrating divergent data 

sources and applications, cities can improve their planning, sustainability, and operational 

efficiency. Combining technologies such as AI, machine learning, and real-time data 

visualization will give life to an interactive model of the city so that decisions are better 

made and urban services improved. 

Table 3.2 Digital twin platform for smart cities 

Category Components Description 

Applications Energy and Building 

Monitoring 

Real-time monitoring and management of 

energy use and building performance. 

Urban Planning Models and tools for effective urban 

development and land-use planning. 

Circular Economy and 

Sustainability 

Systems that assist or encourage recycling, 

resource efficiency, and sustainable 

practices. 

Traffic, Mobility, Fleet 

Management 

It consists of the management of 

transportation networks, the flow of traffic, 

and fleets of vehicles. 

Risk Mitigation and 

Water Management 

In disaster risk reduction and efficient water 

resource management. 

Pollution Monitoring Real-time monitoring of the extent of 

pollution and the level of environmental 

quality. 

Healthcare Service integration and monitoring for 

improved public health outcome. 

Digital Twin Platform Visualization It provides tools for data and model 

visualization, including 3D models, maps, 

and augmented reality. 
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Simulation Creation of digital simulations of physical 

processes and systems. 

ML/AI Machine learning and artificial intelligence 

for predictive analytics in decision support. 

Analytics Advanced analytics data in insights and 

decision making. 

DT Model Repository Centralized repository for digital twin 

models. 

Federation Integration of multiple digital twin systems 

and models. 

DT Edge Instance Edge computing for real-time data analysis 

and processing. 

Device Management IoT device and sensor management tools 

Data Storage Secure and scalable solutions for large data 

storage. 

Data Synchronization Ensuring consistency and real-time updates 

across data sources. 

Data Acquisition Buildings Building management systems, sensors, and 

IoT devices provide this data. 

Citizens Information that is collected from citizen 

interactions, surveys, and mobile 

applications. 

Open Data Publicly available datasets from 

governments and other sources. 

Infrastructure Infrastructural data from urban structures, 

roads, bridges, and utilities. 

Urban Services Data from services like public 

transportation, waste management, and 

emergency services. 

Physical World - It represents every real-world entity and 

data source that feed into a digital twin 

platform. 

Security - Ensuring data privacy, integrity, and 

protection across all components of the 

platform. 

 

The creation and management of digital models of buildings' physical and functional 

characteristics are issues that Building Information Modeling (BIM) mainly deals with. 
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In that respect, it holds hands with Industry 4.0, which insists on digitization for more 

efficiency and accuracy within manufacturing and construction processes. For instance, it 

optimizes the design and construction phases using 3D models with detailed data 

management and proper documentation. This makes Digital Twin technology much more 

than BIM, as it has combined real-time data and analytics in a digital platform that closes 

the gap between the digital and the physical world. This is important for Industry 5.0. 

Digital Twin enables real-time monitoring, predicts maintenance, and advances analytics 

in fostering operation optimization and innovation decision-making. And enhanced by 

machine learning and real-time data, it increases the adaptability and responsiveness of 

systems—entirely aligned to the goals set out by Industry 5.0 and Society 5.0. Digital 

Twin technology builds from the groundwork that BIM has laid with structured, 

interoperable data supporting the whole life cycle of assets from concept design through 

operation and maintenance to end-of-life. Inherent in this integrated concept is an 

increased gain of efficiency and sustainability while promoting a more connected and 

intelligent industrial and societal framework. 

Implementing digital twins in industry 

In Fig. 3.2, the stages of introducing digital twins into an industrial environment follow a 

sequence in a systematic manner moving from setting the goals to tracking and 

maintaining the digital twin. It starts with defining objectives which highlights the key 

parameters for why a company wants to use digital-twins and what is it going to be able 

to provide. The underlying conceptual setup guarantees that the implementations are in 

contribution with the organization's wider strategic objectives providing a clear sight of 

direction for the upcoming steps. Data collection includes collecting data from sensors, 

IoT devices, etc. This data provides the material for building reliable digital twins of real-

world objects. After data collection the data integration is responsible for making data 

from different sources together, as a one system.  

An important aspect of this integration is the creation of a trustworthy digital twin by 

integrating all necessary information into one complete model. This is followed by 

modeling, where models of physical assets and processes are digitalized. These models 

act as the digital twin, offering users a virtual representation to interact with and study. 

With the models in place, the next phase is simulation, using the digital twins to indicate 

the anticipated performance and outcomes in different conditions. These simulations 

facilities offer an invaluable way for testing and validation, without the need to interfere 

with real-world operations. Finally, optimization follows the simulation to use the 

knowledge that was obtained to improve processes and facilities. This step gears toward 

optimizing operations with the use of data to accelerate the business process, cut down 

costs, and elevate total output. During the implementation phase the solutions identified 
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during optimisation must now be deployed to real-world operations in such a manner that 

the benefits of the digital twin are successfully realized. The last stage is monitoring and 

maintenance, which simply tells us the fact of keeping track of digital twins and keeping 

them alive and useful. We continuously updating the digital twins to keep them relevant 

and effective - allowing for the continuous improvement and adaptation of the twins in a 

changing world, governed in part by the desire of the digital world itself. 

 

Fig. 3.2 implementing digital twins in industry 

3.4 Conclusions 

Digital twins are critical for Industry 4.0 advancements, which involve the creation of 

virtual replicas of physical assets, processes, and systems. By enabling predictive 

maintenance, optimising the manufacturing processes and monitoring the real-time, they 

have increased efficiency as well as reduced their operational costs. Industry 5.0 is making 

digital twins smarter to enable human-machine interaction and enable tailored and 

ecological manufacturing solutions. The combination of human-cantered methods 

alongside AI and Robotics enables a more pliable and resilient industrial biosphere. 

Digital twins are important elements for solving social challenges and building smart 

cities and public services in Society 5.0. This means, they make it possible to simulate 

urban scenarios, enhancing disaster prevention, transportation systems and energy 

distribution. Combining digital twins with IoT, AI and big data analytics is a much 

broader way to address societal development, finding a well-respected equilibrium 

between economic progress, personal and community well-being. The advancement in 
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digital twin evolution will continue to power innovation and scale resulting in a more 

intelligent, intuitive, and sustainable world. 
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