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Chapter 10: Case studies on successful applications of 

artificial intelligence in global agricultural practices         

10.1. Introduction to AI in Agriculture 

Agricultural practices have been around for thousands of years, yet our understanding of 

how to make it more productive, efficient and in sync with nature is still being examined 

and discovered in new ways. Application of innovations into agriculture aims to satisfy 

basic needs of mankind. Recent pushes like sustainable agriculture have emphasized the 

phrase ‘innovative application into agriculture’ to a new high. Our journey of 

capitalization, to serve 8 billion people of earth, from the age of hunter-gatherers to sky-

scrapers has relied heavily upon agricultural implications in all their forms. In that 

regard, these innovations into agriculture still hold a major share of economic resources 

and GDP of many nations, especially the developing ones. Conceptually, agriculture has 

become a multidisciplinary subject, compact covering ground for nano-sciences to space 

studies, having a large interface with social sciences, engineering and bio-sciences. With 

the pace of global population growth, the demand for food will be doubled within the 

next 3 decades and in addition to this, climate change poses a great risk to all farmers. 

New and innovative technologies would have to be made for our farmers so that they get 

enough data and inputs to produce food in a precise manner that satisfies the health 

communities as well as the trade communities. The advanced technologies like Robotics 

and artificial intelligence will become the main aristocrats behind these new and 

innovative technologies that will take agriculture out to space (Kamilaris & Prenafeta-

Boldú, 2018; Liakos et al., 2018; Li et al., 2020). 

Artificial Intelligence in Agriculture is poised to become the next revolution in 

agriculture which could further advance the agrarian roots cushioned in deep emerging 

technologies. AI refers to the simulation of human intelligence in machines that are 

programmed to think, learn and mimic human activities in attempt to tackle complex 

issues like unpredictability, adaptability, recognition and finally, global optimization. 

All of these challenges are quite common in most of the complexities faced in modern 

agriculture, be it pest-resilience in crops, climate-change and warming, security in food 
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trade or resource constraints that drive agricultural laborers into poverty. AI has wide 

acceptance in agriculture, encompassing plant genomics to pest identification by 

computer vision and deep learning enhanced drones, non-intrusive analysis coupled with 

prediction sciences in trimester soil testing, precision farming using robotics and 

automation, crop monitoring using remote sensing and UAVs, climate monitoring and 

forecasting to geospatial mapping and machine learning for marketing and insurance 

(Zhang & Kovacs, 2012; Wolfert et al., 2017). 

10.1.1. Significance of Artificial Intelligence in Modern Agriculture 

Abstract: Artificial Intelligence comprises a group of technologies which have the 

capacity to perform functions usually attributed to human intelligence. With its rapid 

progress, especially in recent years, due to the increase of computational power and the 

availability of big data, it is being incorporated into a vast number of economic activities 

all over the globe. The agricultural sector is no exception. There are high expectations 

for the incorporation of AI into agricultural activities. Particularly important are its 

anticipated impact on mitigating climate change; increasing productivity, efficiency and 

safety; ensuring food security; and contributing to rural development and poverty 

alleviation. Introduction to AI in Agriculture: Artificial Intelligence refers to a set of 

technologies which have the capacity to perform functions which are usually attributed 

to human intelligence, such as analysis, planning and decision-making, among others. 

AI is based on a series of algorithms, models and neural networks, some of their 

functions focused on deep learning, supervised learning, reinforcement learning, transfer 

learning, monthly variable and point-variable functions. Taken together, these 

technologies make it possible to collect and process large quantities of data and learn 

from it. The agricultural sector is no exception to this trend. There are growing 

expectations for the incorporation of AI to undertake agricultural activities, as AI is seen 

to have a substantial impact in areas such as: support for the fight against climate change; 

increased productivity and efficiency; improvement in food security and rural 

development; in addressing the problems of poverty and hunger; as well as in ensuring 

the well-being and safety of producers and workers. This sector is characterized by its 

dependence on natural resources and its potential influence on climate change. 

Agriculture contributes about 15% of world greenhouse gas emissions through 

deforestation, as well as methane and nitrous oxide emissions, while being one of the 

most vulnerable sectors to the effects of climate change, such as extreme climatic events 

and increased economic losses. 
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10.2. Overview of Global Agricultural Challenges 

Global agriculture must produce more food, feed, and fiber with fewer resources while 

sustaining the ecosystem. The four areas of primary concern are increasing food, feed, 

and fiber production as well as making it more nutritious and accessible to people; 

promoting high levels of resource use efficiency; conserving and enhancing the natural 

resource base; and increasing food, feed, and fiber productivity while reducing 

detrimental environmental externalities. Climate change is causing major disruptions in 

agriculture; populations are increasingly concentrated in urban areas, and this trend is 

expected to accelerate in the coming decades. In many countries around the world, 

efforts to relieve poverty by increasing access to food have resulted in only a temporary 

reduction in hunger. Furthermore, that reduction may be reversed as environmental 

conditions deteriorate. People who remain in poverty continue to rely heavily on 

agricultural resources; resources are being depleted faster than they can be renewed; and 

the growth and welfare of future generations are threatened. To compound the challenges 

of poverty alleviation, we must consider the rest of the world: As populations and income 

levels increase in the emerging economies, the demand for food, feed, and fiber is rising. 

These countries have the world’s fastest-growing need for energy and are massing 

pressure on freshwater resources. Their agricultural, energy, and trade systems all are 

highly vulnerable to disruptions in weather patterns. For poorer consumers, all over the 

world, demand for an improved diet will exert added pressure on global agriculture. 

10.2.1. Addressing Food Security and Sustainability Challenges 

The outcome of global agrarian practices has a direct impact on food security and the 

attainment of sustainability goals. The expansion of the global economy over the past 

decades has raised living standards in many parts of the world, resulting in a sharper 

increase in income inequality, especially in rural developing areas where most of the 

poor and food insecure people live. It has been realized that lost progress in poverty 

reduction and a growing demand for food could lead to renewed pressure to increase 

agricultural production. With the global population projected to reach 9.7 billion by 2050 

and 10.9 billion by 2100, the underlying demand for food will increase at a similar if not 

faster rate. Global demand for agricultural products is expected to rise by 70% in the 

next few decades. Across the world, there are 700 million people affected by hunger and 

poverty. 

Intensification through the global expansion of farming systems over the 1960s-1990s 

initially led to an increase in agricultural productivity and food supply. However, the 

increasing pressures on agricultural systems, and upon natural resource and ecosystem 

functions, from pollution, biodiversity loss, and climate change now put at risk sustained 

increases in agricultural productivity, and increased supply would not be possible 
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without concomitant environmental harm. To reverse this trend, there is a need to 

develop approaches that achieve productive and sustainable food systems without further 

jeopardizing the ecosystems that underpin agricultural productivity. The challenges of 

achieving increased agricultural productivity to support food security while reducing the 

negative impacts of agriculture on the environment, and thus contributing to achieving 

the SDGs for food security, poverty, and ecosystem health, have been referred to as a 

"triple challenge". 

In addition to the provision of food for current and future generations, farms and farming 

systems play many other roles for the multitude of services they provide. The provision 

of food from farming is one of the main services of agriculture. To deliver on this service, 

farm output per unit of land must at least match growing demand for food. Agriculture 

also fulfills a collection of other services, alongside the more familiar food, fiber, and 

fuel roles that could be called the more hidden services of agriculture. These hidden 

services are vital for the well-being of communities as well as for some segments of the 

economy outside agriculture. This diversity of roles exposes agriculture to a multitude 

of challenges, thus creating the challenge for agricultural systems to deliver successful 

outcomes across that diverse range of roles. 

10.3. AI Technologies Transforming Agriculture 

AI is a branch of science that studies intelligent agents. It is a general-purpose technology 

which has applications in all fields of human endeavor and so is not limited to 

Agriculture. AI does not have intrinsic unique technological features even though its 

attributes emerge from the exploitation of more specialized underlying technologies. Nor 

is its closer cousin, Data Science. Rather, both provide common general scientific 

principles and shared technological concepts that can be used in a wide variety of 

different applications. In fact, the algorithms or solutions used by AI and Data Science 

are common they are often used by both disciplines. For both, it is the specific 

application of these solutions or algorithms that define the uniqueness of what is being 

studied or considered. However, in the case of Agriculture, it has specific features related 

to its biological based and outdoor used by plants and animals in their production and 

productivity that provide an additional layer of complexity and services. 

Machine Learning is the most widely used approach to AI as it is concerned with the 

classification and quantification of Inputs of an intelligent system. Its main two sub 

divisions are Supervised Learning and Unsupervised Machine Learning. The former 

requires that the Input and Output vectors are known by the AI system being designed. 

Time series on crop production are examples of such data. The objective is to create a 

relationship between Inputs and Outputs. The later does not require such supervised 

information and attempts to group Inputs into clusters with rich internal relationships. In 
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the case of Agriculture, it primarily provides unique or customized options that can be 

used to train a Supervised Machine Learning system. These options could involve field 

size, location of agricultural activity, crop and crop type at particular times of the year, 

and whether farming is conventional or organic among other variables considered 

important for specific activities like estimating crop yields and assessing crop responses 

to agronomic treatments. 

10.3.1. Machine Learning in Crop Management 

Machine learning tools available in the cloud have seen rapid adoption in agricultural 

production in recent years. Deep learning models can now detect leaf problems, weather 

forecasting, weed management, pest control, and irrigation scheduling management. 

Additional use-cases in plant pathology and phenotyping services for farmers and plant 

breeders/suppliers have also appeared. They are using AI for exact diagnosis (with some 

human intervention) around the world, including Asia and South America. Others 

provide plant disease predictive services, which could reduce the need for spraying 

fungicides. Some companies are combining machine learning, hyperspectral imaging, 

and weather data for disease prediction. Others are using multispectral imaging instead, 

in order to develop prediction models. Drones using multispectral imaging are also 

assessing plant nutrient deficiencies with an alternative proprietary image processing 

methodology. 

 

Fig 10 . 1 : Smart Agriculture with Machine Learning 

In the area of weed management, data on weed density can now be collected by growers 

at low cost on hand-held devices, patched directly into machine learning prediction 

algorithms for weed density by species. This greatly increases the accuracy of predictive 
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weed density maps based on limited historical data available from extension and weed 

scientists – tree map type algorithms for large datasets, and random forest regression of 

small datasets, and can be used to assess treatment options for grower field trials. For 

farmers with planting equipment equipped with weather stations and GPS modules, the 

SOC for their fields can also be directly fed from their planting input data into a service, 

which then provides mushroom prediction maps from random forest modeling of the 

weather-soil-plant input data. 

10.3.2. Computer Vision for Pest Detection 

The adoption of machine learning and Artificial Intelligence (AI) research methods has 

soared in the cotton industry over the last decade as major stakeholders, growers, and 

the public desire increases in crop yield. Cotton is a hard crop to grow that is vulnerable 

to damaging pests, and the traditional method of scouting cotton fields for pests is both 

tedious and not always timely. AI-powered vision systems that accurately and rapidly 

identify the presence of pests in fields make it possible to spray only those areas that 

have pest infestations. Automated pest detection leads to reduced pesticide costs and 

decreased environmental impact as reducing the amount of pesticide used conserves 

biological agents that help combat pests naturally. Pest detection combined with timely 

pesticide spraying at the right locations not only prevents damage to the cotton but also 

preempts the development of resistance to common pesticides. Other reported benefits 

include greater savings in costs incurred by a farm: a 25% reduction in pesticide 

expenditures, a decrease in pesticide applications where beneficial insects such as 

ladybugs and wasps are affected, and increased yields. These benefits have seen the 

worldwide commercial adoption of several vision systems since 2017, including a drop 

system for caterpillars, a system for in-season and post-harvest pest detection, and the 

first autonomous machine. The broad user base and ensuing results have led to 

investments in insecticide spraying mission automation. Other players have also 

developed pest-specific sensors to offer highly localized treatment by growers. 

10.3.3. Drones and Aerial Imaging 

Drones and the associated technology allow the agricultural sector to examine and 

process fields comparatively quickly and thoroughly, at a much lower cost than more 

traditional surveillance methods. Spraying pesticides and herbicides with drones, for 

example, reduces the amount of labor needed in comparison to performing that same 

task with a manned vehicle. Some drones are large enough to carry as much as 200 kg 

of water, pesticides, or other substances, and can travel as fast as 25 km per hour. In 

addition, drones can also be used to efficiently transport other small agricultural 
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products, including the seedlings used for transplanting rice. Drones are well suited for 

rice transplanting in part because of the limited field areas where BMPs can be applied. 

The precise low altitude spraying allows for BMP pesticide application only on the 

current cultivated rice. 

The costs of drone-supported agricultural activities are also significantly lower than 

satellite-supported methods. One example estimates the detection cost from satellite-

based images and drone images of brown planthopper, a pest of rice, to be about USD 

352.56 km2 and USD 15—25 km2, respectively. Note, however, that in the comparison 

of costs, one study on drone support applications assumed the drone would run eight 

flights per day for 90 days during a year. Traditional methods, such as scouting from the 

ground, are also more expensive than the drone-supported detection method. In the same 

study, the scouting method reported a cost of USD 99 for just two fields during a 20-day 

period, of which the majority (over 80%) was from scouting. 

10.3.4. Robotics in Harvesting 

Automation is a growing trend in agriculture that aims to take some of the burdens of 

labor from humans. Reports indicate that finding sufficient farm labor is becoming 

increasingly difficult, resulting in many farms not harvesting all of their mature crop. 

The advanced robotics technologies of today can be designed and programmed to assist 

with tasks that traditionally require a lot of human labor. There are many farm chores 

that could use help from robotic systems, including planting, spraying, and harvesting. 

Robotics has opened up the possibility of automating the harvesting of field crops such 

as potatoes, sugar beets, strawberries, apples, and wine grapes. Products developed have 

been proven useful in the harvesting of dull but laborious crops. 

In academia, there are efforts to develop general robotic systems that could be 

programmed to work in many of the different controlled environments found in an 

agricultural setting. Take, for instance, two different robotic systems designed to harvest 

production strawberries, a tedious manual chore that requires many human workers and 

whose available labor supply is at risk. Work combined two years of effort, exercise, and 

design using a commercial robotic vehicle to implement a state-of-the-art strawberry-

harvesting system. This helped create one of the first successful strawberry-harvesting 

robots. It is hoped that these advanced robotic technologies can be used in the agriculture 

sector to mitigate the depleting labor pool, keeping both costs to consumers at a 

reasonable price while helping farmers’ bottom line. These products should be 

commercially available in the coming years. 
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10.4. Case Study: Precision Farming in the United States 

Traditionally in the US, more than 80% of government subsidized funds for crop 

production farmers received was spent on irrigation support. However, over the last four 

decades, irrigation technologies have become prevalent among producers. As a response 

to this growing adoption of precision irrigation technologies as well as serious challenges 

in the form of increased demand for, and competition over, available freshwater supply, 

the Federal Crop Insurance Reform Act of 1996 set out to promote supplement insurance 

programs. These programs shifted their basic eligibility products from whole-farm 

insurance to area yield index insurance based upon the county-above average yield, less-

than-average yield, and average yield as small percentages of average county corn yields. 

Before the 1996 Act, about 20% of the farmers in major corn-producing states had 

purchased area programs because both historic area yields and the expected yield of the 

area program were lower compared to the traditional crop insurance programs that a 

small percentage of producers purchased. However, since the Act was passed, increasing 

farmer curiosity about precision technologies has stimulated demand for area yield index 

insurance and its research. Currently, satellite remote sensing-based estimate of percent 

planted area and forecasting of yield distribution patterns are some of the most promising 

areas of research in precision agriculture, for both the private and public sectors. 

Use of AI for Soil Health Monitoring. Precision agriculture has become a major focus 

area for various agricultural research departments and universities in developed as well 

as developing countries. Its potential use is being actively studied for soil monitoring, 

pest management, precision irrigation difference in crop health and productivity, 

nitrogen use efficiency, using robots, unmanned aerial vehicles, satellite remote sensing, 

sensors, big data, blockchain data structures, etc. AI is also being used extensively in 

soil health monitoring by many private firms. 

10.4.1. Use of AI for Soil Health Monitoring 

The movement towards sustainable aromatic rice production aims to conserve the 

environment while ensuring the profitability of farmers. Soil acts as an ecosystem, 

providing plants with vital nutrients, but modern agricultural and industrial practices 

have led to the depletion of micronutrients in soil and reduced micronutrient 

bioavailability. Farmers largely depend on chemical fertilizers to enhance soil fertility, 

but this has various negative consequences, including greenhouse gas emissions, 

depletion of soil microbial populations, and soil acidification. As a result, continuous 

monitoring of soil health is very important to avoid soil degradation. Conventional soil 

monitoring requires soil sampling from hundreds of locations, followed by laboratory 

testing, which is expensive and time-consuming, and cannot be performed with high-

frequency temporal resolution. Thus, smart farming technology, with remote-sensing-
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based soil monitoring solutions combined with machine learning algorithms, to predict 

soil micronutrient availability can help farmers make better decisions and improve 

aromatic rice production. 

Traditionally, soil and residue samples are taken and sent for chemical analysis in 

laboratories. This approach may take weeks, even months, before the results are 

available. Particularly in areas subjected to different agricultural treatments, monitoring 

residue decomposition and soil nutrient release at short time intervals is critical for 

successful crop production. However, predicting the instantaneous soil nitrogen and 

micronutrient content is difficult. Remote sensing techniques can provide a rapid 

assessment of soil nutrients and can be utilized in precision agriculture for site-specific 

nutrient management, crop health monitoring, and optimal harvest time prediction. 

Various reflectance-based approaches have been utilised for soil properties estimation, 

which includes soil organic matter and nitrogen, phosphorous and potassium nutrients 

utilization. 

10.4.2. Yield Prediction Models 

AI yield prediction models monitor changes in crop and soil conditions and input pixel 

images to machine learning algorithms. Results of visually estimating yield have been 

mixed because overhead view images of crops become available only a few weeks before 

the harvest; hence, determining whether the algorithms can predict crop yield accurately 

weeks earlier is difficult. The overhead visual imagery models are thus more applicable 

for researchers wanting to identify crop visual trends that can be used as key performance 

parameters for prime yield than for producers seeking a reliable prediction of yield 

variance across fields and over space and time. 

Past estimates of variance in accurate agricultural yield prediction as well as the current 

ability to estimate variance even a day before harvest indicate that if satellite oversample 

frequency data can be visualized accurately for corn and soybeans on an hourly basis, 

the complex Potato Early Dying Disease Physiology can be tracked sufficiently to 

provide at least a week or two of lead time about predictions of low yields, short shelf 

life potato insect crisis or not harvest potatoes in proper season or not, and date of 

harvest. These month 1-3 early predictions are primarily due to knowledge of crop 

physiology. The optical window data can also be supported by radar data, if required, 

and such models are also applicable to primarily canopy making crops in countries other 

than the U.S., provided data or expertise can be acquired about specific market driven 

crop physiology. 
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10.5. Case Study: AI in Rice Production in India 

Agriculture is a sector in need of immediate transformation in order to build a more 

sustainable and secure future. As various sectors have started adopting advanced 

technologies to drive efficiencies and innovation, agriculture too must look to 

technology as a key factor. Adoption of agriculture-specific technology will allow 

governments to track crop yield in real-time, help farmers assess damages during natural 

disasters, and undertake research in more resilient crop production. AI and other 

technologies present in the Fourth Industrial Revolution are set to transform the 

agricultural paradigm. With the advancement of data collection sensors, machine 

learning techniques, geo-spatial technology, and affordable digital devices, AI is now 

able to tackle challenges in different aspects of agriculture. 

An intelligent rice crop management system was developed using machine learning 

techniques, satellite images for data sourcing, a mobile application for data inputs, and 

a decision support system for practical application. Data collection was executed through 

primary surveys and a secondary synthesis. Three use cases have been developed 

considering three machine-learning problems: irrigation scheduling, predicting diseases 

of rice and varietal identification through image-based deep learning classifiers. Use 

cases were developed through five machine learning methods. The objective of optimal 

yield with minimum resources used and to minimize losses is strived through use cases. 

Besides the use cases, the contributions of advanced technologies to Agribots and an 

artificial human-like brain for smart services are also discussed for futuristic perspective. 

10.5.1. AI-Driven Irrigation Management 

Irrigation management is a very essential agricultural practice for crop production. It is 

labor-intensive, time-consuming, and difficult to manage. A small mistake with the 

irrigation management, either deficient or excess water, leads to crop yield loss. Water 

is considered one of the essential factors in successful rice cultivation. Inappropriate 

irrigation can lead to excessive growth of foliage, delaying flowering, maturity periods, 

increase labor and production costs, and reduce yield and quality, especially when 

growth is delayed and maturity occurs during late summer or rainy seasons. In India, 

nearly 60–70% of rice is produced under irrigation conditions. Hence, it becomes 

important to predict irrigation scheduling to manage the crop yield. Accurate irrigation 

management is possible with the use of effective models. 

In the current era of modern agriculture technology, Artificial Intelligence (AI)-based 

systems are being used to improve productivity and sustainability. The deep learning 

models are very effective for time series forecasting. The long short-term memory 

(LSTM) model is used to predict the irrigation scheduling as part of the crops' precision 
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irrigation in the future scenarios using past estimates. The present investigation is 

planned to use the LSTM model for predicting day-wise irrigation scheduling for 

transplanting and direct seeded maize and rice crops. The data for prediction is taken 

from the available data sources. The output from the model is validated with the available 

observed data. The LSTM approach is novel compared with the existing models as it is 

an AI-based system. 

10.5.2. Disease Prediction Systems 

Rice productivity however suffers due to diseases, pest infestations, and the climatic 

changes causing quick onset of unpredictable epidemic conditions. Losses in yield can 

be significant and, in some cases, have increased to severe levels. Predictions of the 

occurrence of a disease long before the actual incidence will allow for preventive 

measures to be taken with timely availability of resources. The main advantage of 

prediction is that farmers can avoid crop loss by using pest management with small 

resources. The use of Expert System for prediction and decision support, Neural 

Network, and Bayesian model for disease prediction, and the use of simulation models 

and hybrid models for pest epidemic prediction have been discussed. 

The Neural Network technology has been found to be very effective for pest and disease 

prediction as it is capable of making better prediction, detection, and diagnosis without 

being explicitly programmed. Computer-based Expert Systems have been designed for 

early identification of pests/disease and latest information on their control measures. 

Fuzzy Logic systems combined with Neural networks are being developed to 

accommodate uncertainties and non-linear relationships of factors affecting insect pests 

and disease prediction. Fuzzy and Bayesian Networks are used to represent the 

cybernetic pest prediction. Fuzzy Sets depict the uncertainties in a time series and 

Bayesian Networks model the causal relationship between parameters to build 

probabilistic inferences. The Association and Markov Model has been made for plant 

disease prediction. 

Keeping these points in consideration, group of researchers utilized Artificial 

Intelligence Techniques for the prediction of blast disease, sheath blight disease, and 

black rice bug pest of rice crop. In this study, Disease-Pest-Climate-Soil-Crop-Nutrient-

Water Quality-Remote Sensing Based Expert System have been developed for all the 

three diseases which are the state-of-the-art prediction models for blast disease, sheath 

blight disease, and black rice bug pest. 
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10.6. Case Study: AI Applications in Livestock Management 

AI is transforming the field of livestock management and increasing its potential for 

improved economic and environmental outcomes. Although it is projected that plant-

based food will comprise 70% of our diet in 2050, demands for meat, dairy, and animal-

derived fibers are expected to rise. Future generations will rely heavily on the efficiency 

of livestock output per animal. A company has designed and developed an intelligent 

sensor collar that utilizes sensors to detect animals’ movements using advanced AI 

algorithms. The collar is designed for easy use and aims to monitor animal behaviors 

24/7. Changes in motion data are captured and reported. Anomaly detection is performed 

on accelerometer and gyroscope data to identify changes in routine grazing or resting 

behavior. The sensor collar helps farmers detect with a reliability of about 95% that cattle 

are sick, thus guiding treatment choices and reducing misdiagnosis and economic losses. 

 

Fig 10 . 2 : Projected Diet Composition by 2050 

In Indiana, researchers are using AI to allow cows to “eat smart.” Designed to collect 

information on the nutritional value of what dairy cows eat, a system is capable of 

creating “detailed nutrient maps” of a herd’s diet allowing farmers to optimize the herd’s 

feed. Samples taken throughout the year are analyzed for vitamins, minerals, and other 

nutrients, which are then paired with data collected through the device. The researchers 

partnered with a dairy farm to finalize the device and look into methods to further 

optimize cow nutrition. So far, the system is able to identify nutrient variation, 

specifically for protein, phosphorus, potassium, and sodium. In addition, the information 

revealed nutrient variations throughout the year for potassium and phosphorus levels, 



  

195 
 

allowing the researchers to take a closer look into lactose variations and what it means 

for feeding dairy herds year-round. 

10.6.1. Health Monitoring with Wearable Tech 

With 1.5 billion cattle worldwide, it's crucial to understand how to manage them 

sustainably, as they contribute an important quantity of methane to the greenhouse effect. 

The agricultural technology sector has been innovating in response to skyrocketing 

demand for meat alternatives and pressure for lower environmental impact. A zero-

emissions airplane prototype has been developed which promises to operate at lower 

cost than traditional jets, and considering that flying contributes a big chunk of 

greenhouse gas emissions, they may well become the future standard. 

The global market for precision livestock farming is growing rapidly, with established 

industry players and new ventures alike innovating in Internet-of-Things solutions that 

allow for livestock management at scale. Veterinarians' exams are costly due to labor 

costs and travel. Many harmful conditions can be detected by monitoring activity levels, 

sleep, or eating habits. Wearable tech capable of constant data collection reduces costs, 

permits high-frequency measurements, and alleviates reliance on human experts or 

farmers. A major downside to using wearables is their maintenance; farmers must keep 

track of collars and tags, replace them if broken, and ensure their adequacy to the animal. 

Animals may ingest collars or tags which may create health problems. Studies on the 

impact of wearables on behavioral change have been inconclusive; therefore, potential 

collateral effects must be carefully weighed. 

Cattle are increasingly managed at scale, which makes individual attention infeasible. 

Cattle can be affected by bottleneck conditions, such as pneumonia or other pathogens 

that can spread through breath. Horse groups are again managed by well-identified 

individuals but large masses are also becoming common, with horse events welcoming 

thousands of horses from all over the world. Detecting and treating illnesses as soon as 

possible is crucial to ensuring low mortality and optimal productivity levels in animal 

groups. In such context, a data-collection system for detecting specific respiratory 

conditions at scale has the potential to be the key to managing such large quantities of 

animals and its solution is offered by a precise livestock industry. 

10.6.2. Feed Optimization Algorithms 

Feed optimization is a significant component of animal management that can be 

improved using wireless technologies. As livestock populations grow to meet demand, 

the quantity of nutrients required to ensure health will increase as well. This in turn 
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exacerbates the existing tensions generated by limited ground space—and the land 

needed to produce the feed crops for livestock—and large methane emissions, which 

contribute to climate change. Feed accounting typically involves the long-term use of 

feed tables; however, these can be inaccurate for predicting nutrient requirements and 

intakes. Decision support systems can help make feeding decisions on-farm. There are 

many different types of nutrient optimization models, either simple or complex, 

deterministic or stochastic, mathematical programming, linear or nonlinear, spatial or 

temporal or simply based on expert knowledge. Researchers developed an interactive 

computerized decision support tool to help beef producers formulate rations for suckling 

beef calves. The system solves a linear programming model to minimize the cost of the 

ration while meeting animal nutrient requirements. 

Rational feeding that reduces feed costs and methane production must also be accurate 

and simple to use. The software attempts to balance variability in animal weight and 

introduce a simple feed budgeting guideline to minimize the effects of unexpected 

variations in animal weight. The system can also consider diet that accounts for nutrient 

values from other than cereal grains; and additionally corrects nutrient concentrations of 

diets when rice straw is added, because the nutrient concentration from the estimated 

protein, fiber and fat shows highly negative correlation with rice straw addition level. 

The result shows that quality check should be incorporated into the feeding model. Using 

high-quality criteria of rice straw, additional roughage should not be incorporated in the 

high-quality production stage, but be calculated and allowed in other producing periods. 

10.7. Conclusion 

As we come to a close on this body of work detailing successful applications of artificial 

intelligence in global agricultural practices, we can draw several conclusions on the 

importance of these efforts. AI technologies are providing much-needed solutions for 

challenges that agriculture is facing. These challenges can vary and encompass such 

issues such as global food security, environmental sustainability, rising costs, global 

health crises, and reductions in the agricultural labor force. AI technologies can certainly 

provide unique and innovative solutions that can help alleviate many of the challenges. 

From the accurate management of farming equipment to the efficient application of 

pesticides and fertilizers, the providing of advisory services for farmers, skip-level 

management of crop and soil conditions, and providing insight details on the entire 

agricultural practice and production process, AI has proven to enhance various 

agricultural practices. 

These case studies serve as a resource to other agricultural producers, service providers, 

and industry stakeholders in learning from others' lessons learned and key success factors 

in their AI implementation process, and will ideally allow them to create or expand upon 
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their own agricultural digital transformations to achieve similar successful results. As 

the global agriculture landscape continues its transition into incorporating advanced 

technologies to support agricultural operations, we believe that an increased allocation 

of investment capital towards AI innovation in the agricultural space will aid in this 

transition, and the case studies included will ideally serve as an initial resource into this 

practice. Further, as the case study contents in this body of work merely detail a high-

level overview of each respective project, we would also encourage collaboration among 

similar stakeholders involved in these innovative projects who may be willing to share 

details for the sake of collectively moving the industry and its challenges forward. 

 

Fig 10 . 3 : AI Revolutionizing Agriculture 

10.7.1. Summary and Future Directions for AI in Agriculture 

Once neglected from modernization in a developing world, agriculture has come out to 

be the backbone for the survival of humans and their habitat with the integration of novel 

ideas and practical realization of scientific principles. Farmers' main concerns are to 

ensure food security by preventing the crop/plant diseases to ensure food security. 

Artificial Intelligence (AI), a remarkable computerised technology which facilitates 

machines that can learn from experience and simulate human intelligence processes such 

as learning, cognition and reasoning, is invited into agriculture to foster the industry at 

every stage. Of particular interest to many researchers, scientists and developers are 

dealing with the recognition of different leaf diseases of plants or their classification. 

Towards this, many review papers have been published, but these works fall short of 

comprehensively providing a synopsis of the state-of-the-art studies. Our work is 

devoted to a complete pipeline of insight and suggestion that may in turn facilitate the 

design of experimental research and furtherance in application in the wider field of AI 
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in plant leaf disease detection. This work considered not only historic and contemporary 

research issues and directions but also imported contextuality by comparing plant leaf 

disease detection with other kinds of visual recognition research. The summary of our 

work includes a complete pipeline for the task of plant leaf disease detection in terms of 

the dataset and typical experimental setting, pre-processing, modelling, transfer-learning 

based, and post-processing, novel methodological research directions, and the 

methodological contextuality of the task. We hope that this work can become a useful 

guide to future experimental studies in the task and therefore help build AI in agriculture 

step by step. Although significant and fruitful growth has been witnessed in AI-based 

plant leaf disease detection, there exists urgent necessity for further advancement and 

commercialisation due to still existing notable limitations. In particular, the current 

achievements are limited to specific illnesses of specific plants. 
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