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Chapter 2: Leveraging artificial intelligence to enhance 

precision farming practices      

2.1 Introduction 

A growing and largely urban world population, already exceeding 7 billion and predicted 

to reach almost 10 billion in 2050, needs more food increasingly produced in decreasing 

agricultural areas. The problems tied to agricultural production are related not only to its 

increment but also to the security and safety of this production regarding natural events 

and human dealings. Extreme weather events have become more frequent due to climate 

change. Aware of the consequences of unregulated exploitation, humans have acquired 

more sensitivity in safeguarding the environment and developing sustainable agriculture 

to maintain biodiversity and ecosystem health. Precision farming is one of the initiatives 

focused on achieving this agricultural sustainability (Kamilaris & Prenafeta-Boldú, 

2018; Liakos et al., 2018; Jha et al., 2019). 

Adopting precision farming practices brings advantages to farmers, such as a reduction 

in operational costs and an increase in income, to the environment in terms of less 

pollution and wastewater production, and to society for sustainability promotion. 

Precision farming consists of monitoring real-time crop status and environmental 

parameters to plan the distribution of agricultural inputs in variable doses and at proper 

times according to the needs of each specific zone of the field. In this way, both the 

excessive application of fertilizers, pesticides, and water, which lead to pollution and 

waste of resources, and the insufficient application, which hampers plant growth and 

productivity, are avoided. Traditional precision farming practices require complex 

technology to reveal crop and environmental nutrient status. Remote sensing and 

unmanned aerial vehicle technology have recently emerged as alternative solutions to 

help farmers implement precision farming but their usability is still not generalized 

(Mishra et al., 2020; Zhang et al., 2021). 
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2.1.1. Overview of Precision Farming Principles 

Precision farming encompasses a set of integrated technologies intended to provide the 

owner or manager of an arable farm, in a timely and convenient manner, with 

information on the spatial variability of the crops, soils, topography, and terrain indices 

that influence crop production. This information then enables the adoption of decisions 

aimed at producing a real improvement in the profitability of production and/or a 

reduction in the environmental impact of the activity. The key factor of success is the 

early identification of the action variables and the periodic evaluation of the 

effectiveness of the actions taken. Precision farming suits small, medium, and big farms.  

 

Fig 2 . 1 : Precision Farming 

The particular variable of the extension of the farm is not decisive but the organization 

and management of the productive process, and the access to the necessary technology 

for creating and updating maps of the factors influencing crop production, continually in 

time and space. The global trend in agricultural production is to increase the demand for 

quality foods and minimize the environmental impact of farming practices. At the same 

time, the cost of agricultural production is increasing and the average size of the holding 

is decreasing. Precision farming intends to satisfy the demand for food safety and the 

reduction in the level of environmental impact through more careful management of 

agricultural production. The main concept of precision farming is to understand the 

influence of spatial variability, temporally modified, of soils and crops, on crop 

production, to create maps to manage the variables that determine it. Artificial 
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intelligence models have provided adequate responses for modeling these processes but, 

in general, they have been implemented at a small scale, depending on the type of crop 

and in specific areas. 

2.2. Understanding Precision Farming 

Precision farming (or precision agriculture) generally denotes an approach to managing 

crop production that employs improved communication and information technologies to 

perform plant and soil analysis for optimizing yields and profits while minimizing waste, 

water consumption, and pest and fertilizer management. More specifically, it is a 

science-based management practice focused on spatial and temporal variation in the 

growth and development of crops and livestock, usually applied to environmentally 

sensitive areas and in compatible farming systems. It creates a framework for developing 

the whole chain of linkages between novel technology, field trials, interpretation of aerial 

surveillance images, remote sensing, computerized decision support systems, and farm 

management decisions worldwide. 

The rapidly increasing acceptance of precision agriculture extends to countries such as 

Brazil, India, Japan, Mexico, and the United States. Both satellite-based frontal analysis 

for forecasting corn yield and net-area-solar-absorption tracking techniques to satellite 

imagery for predicting corn yield have been demonstrated. However, currently, farmers 

or scientific research institutions have to request analysis services. As evidenced by the 

many commercial soil-nutrient-testing devices and decision-support systems available 

in the market, the provision of precision agriculture services will no longer be restricted 

to satellite remote-sensing data though such data are essential for a differential yield-

potential mapping or for discerning the spatial climate variability of farming regions 

throughout the world. 

2.2.1. Definition and Importance 

Precision farming, often synonymous with precision agriculture, describes a 

management concept that employs information and telecommunication technologies 

such as the Global Positioning System, Remote Sensing Technologies, Ground-Based 

Sensors, Variable Rate Technology, and Geographic Information Systems for crop 

production and management at spatial resolution finer than traditional, uniform field 

management. We refer to this approach as precision farming, since it implements not 

only careful resource and crop management but also information-gathering systems at a 

higher density than generic approaches. Precision farming aims to make the 

maximization of production more efficient, sustainable, environment-friendly, and safer 

for consumers and farm workers. 
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The primary philosophy of precision farming is based on variations within the field, on 

a high spatial resolution. These variations are driven by differentiations such as soil 

physical and chemical properties, competition among plants and between plants and their 

environment, weather effects, etc. The increasing globalization of the economy and the 

commercial environment enhances the urgency for farmers to produce as much as 

possible on less land with less input. This would increase profitability and reduce 

pressure on natural resources. From an economic perspective, precision farming consists 

of many business decisions, particularly the threshold production problem–how much to 

invest for increased production. 

2.2.2. Historical Context 

Introduction 1. Definition 2. Scope of Changes in Smart Agriculture 3. Stakeholders 4. 

Technology List 5. Adoption Canvas 6. Evolutionary Perspective 7. AI 8. Data 7. Other 

Evolving Technology 2.2. Historical Context Increased agricultural production has long 

been a concern of policymakers, scientists, and farmers. From the manorial times 

through and following the British Enclosure Acts leading up to the Green Revolution in 

the latter part of the 20th century, advances in technology have increased food 

production per unit area. Concurrently a trend to progressively more sophisticated 

technologies has been apparent. Initial changes included the development of crop 

varieties with higher yield potential, resistance to diseases, drought, and other adverse 

factors. Gradual mechanization and the offloading of farm tasks and specialization of 

tasks to contractors of various stages of the agri-food chain have followed. Another 

parallel trend has been the increasing complexity of production decisions—the need to 

match a range of inputs to a desired input-output response function and the complex 

relationships between operations at all stages of production and processing and also the 

outcome of production and processing flow. Agriculture is now moving toward what has 

been called “precision” “smart” “high technology” or “post-modern” agriculture; all of 

many terms for the same basic set of changes. What is different about these sets of 

changes is the following: a greater range of advanced technologies is available and 

applied to the farm and food value chain; the scale and impact of the new technologies 

are larger; and the decision-making sphere of agriculture is expanding to incorporate far 

more information about life cycle implication of choice, food quality and safety topics 

about which consumers are increasingly vocal. These new technologies span the use of 

Global Positioning Systems and sensors, genetic engineering, computer modeling, 

satellite imagery, electronic tags and tracking, biotechnology, nanotechnology, and 

robotics. 
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2.2.3. Current Trends 

Here we take a brief look at some of the current trends that are driving the development 

of precision agriculture including advances in data access, sensor systems, analytics, new 

platforms for user access, and sustainability. These trends are by no means exhaustive 

but merit inclusion as they are bound to have a significant impact on the future of 

precision agriculture. 

Machine learning, machine vision, sensor systems, blockchain, and artificial intelligence 

are just some of the technical advances that are driving the current interest in precision 

agriculture. Many farmers are busy implementing farm-data management systems to 

collect, curate, and efficiently analyze images and data from numerous sources from 

airborne missions with some fixed-wing UAVs to ground or low-flying multirotor 

UAVs, satellite systems, self-driving tractors, and hand- or tractor-drawn multi-sensor 

striping systems for hyperspectral, thermal infrared, multi-spectral, LiDAR, radars, and 

RGB cameras. Ultimately, these data and image collection efforts should be fed into 

public and commercially validated models that are then used by farmers and their 

associates to predict, in a timely way, how various management decisions will affect 

crop performance, such as the likelihood of a successful harvest, or loss. Lighting models 

can indicate how to manage supplemental lighting to boost growth and accelerate 

blooming and ripening, and crop growth simulation models can assess the impacts of 

irrigation, fertilization, and pesticide application on the likelihood of a successful 

harvest, or loss. 

While agricultural companies, academic institutions, and governmental organizations 

have always been the primary suppliers of simulation models to the agricultural 

community, commercial entities managing farm-data enterprise systems now enhance or 

replace them with their own for profit, and just so everybody knows, the commercial 

modeling enterprises are generally a little bit behind the curve. While this initial 

modeling effort benefits the commercial entities and their modeling efforts, reduces the 

cost of hiring the agricultural company research and development, academic institution, 

and governmental entity modeling workforces greatly. 

2.3. Role of Artificial Intelligence in Agriculture 

With the exponentially rising pressure on agriculture to meet the food security or supply 

demands of an increasing global population, Artificial Intelligence is poised to make 

significant contributions. By allowing farmers and producers to monitor and manage 

their operations across both space and time, AI greatly enhances both the volume of 

produce as well as the quality. It provides real-time data collection regarding issues such 

as irrigation, soil and crop monitoring, soil management, climate impact assessment, 
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etc., that might affect farming at both micro and macro levels. Agricultural processes 

thrive on digitalization, and the adoption of AI in agriculture is changing how produce 

is monitored, managed, and cultivated in value chains across the world. By analyzing 

complex problems curried through layers of big data, farm owners and their workers are 

empowered to use data-driven, precise decisions to boost yield while decreasing their 

reliance on costly resources in a quick, efficient manner while also using models to 

predict potential problems. These advantages lead to better management of equipment, 

supply chain resources, pest detection, and crop health monitoring. The integration of 

AI with sensors and robotics will assist farmers with important processes such as 

planting, harvesting, packing, and monitoring crops. These technologies also promise to 

help in the management of soil and improve irrigation, fertilizer application, and pest 

control. To improve the status quo of traditional agriculture that involves excessive use 

of human resources, and time-consuming and labor-intensive processes associated with 

agricultural produce, AI-based agriculture may become an indispensable aid and 

substitute. In addition, vast amounts of data, labeled and unlabeled, are already available 

in agriculture, processed or collected by different machine or manual means, that can be 

used to train various AI models and applications. 

2.3.1. AI Technologies in Agriculture 

Artificial Intelligence (AI) serves as a pivotal foundation for innovative technologies in 

agriculture. These innovations leverage diverse AI technologies, enabling novel ideas 

such as intelligent robots, unmanned aerial vehicles (UAVs), digital twins, Internet of 

Things (IoT), augmented reality (AR), big data analytics, cloud computing, and 

blockchain applications already commercially available or in the process of being 

commercialized. AI-based solutions are estimated to generate savings of nearly USD 50 

billion annually for the global agriculture, food, and forestry industries by 2030. Coupled 

with a strong demand for food security and a mountain of data related to crop yields, 

market prices, land suitability, and changing weather patterns, the merging of AI with 

agriculture holds the potential to improve digital agriculture. 

AI refers to machines that mimic human intelligence, automating tedious human tasks, 

including precision sensing, image recognition, intelligent decision-making, robotic 

control, and communication. AI can either augment our intelligence or operate 

autonomously, outside of human control. In agriculture, the basic categories of AI 

systems include expert systems, machine learning, and robotics. 

Despite the differences in underlying technologies, AI systems share basic features based 

on a common objective of transforming data into information and value. To generate 

value, AI systems interface with the physical world through sensors, actuators, and other 

technologies that expand human senses and faculties. In the context of agriculture, 
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various types of sensors acquire, analyze, and use vast amounts of data across production 

value chains to derive relevant insights for users. By leveraging the rapid evolution in 

associated sensor technology hardware, agricultural producers can now gather, store, and 

analyze unprecedented amounts of data about their operations. These developments are 

allowing farmers to integrate intelligence into their operations, thereby ushering in a new 

agricultural era. 

2.3.2. Benefits of AI Integration 

The incorporation of cutting-edge automation and AI solutions into agriculture 

communities can pay dividends in improved financial health and more meeting work. 

AI integration relieves farmers of many tedious tasks, such as manual field inspections, 

and gives insight into field conditions so that they can do what they value — managing 

the farm, increasing crop yields, and nurturing supplier relationships. Specific areas in 

which AI improvements are most evident include crop detection and monitoring, pest 

detection, soil health, weather prediction, yield prediction, and the most cost-efficient 

means of targeting crops that need specific nutrients, moisture, and other input supplies. 

AI can help usher in the next and most important automation revolution. It gives farmers 

decision-making support but does not take the decisions away from them. For example, 

AI doesn’t tell ag retailers which products to apply and at what levels to specific fields. 

But it can help them understand why a specific request is being made. It has the potential 

to be the channel through which ag retailers and their customers collaborate to make the 

best decisions possible based on data. AI can ingest media, including images, sensors, 

and other data to provide in-depth analysis when decisions need to be made. Creating a 

collaborative process where the customer can learn from AI can help advance agriculture 

while building trust between retailers and their customers. 

2.4. Data Collection and Management 

As a subfield of agriculture that aims to enhance accuracy and efficiency in farming 

practices, precision farming relies heavily on data. To achieve successful decision-

making, it is crucial to collect, store, manage, share, process, standardize, visualize, and 

utilize the massive amounts of data generated continuously throughout the entire 

agricultural value chain. Moreover, these data need to be presented to the end-user 

seamlessly and intuitively. Applying AI to precision farming requires efficient methods 

of data collection, management, and dissemination between the data collectors and 

processors and the farmers. However, the volume, velocity, variety, variance, visibility, 

and complexity of the data make it a challenge for researchers and farmers. 
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To guide the farmers effectively in daily farm-related decisions, the data collected need 

to represent the farmers’ unique internal conditions and external conditions while also 

containing relevant information. We explore what types of data are needed in precision 

farming, where the data comes from, and how to manage this data. AI uses vast amounts 

of data to train/make decisions and requires large amounts of data to avoid overfitting in 

small dataset settings. To aid farmers, data management systems can be coupled with AI 

models to determine which actions to perform and why. These systems can provide a 

level of “explainability” that is sorely needed in current machine-learning tools. Such a 

system can help farmers with integrated pest and pathogen management, soil/weed 

management, nutrient management, weather forecasting, as well as market forecasting, 

among numerous others. We provide examples of how emerging technologies are 

addressing these issues. 

2.4.1. Types of Data in Precision Farming 

The core of precision farming is data-based decision-making. Crop, soil, and weather 

data collections are essential to high-value management practice at commercial field 

scales to provide data inputs into models predicting economic, harvest, and 

environmental outcomes of management decisions. Several categories of data are used 

to inform decision processes in precision farming. All of these data vary in terms of 

importance and availability by location and season. Other factors affecting data's relative 

importance involve economic commodities and environmental goals. This creates an 

essential need to quantify the value of a particular set of measurements in terms of their 

effects on management decisions and the relative outcome of different management 

decisions. 

Soil property data include fertility and physical properties, land-use history, data on 

edge-of-field hydrology, and critical areas such as point, cut, and wind erosion. Soil bare 

data types vary including nutrient mapping, soil sampling, bulk density, pH, and 

inundation or condition. Vegetation property data involve nutrient levels as they vary by 

time and location, crop type and stage, biomass density, canopy cover, pigments, and 

cell structure permittivity. Generally, all these data are obtained unevenly. Nutrient data 

are typically collected over short periods at specific geographic locations associated with 

laboratory analysis of plant samples. Crop stage and biomass density or canopy cover 

data are also typically obtained over short periods between periods of crop coverage and 

weather conditions favorable for remote sensing. Long-term cell structure permittivity 

data are not yet available. 
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2.4.2. Data Sources and Sensors 

Various techniques, methods, and technology-assisted devices have been developed to 

increase the abilities of farmers. Remote sensing of field variables is one of the most 

innovative and powerful tools in precision farming. The extremely fast development of 

satellite technology and sensors, Unmanned Aerial Vehicles (UAV), and mini-sensor 

devices has permitted remote data collection over large target areas. Farmers require 

massive amounts of data regarding soil, water, and crops to improve productivity and 

the overall economy. This information will benefit from integrating data from multi-

heterogeneous sources such as satellite data, local sensors, and UAV-based remote 

sensors. These data are valuable for the quantification of essential biophysical crop 

variables that affect agriculture production. 

Currently, well-placed weather stations provide information on local weather conditions. 

A wireless data acquisition system using various sensors for monitoring many features 

and conditions, such as humidity, temperature, luminosity, CO2 level, and flow meter 

for monitoring agriculture research activities has been used. Other systems based on 

remote sensors for the determination of different parameters have been reported. Remote 

data acquisition for evaluating soil water potential using tensiometers was described. 

Data acquisition systems for accessing soil moisture measurements at different depth 

levels were developed. Different multi-layered sensor networks, such as dielectric soil 

moisture sensor networks for monitoring soil moisture variability over specified fields, 

were developed and deployed. Data from all the above systems will offer critical 

information for the optimization of irrigation requirements in any cultivated field or crop. 

2.4.3. Data Management Tools 

Producing different data types from different sources creates the need for a variety of 

data storage techniques. Especially in precision agriculture research, a wide variety of 

data is generated and used, both at the within-field level and the whole farm level. In 

addition to agricultural management records, a variety of sensor-generated and model-

generated data sets are used in developing and refining VRT functions. Applications of 

spatially and temporally sensitive data in agro-environmental modeling at many different 

levels of aggregation, and their derived products, support the concept of precision 

conservation agriculture. Furthermore, to accommodate spatial and temporal sensitivity, 

these agro-environmental models often require considerable data management and post-

processing efforts. The various data types of precision agriculture research at multiple 

spatial and temporal resolutions and their respective data management challenges are 

presented. To decrease the burden on researchers who want to apply precision agriculture 

concepts in their work, specific software programs that provide reliable tools to handle 

and manage these various data types are discussed. Sensor-generated and model-
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generated data sets are often used together in optimizing crop response functions. 

Spatially sensitive geographic information systems and spatial statistical programs are 

standard tools for the described data sets. However, these programs were initially 

designed to work with static layer files rather than dynamic raster files that change based 

on temporally sensitive degrees of freedom. Over time, these programs have received 

several upgrades, such as the dynamic and temporal capabilities, that enable building 3-

D raster and temporal models. 

2.5. AI Algorithms and Models 

Many types of AI algorithms have been widely applied to enhance precision farming 

practices, of which the most commonly used algorithms are machine learning, predictive 

modeling, and computer vision models. Here, the three types of models are briefly 

explained. 

1. Machine Learning Techniques 

Machine learning algorithms seek a function that approximates the mapping between the 

inputs and the corresponding outputs, by learning from the set of samples consisting of 

feature vectors and their target outcomes. The performance of machine learning 

algorithms greatly relies on the selection of model parameters, and additionally the 

specific algorithm for some advanced models. The corresponding inputs are often sensor 

data and the outputs could be categorical, ordinal, or continuous variables. 

2. Predictive Analytics 

Predictive analytics creates analytic models that incorporate ground truth and 

explanations about prediction. These models are coded in understandable languages, 

taking advantage of software engines that are open-source or proprietary. Predictive 

analytics provides automated feature selection and hyperparameter tuning, so analysts 

without machine learning backgrounds but with domain knowledge can produce 

predictive analytics models with little effort. Using predictive analytics has several 

advantages: the prediction model is understandable and hence easily interpretable; 

predictive analytics has been extensively used for relatively simple models, including 

linear regression and decision trees; predictive analytics language engines also 

incorporate more advanced machine learning models; predictive analytics systems have 

easy-to-understand output. The input of predictive analytics is generally ground truth 

data that could come from either passively observed historical data or actively labeled 

data sets, and of course, it is preferable to be large and good quality data. 
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2.5.1. Machine Learning Techniques 

Machine learning has revolutionized data analytics across various fields, by providing 

intelligent tools that can extract and learn from available data. ML allows self-learning 

from experience, using algorithms designed to improve machine performance through 

systems and programs, and any implemented design is itself an engine for progressive 

learning. In ML, statistical learning techniques build models from known data and apply 

these models to analyze new data and make decisions. The need for raw data to be 

literally transformed into knowledge, combined with humanity’s latent desire for 

technological progress, has stimulated the development of data mining algorithms, 

which implement the principles of artificial neural networks, mathematical logic, and, 

more generally, mathematical statistics. The relationship between data mining and ML 

relies on the use of algorithms as instruments for the study of concrete problems. 

Using learning algorithms, researchers have developed tools capable of performing 

simple tasks such as recognition and classification of characters, images, speech, and 

DNA sequences, and of more sophisticated functions such as diagnosis, prognosis, and 

the support of decision-making processes in various research fields. Researchers in ML 

have honed the techniques that often lie at the heart of data mining tools: auto-association 

coding, hidden Markov models, and artificial neural networks might be considered the 

three main building blocks of the existing data mining systems. The development of new 

data query and visualization tools should stimulate the creation of new ingenious 

learning algorithms and new intelligent methods for using the existing algorithms. 

 

Fig 2 . 2 : CMachine Learning: Transforming Data into Insight 
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2.5.2. Predictive Analytics 

Predictive analytics is defined as the use of predictive modeling to analyze data to derive 

patterns of past behaviors and recommend future behaviors, thereby optimizing an 

outcome. In the agriculture arena, predictive analytics proposes to integrate historical 

data sources covering year-on-year comparative results, continuously measure real-time 

data, and provide predictive data analytics available in the farmer’s pocket. Functionally, 

predictive analytics can help farmers leverage the information and insights from these 

vast oceans of big data to determine when and how much to irrigate, what different types 

of fertilizers to use, and what to plant—such as the optimal variety of seeds that would 

achieve maximum yield for the local area, based on weather and climatic conditions. 

These capabilities can dramatically improve productivity and yield during the high-cost 

capex cycle. The onus for implementing precision farming today rests largely on the 

farmers’ shoulders. They need to invest in setting up sensor-enabled technologies to 

gather data from the field and to ensure that the collected data is measurable and 

meaningful. In addition, only a select few farmers own state-of-the-art smart computing 

devices that use AI and machine learning to decode these data patterns and produce 

recommended insights or actions. Predictive analytics is at the heart of an ecosystem 

approach that weaves all the elements of big data—from data capture, data storage, data 

mining, data analytics, through to data visualization—seamlessly for farming, and 

presenting it in a way that farmers can understand and use effectively. To achieve this, 

we present the conceptual model for agri-precision analytics, below. There are several 

challenges in implementing agri-precision analytics. First, credible aggregate data from 

farmers over time is needed to derive large-scale models, covering a wide array of 

different crops across different regions. 

2.5.3. Computer Vision Applications 

Computer vision (CV) applications have become integral to progressive advancements, 

facilitating the development of high-performing vision-based systems that have 

improved specific tasks and made them technically feasible. In agriculture, robotics and 

unmanned aerial vehicles assist farmers in developing farms that are temporarily free of 

labor as they can now be handled remotely. Moreover, farmers can use these systems for 

monitoring purposes or to detect certain conditions in the farms that require specialized 

attention. Vision-based systems consist of hardware and software that use combinations 

of low- and high-level processes in order to accomplish a particular task. The hardware 

sensors are used for capturing the image and converting it into electrical signals that can 

be further processed. The algorithms then analyze these signals and may achieve specific 

tasks. Built-in applications have assisted in the processes that were once thought to be 

impossible to perform without a computer. 
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Detection of diseases in plants was one of the first problems that computer vision 

algorithms were designed to solve. Over the past few years, image-based detection has 

been used to detect numerous fungal and bacterial diseases. However, manually 

examining the images and checking the correctness of the algorithms requires highly 

qualified personnel which is often a limiting factor. Therefore, nowadays, deep learning 

has gained much attention and some of the best-performing non-deep-learning models 

are becoming obsolete. Research has also been focused on developing methods that 

would be based on deep learning that can be used on mobile devices. Many of these 

systems have poor performance; however, research is being carried out to bridge this 

gap, as having light algorithms that can be used on mobile devices is highly praised 

across the world. 

2.6. Challenges and Limitations 

Artificial intelligence has potential implications for the efficiency of agricultural 

productivity through the automation of agricultural operations. However, some 

challenges and limitations need to be addressed before widespread adoption, including 

three key aspects: data privacy considerations, technological barriers, and cost 

implications. 

1. Data Privacy Concerns 

The success of artificial intelligence is rooted in the use of data to train algorithms to 

recognize patterns. However, doing this in a precise farming environment requires the 

sharing of substantial datasets between multiple stakeholders, which raises data 

ownership and privacy concerns. While some have proposed the creation of third-party 

data custodians to oversee such sharing, it requires robust regulatory and incentive 

frameworks that are currently lacking. Technological companies have already 

superseded people in capturing and aggregating user-generated data in non-agricultural 

domains and are expected to control the extent and manner in which farmers can capture, 

curate, and monetize the data they generate in the primary sector. 

2. Technological Barriers 

While there currently exists software tools for a wide suite of operational and decision-

making challenges in precision agriculture, the majority are provided by proprietary 

digital agriculture platform providers. One major impediment to farmer adoption of AI 

in agriculture is the confusion stemming from a chaotic domain with multiple platforms 

that are disconnected, some that lack adequate standards, and others that cannot operate 

across the many different agricultural tasks and operational functions. The barriers to 

entry into the digital agriculture space are also relatively low, and today’s proprietary 

digital agriculture solutions lack the element of ethics and good corporate governance 
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and are likely to follow exploitative business models, charging farmers exorbitant fees 

for using their solutions, with the justification of sharing the upswings in farm 

productivity. 

2.6.1. Data Privacy Concerns 

As agriculture becomes more technologically advanced, the ethical implications of data 

collection, storage, and application are also becoming more complex. Farmers, as 

cameras, sensors, drones, and other devices monitor their fields, have the right to know 

who is collecting data, how it is being used, and for how long it will be stored. Privacy 

concerns with precision agriculture center on sharing highly sensitive information 

among multiple stakeholders, which include technology providers, agribusiness 

partners, and possibly even competitors. With various stakeholders accessing the same 

data, how can farmers control the proliferation of their information? Many farmers have 

opted for data-sharing agreements, but unless a farmer is a trained technician, it can be 

hard to decipher what that means. 

Some feel there should be a uniform set of regulations for precision agriculture. There is 

a call for creating a comprehensive, enforceable, and observable regulatory framework 

that lays out the rights of the public. It encourages consistent and clear terminology so 

that consumers understand exactly what information farmers are giving up. Farmers need 

to be educated on their role in data privacy, and technology providers should take it upon 

themselves to explain their privacy needs. In the end, data privacy is not just a technical 

issue, but also a philosophical one, one that needs input and discussion from all parties 

involved. 

2.6.2. Technological Barriers 

However, the integration of such advanced technology faces several challenges that 

hinder optimal utilization. These challenges include technological barriers such as space 

and size, compliance and regulatory issues, data sharing, and so on. The increase in the 

share of small and marginal farmers in developing countries, especially in Asia, means 

that technology transfer must take account of the limited resource base, lower production 

levels, and not generally favorable economic conditions. Precision Agriculture has 

inadvertently bypassed small farmers in most developing countries because the 

technology-intensive approach was inappropriate for small-sized farms and niche-

farming operations. There would be no quick-fix solution to the Precision Agriculture 

dilemma in the short run. However, researchers and extension workers should explore 

Precision Agriculture components suitable for small farmers in the medium and long 
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run. This is necessary to increase input-use efficiency and provide higher input support 

for small farmers during crop season. 

Nonetheless, recent developments in sensor technology, data fusion, communication 

technology, and robotics, coupled with favorable economic returns, are bringing about 

changes in Precision Agriculture philosophy, concepts, and technology transfer at a more 

rapid pace than technological change in conventional agriculture. In addition, the trend 

toward improved connectivity may offer an exciting opportunity for cognitive-based 

decision support for site-specific management. Therefore, there could be increasing 

scope for the development of Precision Agriculture-relevant approaches suitable for 

smallholder farmers in the near future with squeezed profit margins. Indeed, most 

developing countries are located in the tropical and subtropical regions that would 

benefit from weather forecasts based on improving predictive capability and estimating 

the impact of climate variability. The future development must include smallholder 

farmers and their interests at the center of attention. 

2.6.3. Cost Implications 

With the advent of Artificial Intelligence and rapidly developing machine learning 

algorithms, Artificial Intelligence in agriculture is steadily gaining interest. A plethora 

of research has been published, further driving the understanding and exploration of the 

influences of AI and big data on the modern evolution of agriculture, both in economic 

and commercial aspects. The investment cost of integrating AI into precision agriculture 

has been a major limitation in its widespread application. Initial investment costs of 

adopting AI technology in crop management can often be unfavorable, especially for 

smaller businesses. Adopting automation in any form comes with a cost. Farmers must 

consider the financial implications of such investments before they incorporate any new 

technology, especially for routine farming tasks that may increase their total operational 

expenses. To employ these technologies, initial investments in infrastructure, layout 

manipulation, and machinery with high precision, as well as drones or other platforms 

for data acquisition, are all obligatory. Investment in AI systems for monitoring pests, 

weeds, diseases, and soil and nutrient management are also key and important 

components of the adoption process. 

Over time, these high costs may be mitigated, but in the interim have not only large 

economic implications for farming businesses considering these technologies but could 

also serve as a barrier to entry for commercializing these systems. Protection and 

insurance issues also remain largely unresolved, especially for machine manufacturers 

who face hurdles in their contract terms and conditions, warranty payments, or self-

insurance or performance guarantee requirements for the adoption of AI technologies by 

farmers. The developments that have been made in these systems thus far have been 
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made through public funding to enable them to reach a commercial stage, on a cost-

neutral basis with low or no market prices. Despite their potential for high productivity 

and reducing the use of already strained natural resources, the commercial stage of these 

technologies draws criticism, due to their resource demand and multiple-scale 

complexity. 

2.7. Future Directions in AI and Precision Farming 

While AI and machine learning have already made positive impacts in precision farming, 

enhancing future agricultural production is always necessary given the countless 

challenges that agriculture has to face in modern days. In the coming years, there are 

ample opportunities and room for more advanced AI technologies to be implemented in 

the agriculture industry, especially in crop monitoring, crop management, livestock and 

soil monitoring, in-field robots, and drones. Specifically, emerging technologies such as 

the Internet of Things, computer vision, swarms, blockchain, and digital twins can be 

used for precision farming efficiently. However, it is important to make sure that those 

technologies do not only emphasize the potential of profit-making but also aim to 

achieve sustainability and at least no detrimental social effects, considering that social 

effects include the effect of agriculture on public health and the effect of agriculture on 

community values. Without careful legislation and regulations, the unexplored risks of 

misusing new technologies when implementing them can produce undesired effects on 

social values. 

Technology development aside, future precision farming systems should aim for 

complete sustainability throughout the entire development process, regarding both the 

environment and the business chain. From the view of the ecosystems, precision farming 

is an important and promising step to reduce agriculture placing an additional burden on 

the public treasury. This reduction can be achieved with a decrease in carbon footprint, 

nitrogen surplus, phosphate surplus, etc., and an increase in the circularity of farm 

systems. But it is also important to keep in mind that there are not only natural 

ecosystems but also human-made ones, where future precision farming systems interact 

with local consumers. For the human-made ecosystem, farm viability and the business 

model are key factors determining its sustainability. 

2.7.1. Emerging Technologies 

Over the past years, we witnessed a huge rise in the adoption of several new technologies 

in different sectors such as Web 3.0, edge cloud, extended and mixed reality, and 

generative artificial intelligence. They have contributed to the transformation of many 

areas, including precision agriculture. During 2021–2022, investment into these 
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technologies reached record levels, and market validation continues to grow, fostering 

sustainable innovation, especially for agricultural productivity. This reflects both 

accelerated tech adoption along with addressing current rising concerns for food security 

and agricultural sustainability. The purpose of this section is to take a closer look into 

the contributions of those emerging technologies in the precision agriculture area. 

Generative AI has the potential to redefine the horizontal tech stack across any field of 

application, including agriculture. Its uses can focus on enhancing existing technologies 

in the agricultural space by addressing use case specifics, including crop type and user 

location navigation, as well as relevant data to be crawled or ingested to fine-tune the 

underlying models. Furthermore, its contribution goes beyond data ingestion by 

automating any creative or repetitive tasks, including data preparation, visual and text 

content creation, product copy generation, etc. AI can also assist in the design of more 

efficient models, solving NP-hard combinatorial optimization problems with the 

appropriate training. Such models can support practical problems across the precision 

agriculture domain, including variable rate application for fertilizer and seeding, crop 

planning, as well as product delivery. 

2.7.2. Policy and Regulation Considerations 

As precision agriculture increasingly relies on Artificial Intelligence (AI) to enhance 

digital remote sensing capabilities, enhancing sensor data management, as well as AI 

algorithms, increasingly become centralized with major private digital service platforms. 

While this may greatly de-risk underlying business in deploying various novel types of 

applications for farmers in supporting decision-making, it does run the risk of creating 

some monopolistic nature of the market that can potentially disadvantage farmers either 

via high rents or loss of ownership of their data. Moreover, the use of AI for digital 

service provision does not alleviate the need for government intervention in creating 

incentives for the provision of public goods. For instance, while remote sensing can 

provide more accurate information about the environmental footprint of certain farming 

actions, it cannot alone assure farmers take action to reduce the potential negative 

externality of land runoff from fertilizer uses that pollute nearby watersheds with algal 

blooms detrimental to water quality. Government intervention is critical in not only 

monitoring behaviors but also in providing incentives that shape behaviors toward better 

environmental management. Regardless of policy action by the public sector, there is 

still the need for a regulatory environment that allows for a rapid yet secure rate of digital 

technology adoption. This calls into question current liability insurance regimes that 

define responsibility in cases of technology-driven failures or damages, as AI in 

precision agriculture can potentially reduce risk-aversion behavior by farmers, thus 

requiring wider coverage at lower costs. Regulatory frameworks need to be altered to 
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incentivize innovation and adaptation of AI in precision agriculture. For example, lifting 

regulations around data storage and usage, especially confidentiality agreements 

between farmers and digital service providers, could increase the ability to pack different 

types of private data into one big package which could then be used to build or enhance 

novel tools with a wider market appeal. 

2.7.3. Sustainability and Environmental Impact 

AI has gained popularity due to its tracking capabilities and ability to reduce the human 

workload related to farm management. Utilizing AI approaches in PF models makes 

them more scalable and flexible, but answers to questions regarding sustainability and 

environmental effects remain unanswered. Examining empirical results on how AI 

improves resource use efficiency, farm income, labor and technical costs, carbon 

footprint, CO2 emissions, organic matter content, and crop yield, we suggest finish-up 

courses of action for better-addressing sustainability and environmental concerns 

regarding agricultural decision-making. Subsequently, we emphasize how incorporating 

some specific types of prior knowledge and additional requirements into the AI-enabled 

PF approach would help to shed light on various aspects of sustainable development. 

Given that one predictive task may produce opposite results for two different farms, we 

propose using specific approaches tailored for particular variables and indicators when 

estimating resource use efficiency. 

AI, adopting ML, DL, and ANN models, is certainly a solution to various problems PF 

models face. Consequently, policymakers and researchers have started promoting the 

use of AI technologies in PF models so that farmers improve their production while 

simultaneously aiming at reducing the environmental effects of such production. In this 

regard, it is recommended to seek a balance between PF models supported by AI and the 

aspect of output resource use efficiency. The primary focus of the necessary policies 

should be the relevance of AI technologies to resource use efficiency, economic 

development, environmental efficiency, and social responsibility. Numerous studies 

note that the advanced pace of progress in AI development indicates that its use in PF 

models can help accomplish previously announced goals regarding resource use 

efficiency, thus allowing the farmers to contribute to sustainable development. 

2.8. Conclusion 

Crop production is important for food security worldwide. As the population reaches 

nine billion in 2050, demand for food security increases, and resource access is 

restricted. Agricultural practices negatively impact the climate by generating carbon 

dioxide and methane emissions, but incentives toward more sustainable actions are 
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expected to affect positively the environment. Current practice recommendations mainly 

cover a small number of aspects of precision farming. Additionally, policies are being 

developed to implement recommended practices. Novelty in our schedule aims at 

providing a working integrated computational framework of everything related to 

precision agriculture that anyone involved in precision agriculture might need, and 

provide to those involved the means of developing more efficient future algorithms. 

Navigating the jungle of events, algorithms, practices, services, and research, is possible 

with help from an expert board, a help-desk service, a brainstorming room, and the 

appropriate tools. Precision Agriculture means collecting, and properly interpreting all 

data that relate to soil monitoring, plant monitoring and crop modeling, micro-weather 

forecasting, planning, and decision-making. Many problems on which to develop, and 

report solutions are present: spatial and temporal heterogeneous field maps, crop models, 

decision-making models, crop market evolution, economic aspects, and policies. In the 

agricultural world characterized by a valley of death between fundamental research, 

experimental tests of many different aspects in different conditions, and implemented 

products and services, one solution is to choose a few specific areas, optimize them, and 

common independent integrated processes and services. 

 

Fig 2 . 3 : Precision Agriculture: A Holistic Approach 

2.8.1. Summary and Implications for Future Agricultural Practices 

This work leveraged a range of artificial intelligence and data analytics methods, 

including unsupervised and supervised machine and deep learning and process 
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simulation models, to extract insights from relational, image, video, and simulation 

datasets collected from precision agriculture on farms. Applications included estimating 

corn nitrogen needs, predicting pest infestation and damage, predicting corn market 

prices, and simulating the relationship between fertilizer inputs and corn outputs. The 

work aims to combine new algorithms and remote sensing capabilities with traditional 

agricultural models to address practical problems relevant to producers. Applications 

were designed for producers’ use, combining model-based data fusion with user-friendly 

software. Precision agriculture, and in particular data-driven decision support for 

variation in inputs and management, has the potential to improve the sustainability of 

agriculture by increasing productivity in areas with favorable growth conditions and 

decreasing resource use or increasing quality in areas with less favorable conditions. 

Increasing concerns from consumers about emissions, pollution, and fertilizer use could 

translate into marketing advantages for technology adopters, and agri-businesses, 

lenders, and governments are already promoting the use of such new technologies. The 

question is what it will take to see rapid adoption, and whether policy implementation 

can increase that adoption. Despite the potential benefits, barriers to adoption remain. 

Producers have questions about return on investment, whether new technologies will 

work under their conditions, and for whom. 
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