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Chapter 3: Developing machine learning 

algorithms for improved diagnosis and 

prognosis 

3.1. Introduction 

Machine learning research has advanced quickly within the last decade, utilizing the 

availability of large data sets and data storage and processing advancements to develop 

state-of-the-art algorithms that rival and often outperform traditional statistical methods. 

Yet, while ML has been successfully applied in many fields of research from varying 

disciplines, including neuroscience, politics, criminology, ecology, and remote sensing, 

among many others, few biomedical researchers have explored the use of ML for 

improved disease diagnosis and prognosis. This is surprising, considering the fascinating 

and complex nature of disease, as well as the generalizability and flexibility of ML 

algorithms. In this chapter, we elucidate some key ML concepts in an effort to empower 

and excite the biomedical researcher community to further investigate the potential of 

utilizing ML techniques in diagnostics and prognostics (Bui & Zorzi, 2011; Belle et al., 

2015; Ristevski & Chen, 2018). 

As health care professionals know, disease diagnosis and prognosis is at the heart of 

most medical care. Accurate diagnoses guide treatment plans. Disease prognosis was 

traditionally based on the time to event estimates from curves or models built from a few 

sample characteristics. However, these techniques are limited, mostly due to the 

assumption of proportional hazards among different sample characteristics or the 

subjectivity of sample group prioritization and estimated cutoff values for grouping. For 

this reason, modern-day prognoses have increasingly turned to immune response – based 

gene expression signatures as observations from the extracellular components of the 

tumor microenvironment by high-throughput sequencing are shown to be more powerful 

than the traditional clinical and pathological variables. 
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 The numerous benefits of accelerating the integration of ML into clinical operations 

encompass robust model assessment and ready availability of models in real-world 

clinical use. Nevertheless, these tools alone cannot improve the safety, quality, and 

efficiency of care without appropriate development, deployment, and translation into the 

clinical workflow of healthcare professionals. Current efforts have primarily focused on 

prediction models in evaluating prognosis of disease and clinical outcomes (Zhang & 

Liu, 2010; Vaquero & Rodero-Merino, 2014). 

 

Fig 3.1: Developing Machine Learning Algorithms for Improved Diagnosis and 

Prognosis 

3.1.1. Background and Significance 

Machine learning is transforming medicine across subspecialties and teaching the next 

generation of providers about healthcare technology, supporting their objective of 

improving patient safety, outcomes, and experience while also addressing the value of 

care provided. A large enterprise ML effort involving a cross-departmental collaboration 

has been embarked upon to advance medicine and to improve patient care through ML 

products, some in routine operational use, not just proof-of-concept projects, with the 

approval of the Clinical Oversight Body for projects that impact patient care. These 

efforts facilitate the integration of data science and ML into hospital operations with the 
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potential to develop timely, cost-effective, and value-added ML predictive tools centered 

on diagnosis and prognosis of disease to automate the routine and support the providers 

across all. 

Over the previous decades, the availability of massive volumes of increasing rich data 

in biomedical informatics that includes longitudinal electronic health records, clinical 

omics research data via high-throughput technologies is increasing exponentially. ML 

paradigms have proven to be powerful tools for data-driven knowledge discovery, 

biomarker identification of disease, diagnosis, prediction of outcome/prognosis, 

rehabilitation, and treatment selection across all medical and healthcare domains while 

addressing both emerging and unmet clinical and biomedical needs. 

3.2. Background 

Machine Learning (ML) has transformed many domains since its inception, allowing for 

the automation of processes, uncovering and modeling patterns in data, and allowing 

expert-level provision of services. In Healthcare, these capabilities are leveraged 

specifically to improve services such as diagnosis, prognosis, and personalization. 

Modern computer-aided algorithms rely strongly on pattern recognition engines driven 

by ML, analyzing often massive health datasets. These health datasets typically include 

images of tissues or organs, clinicians' notes, medical histories, genomics, proteomics, 

and many more sources. Such huge datasets bring with them both challenges of 

management and challenges of pattern exploration. 

The unique societal vision of healthcare to improve and maintain the well-being of all 

citizens mandates trust in the systems that deliver this service. As a unique domain with 

its own science-based methodology and structure of rewards and penalties, healthcare 

now fosters successful collaboration for interlocking areas. Such collaboration among 

computer science research, and clinical specialty research and industrialization, tends to 

focus and broaden competing engineering solutions to ML tool processes, architectures, 

and evaluation. Such dynamics hold the promise that healthcare will lead in the inception 

and retention of a trusted paradigm, rather than wildly attempting automatic direct ML 

replacement of people that leads in so many other fields. 

Implementation of computer-aided diagnosis systems began in earnest when computing 

resources became affordable. With the first commercial systems in the early 1990s, 

clinical impact was modest, but both academia and industry pursued the potential of ML-

based research tools to discover treatment solutions unavailable to human experts using 

classical methods. After the initial hectic rush, a clarion call sounded around the turn of 

the millennium – external validation would be required for selection or endorsement of 

any final “diagnostic” ML tool, before doctors would trust any such assistance. Trust 



  

25 
 

here means decades-long familiarity that ML-based systems, provided through clinical 

trials, achieved superior or similar performance to clinical judgments. During the past 

two decades, trust has slowly increased through the first successful clinical candidates 

in radiology and dermatology, and has expanded further through informatics to 

prediction in other clinical specialties. 

3.2.1. History of Machine Learning in Healthcare 

Machine Learning (ML) is an artificial intelligence (AI) area focused on the creation of 

algorithms that learn in an incremental way from a stream of data. ML has been used 

since the mid-1950s for various applications, and its use in different fields have grown 

every year, becoming a powerful tool to solve complex problems. Examples of some key 

historical events in ML development include the following. In 1957, Frank Rosenblatt 

proposed the Perception model, the first neural network implementation capable of 

classifying data in two classes. In 1967, the nearest-neighbors algorithm was created, 

which associates incoming objects to the closest object in a previously labeled training 

dataset. In 1970, the Backpropagation method was proposed for training multilayer 

perceptrons neural networks. In 1986, a model for backpropagation was published, 

which brought back interest in neural networks. In 1996, a dataset for training and 

evaluating visual object detection systems was created. In 2012, a deep convolutional 

neural network that created a breakthrough in image recognition was proposed. The 

increasing availability of high-performance computing platforms and large-scale labeled 

databases from web services in recent years have enabled the huge growth of neural 

networks as a powerful ML technique. 

The application of several ML techniques has become a widely used tool for the 

healthcare area in recent years. To create ML applications, two main challenges and 

roadblocks commonly encountered are the size of the healthcare datasets and their high 

dimensionality. Machine learning techniques have been used for developing algorithms 

that support the assessment, diagnosis, and monitoring of patients and possible maladies; 

support trained doctors with insights into a patient's diagnosis based on the patient's 

clinical information; and prognose the risk of developing certain diseases, as well as the 

risk of mortality.  

3.2.2. Current Trends in Medical Diagnostics 

Translational research is a relatively new paradigm that was crafted to reduce the time 

from basic scientific discovery to the implementation of new medical technologies. The 

idea of translating research findings to healthcare solutions is still novel and few medical 

industries have seen much impact from the actual translation process. Subsequently, few 
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clinical experts have been exposed to the incremental implementation of new 

technologies discovered through translational research; this leads to hesitancy on the part 

of clinicians when faced with applying results generated by this new process. However, 

the potential impact is unimaginable; with rudimentary technologies such as sensor 

networks, wireless networking, and machine learning, translational research can 

drastically reduce the time it takes to recognize a particular disease, monitor its progress, 

and recognize that it is contained or becoming debilitating. 

Currently, presented diagnostic methods are starting to garner interest from the 

healthcare community due to the availability of the necessary technological platforms. 

The first interesting trend is a move towards collecting rich clinical data collections. 

Innovators are starting to think differently and ask: "Why not build applications that take 

advantage of the input from the patient", "Why not have skilled annotators confirm and 

augment the data", and "Why not build and maintain a rich data set of ground truth 

disease states linking to data for the last few years?" Because tools are becoming 

available, the door is gradually being opened to gather rich, data-heavy diagnostic 

systems at considerable efficiencies and cost. Electronic health records, direct 

information input systems, incentives for data collection, specifying disease treatments 

on a broad rather than targeted scale, increased access to expectant mothers and infants, 

the encouragement of patient self-monitoring portals, the entrepreneurial focus on health 

technologies, increasingly lower-cost high-velocity sensors and processing platforms, 

and incentives to lower healthcare costs are all contributing to this trend.\ 

3.3. Machine Learning Fundamentals 

Machine learning is a branch of artificial intelligence that studies the design and 

development of algorithms that enable computers to perform tasks that typically require 

human intelligence. These algorithms use machine learning models to evaluate different 

possibilities in the internal search for the best option, which usually involves a function 

approximation for error minimization. Machine Learning draws skills from statistics, 

computer science, neural science, inferring theory, algorithm complexity theory, 

optimization, knowledge representation, and decision theory. Statistical analysis aids to 

measure uncertainty, while computational system attention is needed in the 

implementation of realistic problems. Neural or cognitive science contributes to a better 

understanding of the learning process. Decision theory helps to model types of decision-

making problems, and optimization study seeks the most efficient solution to the 

problems. 

Types of Machine Learning 
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Machine Learning has been classically divided into three types, according to the kind of 

supervision retrieved from the problem. In supervised learning, the training data is made 

up of pairs, where the first element is the input and the second is the expected output or 

called label. Then, the goal is to learn a function from the training data so that the 

expected output corresponds to the input for all elements in the dataset. In supervised 

classification, all outputs are discrete and the training data must be representative enough 

so that the function is capable of describing the output value for any input in the feature 

space. In supervised regression, outputs may take continuous values. In unsupervised 

learning, the training data is made up of only inputs, with no expected outputs. Then, the 

goal is to find patterns in the data, and to imply different data internal structures. Finally, 

in reinforcement learning, a model learns to interact with an environment to optimize its 

outcome minimization or maximization. It can be seen as the generalization of 

supervised learning to some cases where not all action inputs are available during the 

training stage, as the agent is trying to learn the best model to choose the best possible 

action for each situation. 

 

Fig 3.2: Machine Learning Fundamentals 

3.3.1. Types of Machine Learning 

Machine Learning is a method based on a computer training method capable of self-

discovery signals, rules, and predictive patterns derived from large amounts of data via 
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intelligent algorithms. Supervised learning is the technique that consists of creating a 

prediction model from a sample of records, in which the variables that have to be 

predicted are known with certainty. The values of the variables that have to be predicted 

are called labels, thus creating a two-fold problem: a classification problem, when the 

number of possible labels is finite, and a regression problem, when the number of 

possible labels is uncountable. In the case of classification problems, the labels may be 

unbalanced; that is, the number of instances of some labels is much larger than the 

number of instances of the remaining labels, which is a frequent problem in many 

domains. Besides being unbalanced, classes can be overlapping or not. The task of the 

created model is to predict the most probable label associated with a new data instance. 

In unsupervised learning, the identification of the predictive structure or model of the 

data set is not guided by labeled instances like in supervised learning. The inference 

process in unsupervised learning tries to discover a mapping that describes the structure 

of the observed data. Semi-supervised learning is a middle ground between supervised 

and unsupervised machine learning tasks, which is increasingly commonly used in 

practice because of the small number of labeled instances. Typically, in semi-supervised 

learning, a small number of labeled records are accompanied by a large number of 

unlabeled records when both records are the same. The purpose of semi-supervised 

learning is to better predict the unlabeled instances. 

3.3.2. Key Algorithms and Techniques 

Machine learning applications can be distinguished by the way knowledge is produced. 

Supervised learning has a teacher who exerts control by providing an understanding of 

how to recognize instances of a signal class or of several classes. These supervise 

existing models that have been previously trained, providing the labels needed to have a 

good recognition and to prevent overfitting. Unsupervised learning does not have a 

teacher telling it what features are to be extracted. It examines the instances available 

and tries to detect the underlying structure, establishing an internal model. It is believed 

that both supervised and unsupervised learning have their roots in behavioristic 

psychology. Semi‐supervised learning is a third type of learning, albeit less frequently 

used, which has the features of both previous types of learning. For example, there are 

situations in which part of the data comes labeled with class information while most of 

the data is unlabeled. 

In supervised learning, algorithms learn a model from known examples that consist of 

instances of input data associated with the correct output. This model is then used to 

predict the output for unknown instances. There are two formats for supervised learning: 

Classification is used when the output consists of labels taken from a finite set, whereas 

regression is when the output is a real value. In both cases, it is assumed that the output 
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is a function of the input processed by a model, so determining which model produces 

the best results is the aim of supervised learning methods. A model is generally learned 

through a training process driven by a learning algorithm that uses a training set. 

3.3.3. Data Preprocessing Methods 

Introduction of any system begins with preprocessing. In cellular and molecular biology, 

data involves structures and relationships that are frequently complex, and that we do 

not yet fully understand. In healthcare expenses, the mass amounts of data are of various 

data types and formats. Big data usually involves three Vs: the size of data, the 

abundance of variety that must be exploited, and the velocity of data. The challenge is 

found in drawing strong inferences despite the three Vs. The three Vs can heavily 

increase noise in high-volume, high-dimensional datasets. Because of the resulting high 

uncertainty in big data trends to limit interference power, preprocessing is essential for 

obtaining satisfactory results in almost all machine learning studies. The purposes of 

preprocessing are numerous, and include but are not limited to: (1) reducing the number 

of features in data, (2) summarizing important data-related relationships for the analysis, 

making them easier to understand, and visualizing them (3) organizing the unstructured 

inputs before applying existing or newly-developed machine learning algorithms, (4) 

accelerating the execution time and improving resources used by the machine learning 

algorithms, and (5) removing bad quality data points, and compensating for missing 

values in datasets. When the effects of the three Vs are significantly reduced through 

preprocessing, it becomes feasible to use machine learning algorithms to extract useful 

information from datasets. This useful information can consequently help with objective 

specification and optimization, and automated decision making in healthcare systems. 

The data preprocessing stage is an unavoidable step in any real-world machine learning 

pipeline. 

3.4. Dataset Acquisition 

The power, robustness, and adequacy of machine learning algorithms depend on the data 

characteristics. The accuracy of any diagnostic tool is dependent upon the type and 

quality of the training data. In this chapter, different sources of medical data and their 

characteristics are discussed and how this data is acquired with quality and integrity is 

illustrated. Medical data is heterogeneous, consisting of several data characteristics such 

as signs and symptoms. There are many types of medical data such as electronic medical 

records, signal data, image data, various types of medical profiling data, mental health-

related data, cardiac data, and many others. This data is widely accessible, and many of 

these datasets are made publicly available. These datasets can be analyzed to extract 
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various patterns, which can be helpful for the development of various predictive tools 

such as decision support systems. There are several works related to healthcare that have 

been developed around these publicly available datasets to support or assist both the 

medical professionals as well as patients, which perform well and some of which show 

accuracy comparable with medical experts. 

Data integrity means maintaining and assuring the accuracy and consistency of the data 

over its entire life-cycle and data quality means the data is exactly what the user is 

looking for – and serves its intended purpose effectively. Quality determination is a 

crucial process involved when mining data from various sources, as a dataset with poor 

quality can lead to severe consequences for the research study. Hence, it is critical to 

determine data quality before using any datasets. Quality checks can ensure the data is 

accurate, complete, consistent, timely, trustworthy, and needed for the analysis. In 

today’s world, the explosion of available data has revolutionized the methods by which 

health services are organized with advances in information technology, leading to a 

wealth of available health-related data. 

3.4.1. Sources of Medical Data 

In this section, we will discuss the major data sources for machine learning research and 

how these data sources have been instrumental in making various machine learning 

algorithms and models. The ability of a machine learning algorithm and model to learn 

underlying patterns in unseen data is dependent greatly on the data quality and 

availability. Thus, while these publicly available data repositories might not help with 

the specific fine-tuning of a specific algorithm for a specific domain, their presence in 

the academic landscape of machine learning enables the general trend of improvement 

and advancement in this field. While creating a machine learning model for clinical 

application, one would encounter the challenge of data availability, given the strict 

regulatory guidelines and policies around personal medical data usage. In this section, 

we will focus on the publicly available sources out there and their descriptions. 

For supervised learning in the clinical or medical domain, usage of labeled data is the 

cornerstone. The standard pipeline is considered to not just train a model solely once it 

has proven useful, but continue to return to use it in other circumstances and when it 

under-performs in that domain, rather than starting from scratch. The knowledge thus 

gathered through data from years of research on a specific area will make algorithms for 

that domain more applicable to problems, overcome any semantic gap between technical 

fundamentals of the model and its local application, and build confidence in its results 

by trying to solve similar problems and driving research in that direction. As more 

academic datasets become available, algorithms on those datasets get better refined and 

presented. 
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3.4.2. Data Quality and Integrity 

Exponential advancements in medicine, photonics, digital imaging and computing have 

made medical data acquisition a rapid and fruitful process. Capable of in-depth 

investigation of structural and functional attributes, data can be acquired in multiple 

domains, including genomics, transcriptomics, proteomics, metabolomics, morphomics, 

radiomics and phenomics. Voluminous datasets in the form of electronic health records, 

whole slide images, and multi-omics have catalyzed the adoption of AI and ML in 

clinical investigation. 

Despite the increasing availability of medical data, a valid objective trained model is 

difficult to achieve. One of the contributing factors could be the quality and integrity of 

datasets which is not frequently recognized. Poor quality datasets in terms of class 

imbalance, ground truth incorrect labels and overfitting duplicates could result in 

frequent model overfitting or performance deterioration during validation phase. For 

example, missing clinical outcomes or incorrect labels when building models for early 

detection of neurodevelopmental disorders could lead to misdiagnosis. Overfitting 

duplicates, that tend to overrepresent a certain class, could negatively influence a ML 

model trained for class prediction and can err in unseen images, leading to negative 

downstream effects. It has been shown, for various disease LBP-MOs, that 

radiogenomics are often impractical due to the considerable overlap in the distributions 

of several radiomic features in selected areas. Furthermore, lack of balance or presence 

of artifacts could also impair the training of the ML models. Inconsistencies in datasets 

collected from academic centers versus community healthcare centers are also a factor 

that needs to be given due consideration as they may result in a ‘ML bias’ that could 

affect health care equity. 

3.5. Feature Selection and Engineering 

Feature selection refers to the process of selecting a subset of relevant features for use in 

model construction. Feature selection helps to narrow down data dimensions which leads 

to comparatively easier optimization, faster computations, reduced storage space, and 

less data to examine. In this regard, feature selection can be seen as a process for 

enhancing the overall accuracy of a developed model by reducing overfitting using 

pruning techniques. Feature selection can also be employed by algorithms operating on 

the instance level. An informative feature set typically contains low-dimensional yet 

meaningful descriptors of relevant parameters. Selecting the wrong features, or having 

too many features, will reduce the predictive accuracy of the model and increase the 

computation time. In predictive modeling, feature selection methods can broadly be 

classified into three categories: Wrapper methods, Embedded methods, Filter methods. 

Wrapper methods are often considered as being the best all-around feature selection 
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strategy because they usually result in the most predictive models. However, they also 

are the most costly feature selection strategy. Wrapper methods repeatedly use the 

algorithms that model the data to actually evaluate the feature sets. 

 

Fig : Machine Learning Algorithms for Improved Diagnosis and Prognosis 

There are a number of widely-utilized techniques for feature engineering including 

Univariate feature selection, Recursive Feature Elimination, Feature Importance from 

Tree-based estimators, SelectFromModel using feature importances, SelectKBest using 

statistical tests, Parent-Child feature selection with clustering, LASSO regularization, 

ENET Model, Ridge regularization. Expert knowledge about the datasets is often 

insufficient and machine learning is frequently required to identify those measurements 

and features that can be used to build efficient classification and regression models.  

3.5.1. Importance of Feature Selection 

Feature selection is an important component of model building in such a pipeline. There 

are two key reasons why we would want to reduce the number of features in the model. 

The first is for model accuracy and the second is for model interpretability. High 

dimensional datasets can lead to overfitting as the classifier will be fitted to noise in the 

dataset rather than the signal. An overfit model may source high accuracies in the 

training set, but it is unlikely that the classifier will generalize to unseen datasets. Unlike 

the old adage “more is better,” more features is not always the best approach, and, in 

fact, it can lead to the opposite outcome. Additionally, many machine learning 
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algorithms are sensitive to the number of features and can take more time if more features 

are included due to the increased complexity. 

Many machine learning algorithms have difficulty with high dimensional spaces given 

that their decision boundaries and risk surfaces can be complex in shape. Consequently, 

the challenges imposed require exponentially more data compared to lower dimensional 

datasets to identify the underlying signal. Although supervised algorithms can have the 

best predictive accuracy with high dimensional datasets, few generalize well. 

Furthermore, it is impossible for unsupervised algorithms, which learn without feedback, 

to model high dimensional data optimally. Other machine learning algorithms highlight 

that they will not manage high dimensional data well. It has been documented that high 

dimensionality without proper consideration can yield empty models when evaluating 

such algorithms. 

3.5.2. Techniques for Feature Engineering 

Feature engineering is the process of transforming raw data into features that better 

represent the problem to the predictive models, resulting in improved accuracy. 

Although this step is arguably the most challenging and important part of the 

development process, it is often overlooked by machine learning practitioners that rely 

heavily on automatic feature extraction techniques. A good way to create new features 

is to apply domain knowledge to define functions that model the way new features relate 

to the predicted target. Domain knowledge is often used to specify new features based 

on combinations of raw observations, such as applying mathematical functions to 

individual measurements or groups of measurements, or to enable advanced data 

presentation. Feature transformations can also be used to increase robustness against 

noise and enhance the coherence of data that may be randomly distributed, such as 

applying power transformations to reduce skewness. 

The recursive feature elimination method is a training set-based approach for feature 

selection that reduces the data dimensionality by recursively considering smaller and 

smaller sets of features. This method uses a model that assigns weights to each input 

feature and is applied to eliminate the lowest weighted feature until a stopping criterion 

is reached. In applications that use linear regression with L1 regularization or random 

forests or gradient boosting with tree-based significant features, the model that assigns 

importance scores to each feature is internally generated as part of the fitting process, 

and its outcome can be used to prune and select the optimal set of relevant features. For 

L1-regularized linear regression, the L1 penalty is used to zero out features in the set 

which are considered less relevant than others. For model-based feature selection, a 

model is fitted to the complete feature set and the most significant features are selected. 

Features that are deemed unimportant through significance tests are eliminated. 
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3.6. Conclusion 

The use of algorithms in clinical settings is becoming more common for diagnosis and 

prognosis in a number of widely heterogeneous diseases. In addition, previously 

unapproached tasks may benefit from such algorithms, including uncertain diagnoses 

based on clinical symptomatology; prediction of disease severity and risk stratification; 

discovery of new disease endpoints; monitoring of disease course and treatment 

response, and help in triage, directing patients to the best healthcare resources available. 

These algorithms may have clear advantages over current tools, including 

standardization, higher sensitivity and specificity, especially when working with clinical 

data that are unapproached or only superficially approached, faster calculation in large 

data sets, or the ability to integrate heterogeneous data. However, while they may 

significantly assist clinicians in their work, their function should be complementary to 

clinical intuition and experience. They also require thorough validation on well-designed 

datasets representative of clinical practice, and long-term safety evaluations, to ensure 

that their implementation in clinical practice does not lead to adverse outcomes. 

Despite the ciphering effect of algorithms, particularly deep-learning methods, the 

architecture of these may be fully transparent and explained in lay terms, to facilitate 

understanding by clinicians. Mechanistic algorithms based on Bayesian approximation 

are good examples of clear insight into likelihood functions driving responses, and easy 

computation for clinical applications. It is likely, as more clinical data becomes 

available, that new architectures will emerge that are made to understand the structure 

of clinical data contained in score matrices. We expect, and advocate, that mechanistic 

models should be always tested against data-driven models on progressively larger 

datasets to ensure that optimum solutions are available as clinicians demand direct 

support by these technical tools. 

3.6.1. Emerging Trends 

Machine learning is becoming more closely linked to e-health. The burst of interest in 

machine learning and deep learning propelled by modern digitization is spilling over to 

prognosis and diagnosis of diseases in healthcare. Enormous efforts are being made to 

apply machine learning to diverse biomedical data and problems. On the data side, 

massive repositories of genomic, imaging and electronic health record data are opening 

up for large-scale innovative discovery, and exciting new machine learning and deep 

learning methods are developing at a rapid pace, including feature learning, weakly and 

self-supervised training, reinforcement learning, continuous representation learning, 

theory-driven learning and creative generative models, to name a few. In addition to 

conventional supervised learning, unexplained variation learning, contrastive modeling, 

and various forms of causal regularizations are emerging as powerful techniques. These 
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innovations may uniquely position machine learning or deep learning to tap onto large 

biomedical datasets and advance key healthcare goals, including identifying risk factors, 

diagnosing the disease correctly, estimating natural history of disease progression, 

predicting serious adverse outcomes and supporting treatment and health management. 

Machine learning and deep learning research in healthcare usually focus on traditional 

supervised learning methods, where annotated samples in the form of matched input-

output pairs are used for training.  
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