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Chapter 7: Big data techniques for 

analyzing patient data collected from 

medical devices 

7.1. Introduction 

Big Data refers to the large amount of complex data that emerges in real time and needs 

a huge amount of storage, computing infrastructure, software as well as expertise to 

analyze and infer insight. The advent of the intelligent processing devices embedded in 

the medical devices and sensors has led to a paradigm shift in the healthcare industry. 

Nowadays, clinical dataset for a patient is available in various forms such as Electronic 

Health Record, imaging data, external sensor dataset collected from various devices, 

motel medical devices and genomics. The integration of the patient data collected from 

different sources is essential for holistic patient management through early and accurate 

diagnosis, preventive care as well as personalized treatment (Dubey et al., 2017; Salem, 

2021; Rauniyar et al., 2022).  

However, the large volume and distributed nature of patient data has made this task 

challenging. The need for new advanced emerging technologies namely wearable 

monitoring devices and imaging sensors has led to the evolution of the Digital Medicine 

Era. The main advantage of Digital Medicine is the availability of patient data trials over 

a period of time, which can be used to create the Individual Patient Digital Twin. 

Intelligent Data Analytics techniques from the field of Data Science termed as Big Data 

Techniques are now being heavily utilized in Digital Medicine to drive important 

decisions and treatment pathways. Machine Learning and Deep Learning are the most 

popularly used Big Data Techniques to drive insight and predictions from the patient and 

the disease related data. Where the traditional ML Algorithms most popular among 

healthcare practitioners include Numerical Prediction Models such as Logistic 

Regression, Support Vector Machines, k-Nearest Neighbors, Decision Trees, Random 

Forests. These algorithms have been popular due to their small implementation 
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overhead, small footprint in terms of memory, CPU cycle and can be run using Open 

Source platforms easily and efficiently (Tuli et al., 2019; Shaik et al., 2023). 

 

Fig 7.1: Big Data Techniques for Analyzing Patient Data Collected from Medical 

Devices 

7.2. Overview of Big Data in Healthcare 

Big data in healthcare refers to vast amounts of diverse, complex, and rapidly growing 

data, which demand advanced methods and techniques to enable the capture, storage, 

management, analysis, and visualization of the information. The convergence of the 

relentless and exponential growth of computing systems operating in clinical, 

biomedical, and operational domains of the healthcare ecosystem; increasing computing 

and storage capabilities creating ever-decreasing costs of hardware, software, storage, 

and network; and the growing adoption of enabling technologies is contributing to the 

data deluge on the healthcare ecosystem, becoming the perfect storm where technology 

can advance in otherwise unattainable new areas. The fields of genomics, proteomics, 

metabolomics, and other omics are heavily contributing to this data explosion. 

Multiple types of big data generated by the healthcare ecosystem stakeholders inundate 

the internet and enterprise data stores. Clinical data such as Electronic Medical Records 

and Electronic Health Records, where the biometric, clinical, demographic, and 

historical health information of patients are stored in a digital format; life sciences data 

such as genomics, transcriptomics, proteomics, epigenomics, metabolomics, 
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microbiomics, and other omics; Internet of Medical Things-based data generated by 

Medical Devices and Internet of Things-enabled biometric sensors; imaging data; 

patient-generated health data, where patients provide and store their biometrics on 

mobile devices; and public health data such as vital records, diseases registries, 

syndromic surveillance, and census data, have been contributing to the digital disruption 

of the healthcare ecosystem, adopting computational technologies. Artificial 

intelligence, machine learning, big data analytics, deep learning, and statistical modeling 

have already started or are on the cusp of transforming healthcare systems globally, 

driven by driving factors. 

7.3. Types of Medical Devices 

Medical devices are classified based on the time frame of their operation. They are 

classified into three major types: wearable, implantable, and remote monitoring devices. 

Wearable devices are used for monitoring a patient for a short to mid-term time duration. 

They are noninvasive and do not require surgical procedure for wearing them. Normally, 

they detect and monitor a patient’s health condition or disease in an unattended mode. 

Implantable devices are those which are inserted in a patient’s body for a long-term basis 

(usually more than 30 days). They are implanted in a patient’s body through surgical 

procedures and stay inside the body for days, months, or even years. Implantable medical 

devices provide continuous monitoring of critical events or health conditions or diseases 

of patients from within the body. Remote monitoring devices are designed to assess a 

patient’s health condition or disease either locally or from a remote location. However, 

both the patient and the healthcare professional have to be in contact with each other 

during monitoring in real-time. The next subsection discusses different types of medical 

devices in detail. 

Wearable devices are battery-powered or energy scavenging systems equipped with 

sensors. They are designed to be worn on the body for measuring vital signs or other 

activities. They are available in the formats such as patches, belts, glasses, watches, 

clothing, and shoes, and can operate for a few days to weeks with frequent replacement 

of batteries. Wearable devices can be classified as body-worn electronic devices, smart 

textiles, peripherals, etc. Body-worn electronic devices refer to unobtrusive patches, 

belts, or smartwatches that are strapped or worn on the skin. Smart textiles are fabric and 

threaded-based articles that are embedded with electronic textiles. Sensor-based 

electronic peripherals are shoes or glasses that have sensors for capturing or monitoring 

a patient’s data. 

7.3.1. Wearable Devices 
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Wearable medical devices or simply wearable devices are the type of medical equipment 

that patients wear and monitor important biomedical parameters. The wearable devices 

distinctively have two features. First, it can provide timely critical health-related data for 

analysis. Second, it should not interfere with the normal daily routine of a patient. The 

wearable devices can be extremely helpful since they can track patient health data 

continuously. This rapid real-time surveillance is especially advantageous during periods 

of post-surgery recovery or times of self-isolation. In recent years, smart technology has 

entered the field of medical monitoring. The development of intuitive smart technology 

accelerates the integration of a wide variety of wearable devices with ambient telemetry 

technology at an accelerated pace. 

Wearable devices have increasingly become an integral part of the implementation of 

telehealth services today. This is mainly due to the sudden outbreak of the pandemic and 

the growth of the global technological market. The demand for low-cost wearable 

devices for health monitoring and Remote Patient Monitoring applications during the 

pandemic increased several-fold because the pandemic highlighted the fact that patients 

with chronic diseases are especially vulnerable to an infection. This led to an increasing 

demand for advanced and innovative low-cost wearable sensors equipped with 

technologies that enable continuous assessment and monitoring of physiological signals 

from patients to facilitate timely intervention. The field of wearable biosensors has 

continued to grow in recent years. Wearable devices are widely used for vital sign 

monitoring, respiration monitoring, and wearable ECG monitors. Wearable devices can 

be worn anywhere and are flexible to wear, they have also assisted in the development 

of wrist- and clothing-based wearable sensors that are comfortable and fit for all-day 

use. 

7.3.2. Implantable Devices 

Implantable medical devices are therapeutic devices that are placed inside the body using 

surgical techniques. Pacemakers, defibrillators, drug delivery pumps, orthopedic 

implants, and prosthetic devices are examples of commonly implanted medical devices. 

The patient data collected from these devices is exercise performance data such as stroke 

volume, cardiac output, tidal volume, and respiratory rate; activity detector sensor data 

for motion classification; remote device configuration data available as event logs; 

biometric data available from embedded sensors; patient-centric data available from 

questionnaires; data incorporated from external monitoring devices; device-

conditioning-assisted and clinical-coded medical records; device-assisted electrogram 

signal data; and related information resources. The rapid advancement of 

microelectronic technologies has led to the development of miniature implants that 

utilize implantable sensors for in vitro and in vivo biological parameter monitoring. 
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These tiny devices are capable of sensing, recording, and transmitting physiological 

information via wireless communication protocols. 

7.3.3. Remote Monitoring Devices 

Remote medical monitoring is becoming part of the standard mode of patient care. 

Remote monitoring devices, which provide insight into how patients are progressing post 

intervention, are becoming a regular part of standard operating procedures in hospitals, 

clinics, and at-home patient care. These devices include things such as implanted and 

external continuous glucose monitors for diabetic patients, implanted cardiac monitors 

for arrhythmia detection, implanted hemodynamic monitors following heart failure 

patients postdischarge, wearable activity monitors, prosthesis-integrated load cells, and 

medication adherence monitoring devices. These devices are primarily focused on health 

maintenance. Devices designed for internal surveillance following patient intervention, 

such as surgical techniques, may also be included in the list of remote medical monitors. 

The global trend in healthcare is towards personalized preventive medicine focusing on 

early disease detection and prevention of morbidity and mortality utilizing risk factors 

and disease predictors. Remote medical monitoring systems also include algorithms and 

clinical decision support systems to predict disease processes, prevent patient 

readmission, avoid patient morbidity, and provide real-time data for healthcare providers 

to proactively manage the health status of monitored patients. These types of devices 

usually use internal or external telemetry to transfer observed data from the patient back 

to monitoring systems managed by healthcare providers for post-intervention morbidity 

prediction. Telemetry also enables communication from the healthcare provider back to 

the monitored patient for data sharing and health maintenance reporting. 

7.4. Data Collection Methods 

Data collection methods have grown considerably over recent years with the increase in 

the accessibility of open datasets, APIs, and sensor networks. These novel data extraction 

and analysis techniques enable researchers and industry experts to leverage enormous 

sensor datasets to extract valuable insights and discover hidden patterns from them. 

Recently, there has been a lot of effort towards optimizing various methods and 

frameworks for processing and extracting knowledge from sensor collected data. On the 

front of biomedical research, researchers have recently turned their attention to 

developing novel techniques for monitoring, processing, and analyzing patient data that 

has been streamed or collected from various biomedical sensor devices. It is expected 

that in the near future, various physiological signals that were previously collected in a 
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controlled environment would be continuously monitored and analyzed using advanced 

decision making algorithms. 

As discussed earlier, two common methods for data management are typically utilized 

by researchers. The first method is based on real-time data flow from relevant data 

sensors or devices continuously. This means that as soon as the data is generated from 

the sensor devices, it is processed either on-device or in the cloud and ultimately 

transferred to a main database which consolidates all such data from various connected 

devices of interested patients. This model resembles what is currently offered by many 

medical device manufacturers who continually collect health data from their patients for 

clinical management of patients. The second method is the batch data processing model, 

whereby several patients are monitored over a period, and their health data is collected 

periodically and compiled to create a large dataset which is then stored in the database 

for validation and research purposes. Both methods have their advantages and 

disadvantages based on various circumstances and available resources. 

7.4.1. Real-time Data Streaming 

Chapter Summary Big data analytics for medical devices demand capturing a diversity 

of devices and sources. Current data collection methods impose network architecture, 

information carrier mechanisms, and transferring protocols restrictions on the kind of 

data available for further analyzes. It may be an asset for certain small big data classes. 

Typical practical purposes are the streaming real-time data from the access level to the 

aggregation and transferring level and the batch transferring from the aggregation to the 

access level of the IoT network architecture. In this chapter, we describe the practical 

issues related to the data collection of standard commercial IoT architectures for the big 

data field. Though out of the typical architecture, we focus on the wireless body area 

networks example. 

Real-time Data Streaming In practice, every standard IoT topology proposes a variety of 

purposes for both the access sensor level and the transferring connectivity level. The 

characteristics imposed by sensors and their local contact with the measured subjects 

and actuators concerning proximity, energy, foreign interference, access, and burst of 

parameters restrict the range of applicable medical devices, wearable or implantable, to 

a quality class. Medical devices must operate for long periods of time and make reliable 

measurements on the wearers. The limited energy resources open big challenges in 

clustering the sampled information, data fusion techniques, priority data-based 

transmitting, and the wearable processing capability. These limitations impose the use 

of proprietary sensors and custom-made firmware that restrict the variety in the 

measured parameters. Also, the lack of diverse surplus information captured can 



  

126 
 

compromise the expected quality for medical big data analytics, introducing biases 

related to the missing not at random mechanism. 

 

Fig 7.2: Real-time Data Streaming 

Appropriately chosen and combined, these real-time and reduced data kinds might help 

monitor particular populations and detect critical states and events, using established 

wearable or implantable devices. In that direction, aperiodical fast data collection might 

also exploit the characteristics of periodical parameter variations to jump aperiodical. A 

compromise between the capturing device quality and the big data purpose must drive 

the interface design engineering, especially for neural recording devices. These devices 

face the biggest challenge of the energy resources, needing complicated power transfer 

fair rules to enable periodic performed protocols. 

7.4.2. Batch Data Processing 

Very commonly, an initial biomedical analysis is unnecessary, and thus the data remains 

in the devices for an extended period of time (up to several months) until a specific 

medical condition requires the physician to extract the contents. In such cases, the 

analysis is not performed in real time: these are batch analysis cases. Also, when heavy 

analysis is required, it is very common to execute all of these processing steps at a later 

time, fully isolated from the patient. For this reason, batch processing is extremely 

common in the medical area. The batch processing interactions occur between the 
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biomedical device that collects the information in files and a remote server that handles 

a multitude of operations on sets of data contiguous in time from different patients. 

Within the biomedical field, several batch data processing systems at public level already 

exist, which allow for certain analyses to be performed on patient samples in a general 

way. Some of them charge a fee for the use of their data analysis infrastructure and some 

others are free. The paid systems commonly contain powerful servers connected to 

extensive net storage and are generally focused on a specific area of application. The 

free systems are more numerous and diverse, covering multiple application fields, but 

they require that the researchers develop their own sequence of programs to retrieve and 

when necessary reformat the input data, calling the specific applications and then 

collecting and processing the output data on patient scale. In exchange for the effort of 

building these orchestrated sequences of functions, the researchers of these free systems 

have made available high-throughput specific applications operating on powerful 

servers. 

7.5. Data Storage Solutions 

As shown in the fourth phase in our roadmap is data storage. After the processing steps, 

the data is ready for analytic efforts during the exploration and analytic phases, during 

which the data will be queried multiple times. Typically a data storage system will be 

utilized during the entire exploration and analytic phases. Many factors factor into the 

decision of what data storage solution to utilize including project timeline, technical 

capabilities of the team, size and complexity of data, required performance level, and 

cost. These considerations will guide the decision toward options being potentially 

stored in cloud services, utilizing on-premises servers, or being implemented with hybrid 

options. 

There are many cloud storage services popular to use for big data projects. One provider 

offers a collection of services to aid in storage, processing, and frameworks specifically 

designed to work with big data. Another offers a relatively new player on the market that 

focuses on being an analytical database and utilizes the cloud for storage and compute 

operations. A third provides similar storage capabilities and functions for handling big 

data through its cloud services. These cloud adoption options provide flexibility in the 

amount of resources provisioned and are ideal for cases where the project team is 

unprepared to invest in physical infrastructure like rack servers with scalable storage. 

One key challenge with the cloud option is related to keeping costs low, especially in 

cases where long-term permanent storage is needed and retrieval of previous data values 

is not frequent and sudden spikes of traffic cannot be forecasted. However, many 

companies utilize these services for their lower barrier of entry cost based on limited 

project sizes and budgets. 
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7.5.1. Cloud Storage 

In our information-driven age, healthcare organizations are continually challenged to 

find ways to maintain operational efficiencies while keeping patient care costs in check. 

One viable solution to achieving this operational health is the adoption of cloud storage 

solutions – shared resource pools of data storage made available by third party providers. 

Moving data to the cloud offers organizations viability in both flexibility and cost, as 

resources can be expanded on-demand and there are no hefty upfront hardware costs. 

Because user sessions as well as storage demand can be intermittent throughout the 

office hours, the pay-as-you-go pricing feature associated with cloud virtual storage is a 

financially appealing option. Organizations are also able to obviate the burden of 

dedicated, on-site IT resources who must implement and perform routine maintenance 

on an in-house storage solution. Despite these advantages, the move to cloud data storage 

is not without risks. Healthcare patient data is now increasingly regulated through 

compliance measures which monitor sensitive data access and use within the healthcare 

service paradigm.  

7.5.2. On-Premises Solutions 

The term "on-premises" refers to an enterprise-class IT solution that is hosted and 

managed within the physical confines of the enterprise infrastructure. The company 

relies on its own resources to install the software in its own data center or server room. 

Although many IT resources today have taken on the subscription-based, utility pricing 

model of the public cloud, a significant number of software applications still run on-

premises, including many legacy enterprise resource planning systems. For decades, the 

majority of organizations operated under an on-premises IT structure. Thousands of 

businesses, from small shops in suburban office complexes to Fortune 500 giants with 

global operations, built out data center racks filled with servers, routers and switches. A 

band of technicians was devoted to keeping the systems up and running. With the rapid 

rise of cloud services, this model has largely faded into the background. 

Meanwhile, organizations also enhance on-premises IT with other types of technology. 

They often utilize colocation services to reduce the cost and hassle of operating their 

own data centers but still prefer to manage their own servers. Many organizations utilize 

small cloud infrastructures that connect to a larger external cloud. These are often put 

into place to provide backup or additional processing capacity for the larger cloud 

infrastructure. On-premises IT is expected to continue as the dominant model for certain 

enterprise applications and specialized workloads. Security and privacy regulations are 

the most common reasons cited for requiring on-premises IT. Organizations that manage 

sensitive or personal information, such as banking, health care and law firms often prefer 

to keep everything in-house rather than place that information into a cloud environment 



  

129 
 

that might be vulnerable to security breaches. Other organizations might have custom-

built applications that are deployed on-premises and support crucial business operations. 

Because these applications are highly customized, moving them to the public cloud 

would be too costly and time-consuming. 

7.5.3. Hybrid Approaches 

Hybrid solutions, involving a combination of on-premises and cloud-based components, 

are becoming increasingly popular. Such models optimize price while meeting security 

and compliance constraints. DICOMWeb is a DICOM image storage standard that 

allows images to be transferred via a RESTful interface, enabling access to cloud storage 

vendors that support simple HTTP calls to upload and fetch images. Various PACS 

vendors leverage this API to transfer and archive studies into cloud storage to reduce 

costs of storing medical images. Hybrid cloud solutions allow radiologists to receive 

studies in a familiar interface while shifting storage costs to the cloud vendor. 

Iguana is a radiology workflow product that runs in a hospital's network but allows users 

to call the DICOMWeb API to archive studies to the cloud. Also, several medical device 

vendors use cloud storage to enable on-site radiologists to review the data via a web-

based viewer. These storage solutions leverage medical imaging ecosystem products to 

enhance their image transfer and display performance. Hybrid cloud solutions that 

remain within a vendor's cloud ecosystem can minimize security concerns and allow for 

a reduced infrastructure support load. Such support load reductions enable clinical staff 

to focus on customer service. 

7.6. Data Preprocessing Techniques 

In the previous sections, we discussed how to pre-process patient data from wearable 

sensors. Typically, this patient data initially undergoes feature-based processing 

techniques that segment the raw sensor data into labeled segments. This includes feature 

selection, data cleaning, data normalization, and data transformation. Then, using this 

labeled output, a classifier can be trained either to classify patients or to identify 

important segments of given patients in the data. The quality of the output of the feature-

based processing technique is important because a useful classifier can be generated only 

if high-quality labeled input data is provided for training. This training can be supervised 

with known segment labels or unsupervised with assumed segment labels. Suppose there 

are errors in the labels of the training data. In that case, either the resulting classifier will 

be inaccurate or the trained classifier will not provide appropriate segments 

corresponding to various states of the patient. Feature extraction is critical for the 

effectiveness of machine learning. Manual feature extraction typically relies on domain 
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expertise to develop application-specific features. Machine learning can eliminate the 

design of many manual feature extractions using raw data for training. In the end, the 

optimal features to extract from the data depend on the task. Given that our goal is to 

preprocess the data to develop input for supervised learning strategies, we concentrate 

on feature-based data preprocessing methods. The goal of data cleaning, normalizing, 

and transforming the data is to ensure data of high quality as input to the classifiers. The 

data cleansed should be free of duplicates and outliers. The data features should also be 

in the same range as others to avoid introducing biases to the classifier. Popular 

normalization procedures include z-score normalization, min-max normalization, and 

robust normalization. The raw data need to be transformed into more meaningful values 

or formats to help the classifier performance better. For example, a 2D input array of 

data could be concatenated to form a 1D vector for classifier training. 

7.6.1. Data Cleaning 

Data cleaning is one of the crucial steps in big data preprocessing techniques. Every 

dataset has some noise and errors in it; these may arise from different sources and can 

lead to the unreliability of data and also to misinterpretations. Removing such noise is 

also essential to get accurate relationships and correlations in the data.  

 

Fig 7.3: Analyzing Patient Data Collected from Medical Devices 

It has been observed that 30% to 90% of data cleaning efforts occupy most of the time 

in the data preprocessing phase of big data. Data cleaning can be an expensive or time-

consuming or hard task to execute, especially for extremely large scale and disparate 

datasets which gives augmentation to most commercial data warehouses and big data 
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tools. Although some amount of cleaning may take place before data is copied through 

ETL programs, some cleaning will definitely need to be undertaken after the data is 

copied to the data warehouse or Big Data for analysis purposes. 

Cleaning of big data normally requires automated cleaning processes for data cleansing. 

One of the most significant processes used for removing noise from big data is De-

duplication which can dynamically and aggressively detect duplicate data items using 

the programming model and is implemented together with certain database system 

products. This approach uniquely identifies and maps each item to a bucket that contains 

its specific version; any duplicates are simply excluded at the time of data insertion. 

DBMSs that use such a logic will include certain database systems. Notably, one system 

relies on customers for the deduplication step by requiring them to develop a patient and 

noticed process. 

7.6.2. Data Normalization 

Data normalization is a process that can improve the performance of machine learning 

algorithms. It is a standardization technique that works to achieve the same level of 

automation in medical devices without carrying out needless feature engineering. 

Essentially, data normalization works to rescale the data to be in a specific range to avoid 

exploding gradients and to have each feature contribute equally to the loss function of 

the neural network model. In addition to avoiding exploding gradients, normalizing the 

medical device data also grants a comparative analysis of the features collected from the 

devices. This comparative analysis can also benefit the model learning the data and 

improve accuracy. 

Data normalization techniques also can work on time series data. One such method is 

called z-score normalization which is implemented by simply subtracting each data point 

by the mean of the entire data sequence and then dividing the resulting number by the 

standard deviation. This method adds no constraints to the temporal data and can be used 

when there are outliers present in the sequences. Other normalization techniques that do 

add constraints to the data are min-max normalization which forces the data to be within 

a range of −1 to 1 and scaling which restricts the data points of a feature to have a unit 

norm with unit variance. Other normalization methods include log normalization, mean 

normalization, and decimal scaling. 

Modeling medical device data has its challenges. Fortunately, different normalization 

techniques can alleviate these challenges. This will aid in a better performance of models 

used in further analysis of the patient data collected from medical devices without 

needing elaborate feature engineering strategies. Overall, the importance of 
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normalization techniques for microcontroller-based circulatory monitoring devices 

cannot be stressed enough in both the technical area and the healthcare domain. 

7.6.3. Data Transformation 

There are two data transformation techniques available, PCA and ICA. PCA is a linear 

method of analyzing multidimensional data and it is mainly used for dimensionality 

reduction. It is a common choice for visualization, allowing further analysis and 

interpretation of large-dimensional biomedical datasets. Recently, some new PCA-based 

techniques have been proposed. However, the basic PCA technique is a linear inductive 

approach, incorporating the concept of finding a linear transformation that represents the 

data in the space with maximum variance. It is similar to other dimensionality reduction 

techniques, like Fisher linear discriminant analysis that classes the multidimensional 

data into two or more sample classes. The implementation of PCA is easy and the 

discovery results are easy to understand. 

Any multidimensional datasets frequently include unique and interesting features that 

are hidden in the multidimensional space. Furthermore, ICA is a statistical and 

computational method to perform blind source separation of a set of signal sources from 

the signaled sources. ICA uses a dimension-reducing method to find a representation of 

a group of random variables into a smaller set of non redundant variables. Many ICA 

algorithms are open source and available. ICA can analyze any mixed multidimensional 

datasets. Applying ICA for dimension reduction corresponding to the temporal and 

functional characteristics distinguishes the biomedical signals from the rest of the 

undesirable signals. 

7.7. Data Analysis Techniques 

Data analysis is the etymological descendent of data through Latin and Old French. The 

term to analyze (analysis) comes from the Greek, meaning “to loosen” or “to open”. 

These facts, coupled with an intelligence definition — “Intelligence means educating 

and training a person to be able to think and analyze as much as possible” — help us to 

realize that it is not enough to just apply techniques to analyze data. We should educate 

people to think as intelligence training enables people to extract real knowledge. Data 

collection techniques are used to analyze data based on what, how, where, and when to 

collect data. The type of data collection depends mainly on the objectives of the analysis. 

The selection of a particular technique is not simple and sometimes its success can be 

obtained through testing many techniques. Data analysis techniques can be manually 

executed — in smaller problems — or can be automatically executed. Data analysis 

consists of the application of different techniques to data with the objective of drawing 
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conclusions and/or estimating parameters. In the case of hidden data, inference is 

performed. 

Our goal with the following analysis is to present data analysis techniques that can be 

applied to patient data, with a focus on data from medical devices. We first review 

statistical analysis methods that can be applied to sensor data. Next, we present machine 

learning algorithms, both supervised and unsupervised. Finally, we review natural 

language processing techniques, which are important in the case of text data generated 

by sensors. 

7.7.1. Statistical Analysis 

Regular analysis of the biomedical signals recorded from a patient is very useful since 

they may signify a change in physiological state. The continuous tracking of these 

signals can be exploited to gather several insightful messages to assist healthcare 

professionals in decision making and improve the quality of life of patients. The 

biomedical signal processing steps typically involve filtering, sketching, annotating, and 

symbolization of the raw data before it may be analyzed for a decision. We first present 

an advanced and automated approach by utilizing prediction intervals of a fitted 

statistical model to explore critical patterns in the recurrent measures of phospholipids 

from patients. In another approach, we utilized Bayesian Regression and Forecasting 

Model to explore the repetitive biochemical measurements for Thyroid, Alkaline 

Phosphatase and Hemo-Gram for patients with Type 2 Diabetes Mellitus. 

The use of this approach was motivated by the practical difficulties typically faced using 

time series models to accommodate for missing/overlapping data. This enabled us to 

analyze across a group of patients and select some patients for whom the predictions are 

extremely high or actually very low and later validate with claim records. One of the key 

features of this methodology is that it uses standard multiple linear regression techniques 

available in most statistical packages and doesn't require specialized expertise in time 

series models to implement. In addition, the method is flexible enough to accommodate 

a wide variety of experimental designs with missing data and allows regression modeling 

of experimental conditions. This work highlights the use of statistical modeling 

techniques as valuable research tools in exploring relevant patterns in such recurrent and 

often unbalanced clinical data. 

7.7.2. Machine Learning Algorithms 

Advances in the field of Artificial Intelligence (AI) and Machine Learning (ML) have 

influenced almost every area of science and technology. Among the various ML 
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algorithms that have gained popularity in recent years are Support Vector Machines 

(SVMs), Artificial Neural Networks (ANNs), Recommender Systems (RS), and 

Reinforcement Learning (RL). Support Vector Machines (SVMs) are well known for 

their simplicity, strong theoretical foundation, and good generalization performance. The 

advantage of the SVM algorithm is that it is able to construct high dimensional borders 

up to a few support vectors in the data set. Finding the optimal hyperplane for a two-

class classification problem in Support Vector Machines in either the primal or dual 

space is guaranteed to reach the global optimum when the kernel function is convex and 

positive semi-definite. A well-known disadvantage of the SVM algorithm is the long 

training time, especially when there are a large number of classes in the data set. 

Artificial Neural Network (ANN) is an ML algorithm that has been applied to various 

fields, including finance, marketing, medical diagnosis, and tourism. The Neural 

Network approach is a system of computing that is inspired by the biological structure 

of the brain. The strength of the Neural Network model comes from the fact that it can 

model nonlinear relationships and large datasets. A disadvantage of the ANN method is 

that it requires a large number of samples to build an accurate model. With concerns 

about privacy issues and missing or incomplete data, collecting large amounts of data is 

not always feasible. 

In Recommender Systems (RS), the central idea is to use preferences in order to help 

end users make informed decisions when choosing information, products, or services. 

One of the primary drivers of the popularity of recommender systems is the social and 

economic impact of their use, especially in the areas of e-commerce, online 

entertainment, social networks, and personalized content delivery. Reinforcement 

Learning (RL) is an area of machine learning that is generally concerned with how agents 

ought to take actions in an environment in order to maximize rewards. Many problems 

in robotics, control theory, operations research, economics, and game theory involve 

learning how to take actions so as to maximize a numerical reward signal. 

7.7.3. Natural Language Processing 

Natural Language Processing (NLP) provides techniques for the analysis and 

representation of natural language text, and it is a branch of Artificial Intelligence (AI). 

The term representation refers both to the mental faculties and to the issues of logical 

representation; it deals with the different methods to encipher and decode your memories 

and perception of the world, your maps in the brain, which can be created and managed 

by a computer working with AI. As such, NLP provides mechanisms for the analysis of 

free text with the goal of uncovering patterns in the data. These patterns then represent 

hidden knowledge that will be of interest to any investigator and will improve the 

understanding of some phenomena that deal with free textual communications by people. 
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NLP has great advantages in biomedical research. In the last decade, NLP has been 

focused on improving its microbial techniques for the understanding of articles in the 

biomedical field. Modern biomedical NLP must deal with the issue of the generalization 

of the rules needed to segment a specific field of application. In fact, an expert has to 

code these field rules to improve the precision in a specific domain. Despite these 

technical problems, it is necessary to note that NLP can help any area of medicine in the 

task of transforming natural language to hexadecimal encoding. In addition, NLP can 

ease the process of defining and distinguishing between specific medical terms that need 

special attention and also information and arguments and what can be ignored. 

7.8. Data Visualization Tools 

Data visualization tools are essential components for visualizing big data collected from 

medical devices by providing colorful and interactive views of the underlying data. 

Extensive research has been done to create new algorithms and techniques for static and 

dynamic visualization of medical data. Static visualization of medical images and shapes 

has been made possible using 3D visualization devices, taking advantage of the latest 

computer graphics techniques. Further, virtual reality environments have been explored 

allowing immersed interaction with the data and more natural displays present the data 

in 3D. Interactive visualization tools such as 2D and 3D; adding dimension tools, and 

3D slice processing tools make it easy to visualize big data from medical devices. 

Scientific visualizations such as Ellipse-formed voxelization for fast full-view 3D 

printing visualization of 3D computed tomography scans have also been reported. 

Dashboards 

Medical data dashboards are user-friendly analysis tools that allow end users to quickly 

and easily explore huge quantities of multi-dimensional patient data. Dashboards are 

commonly used in many different situations. For example, the rate and severity of 

outages can be readily summarized in a dashboard containing just 10 numbers or less; 

however, analyzing the factors that give rise to these outages often requires a much more 

sophisticated set of data visualizations. Dashboards that provide analytical summaries 

are known as Reporting Dashboards, while those that enable ad hoc analysis users are 

known as Exploratory Dashboards. While reporting dashboards contain static 

visualizations such as ideal for monitoring sales performance and exploring sales 

relationships, exploratory dashboards provide user-selectable filters and dynamic 

visualizations, allowing the user to drill down, slice, and dice the data using different 

selection criteria, such as defining customer segments, and product groups. A 

dashboard's interactive visualizations may be driven by calls or statements that share 

common data model definitions. User interaction typically allows data stored in servers 
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to drive ad hoc analysis but can also be directly stored in the dashboarding hardware or 

software. 

7.8.1. Dashboards 

Dashboards are very popular tools for business users, and are becoming increasingly 

common in healthcare, for patients, doctors, and other healthcare stakeholders to have a 

visual representation of what is happening with various components. Dashboards in 

healthcare could show the number of patients currently being treated with Covid-19 and 

if they are required to be admitted to a hospital. It could show the number of deaths due 

to Covid-19. It could also show how many patients are being treated from other diseases 

such as diabetes, cardiovascular diseases, and types of cancer. When informed with this 

rate, healthcare authorities, governments, and hospitals can make informed decisions. 

Are the number of admissions to the hospital from Covid-19 increasing? Do we need to 

revise our guidelines and policies to ensure that the number of people not following 

Covid-19 protocols is reduced? Such dashboards made for healthcare stakeholders only 

provide a view of the situation in healthcare, are not interactive, do not allow any drill-

down into data available, or do not have any storytelling capabilities. 

In summary, dashboards made for non-technical and non-experienced users such as the 

general public, patients, doctors, insurance companies, and even administrative staff in 

hospitals provide the most important data usually asked by them which is on display, or 

visualized. This visualized data gives insights to these users about healthcare that helps 

in fast decision-making. Dashboards are made by using specialized tools and display 

visuals that are not interactive. Dashboards are made on some common business 

intelligence tools that either extract from databases or from underlying data visualized 

in some other data visualization tools, and run with functionalities to customize the look 

and feel of dashboards. 

7.8.2. Interactive Visualizations 

Rather than visualizations changing as the user interactively explores the data, the 

interactive visualization framework described in this section works by letting the user 

modify which variables are visualized such that the visualizations update to explore the 

new variables. This approach is better than having visualizations changing while the user 

explores the data because instantaneously changing visualizations would not allow the 

users to see the dependencies between variables or the different properties of the data, 

nor would it let them view and search for relationships that are nearly identical. Since 

the majority of knowledge discovery tasks can be reduced to finding relationships 

between a small set of variables, the interactive visualization approach is appropriate for 
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visualizing any kind of data. More importantly, when generating a large number of 

visualizations, there is a need to keep the number of visualizations small. Several of the 

existing approaches visualize the distributions for several groups in a single visualization 

in the same frame, which requires heavy luminosity modeling or luminance correction. 

Red color blindness affects a large group of users, and to support this user group, heat 

maps and other methods of encoding complex data in the luminance dimension should 

only be used when it is not necessary to provide an effective visualization for these users. 

Allowing users to select which groups multiplexed in a single visualization are 

visualized is helpful, but does not completely address the need to keep the number of 

visualizations small. For example, the groups correspond to the values of the grouping 

attribute, and the methods let users select which attributes are used to create the 

visualization. A simple method of creating such attribute visualizations is to create small 

multiples. These launch several visualizations at once. 

7.9. Challenges in Analyzing Patient Data 

There are several challenges in the method outlined in this chapter in the context of 

analyzing patient data. Machine learning has made great strides in various domains based 

on visual, speech, and textual analysis due to large amounts of easily accessible labeled 

data. However, such approaches for analyzing patient data could have different levels of 

success compared to conventional medical approaches due to lesser amounts of real-

world labeled patient data. Although generating synthetic data based on generative 

models has made some progress in dealing with such reduced data challenges, this is still 

an area of preliminary research. There are some specialized data augmentation 

techniques for specific modalities which can partially help mitigate this problem. In 

addition to reduced amounts of labeled patient data, a second key challenge is the impact 

of data privacy-related regulations on the quality of patient data which can be made 

publicly available, thereby again limiting the data size. 

There have also been calls to come up with techniques that incorporate prior medical 

knowledge into the analysis of patient data; either related to specific modalities or 

conditions being treated in order to assist in classification or prediction. Due to the 

necessity of analyzing and interpreting data obtained from heterogeneous data collection 

sources and levels of data available about individual patients due to various data privacy-

related regulations limiting the usage of such data, ideally multi-modal, multi-source and 

multi-level data, some have called for a multi-parametric patient data-centric approach 

that aims to use complementary data in a multi-parametric approach in order to enhance 

the quality of prediction for individual patients. At the same time, we note that such data-

centric methods will also be impacted by the concerns due to data privacy regulations 

discussed previously due to these approaches generating exposure to more significant 
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amounts of details related to the health history of individual patients during the 

prediction or classification task. 

7.9.1. Data Privacy Concerns 

One primary challenge in analyzing patient data collected from medical devices is 

concerned with the privacy of patient information. Studies involving medical device data 

must adhere to the strict rules enforced by institutions. While traditional security and 

data protection techniques may be effective at anonymizing patient data, the volume and 

variety of data produced by devices allows for a re-identification risk, mandating the 

need for a different strategy to ensure protection of patient identity. Quasi identifiers, 

regularly found in sensitive data, can often help facilitate the identification and re-

identification of patients. 

Quasi identifiers include age, gender, date of birth, location, and biometrics. Because 

data from a patient’s wearable device can help track their movements and daily activities, 

the data is highly sensitive and can jeopardize the safety of patients. For this reason, it 

would be wise to investigate the data privacy challenge posed by the patient data being 

collected. With movement data readily available in a communication packet, utilizing 

techniques developed in the field of data inoculation, data masking, and perturbation to 

provide differential privacy guarantees to the data before transmitting or sharing would 

help reduce the risk of patient identity exposure. However, while such techniques are 

valuable at providing identity protection, patients must also be aware of the risks 

involved in opting into wearable device projects to help further research in medical 

device informatics. 

7.9.2. Data Integration Issues 

Integrating and managing the types of complex and heterogeneous data from various 

medical devices, sources and formats can also be very challenging. Clinical data may 

include, but is not limited to, medical device data, physician notes, pathology results, 

laboratory results, pharmacy records, other clinical test results, and medical histories, all 

of which are usually stored in different formats. Data from these diverse sources, 

however, require different cleaning, transformation, and integration pipelines in order to 

be integrated and used for any downstream predictive analytics tasks. 

Integrating or joining each of the heterogeneous modalities may result in considerable 

information loss, especially in the early life stages of patients or during relapses when 

relatively few events have been recorded within that specific modality or sub-modality. 

Integrating these modalities remains overly too demanding since appropriate labels are 



  

139 
 

not available. We may only be able to label whether or not a patient has any events or 

transitions within that time period without knowing which of the events occurred during 

that time. We could use a multi-instance learning paradigm, but that incurs a relatively 

high and unwanted computational cost. Most of the existing multi-disciplinary works 

focus on either single-level data fusion or data fusion at the feature level. 

7.9.3. Scalability Challenges 

Scalability is an important challenge when it comes to processing complex data in the 

context of big data for healthcare. The terabytes of patient data generated by low-cost 

medical devices, while particularly helpful in studying the time-variant length and nature 

of certain health conditions of patients over a massive amount of time, are not easy to 

store and process for analytical tasks. The fact that devices like magnetocardiography 

can continuously monitor patients for days together and produce hundreds of millions of 

matrices representing magnetic field measurements is ample proof of the scalability 

issues relating to efficient and timely storage and processing of such vast amounts of 

health data being generated by low-cost health devices. Moreover, running analytics at 

scale also requires building scalable algorithms that can be parallelized and run on multi-

core and distributed environments. Most of the state-of-the-art algorithms for analytical 

tasks on longitudinal patient data have been developed in the context of clinical or 

experimental data which while possibly large and verbose, are not Big Data by any 

means. A majority of the scalable algorithms that attempt to address the volume aspect 

of health Big Data either rely on simplified heuristics lacking in refinement or focus on 

specific tasks within one or a combination of tasks without any thorough consideration. 

Most of the scalability issues of the state-of-the-art algorithms for analyzing the massive 

amount of longitudinal patient data generated by low-cost medical devices stem from 

the fact that the algorithms primarily deal with clinical experimental data, which while 

verbose, are not Big Data by any stretch of the imagination. Moreover, with medical 

devices expected to keep evolving in terms of complexity and volume of data being 

generated, there is a dire need for developing data-driven and domain-aware yet 

computationally efficient analytical algorithms, to make intelligent use of the serviceable 

medical device signals before they suffer from the effects of information overload. 

7.10. Conclusion 

Numerous challenges exist for healthcare stakeholders when working with patient data 

collected from medical devices but these challenges also represent numerous 

opportunities. Numerous techniques have been proposed in the Big Data community for 

properly managing such data, while others have been proposed for deriving insight from 
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such data and yet other methods utilize such data for training machine learning 

algorithms. With the proliferation of patient-generated data and the ever-increasing 

connectivity of biomedical devices, the possibilities seem to be limitless. Moreover, the 

value of such data is great since these data represent vast real-world patient populations 

rarely represented in traditional clinical trials. Personalized healthcare seems like an 

achievable goal thanks in part to these advancements in patient data science. 

Furthermore, traditional research in biomedical fields exploring treatment efficacy and 

post-market surveillance after approval might start looking for guidance in such large 

amounts of patient data, which would enable quicker results. 

Utilizing Big Data techniques for patient data collected from medical devices and 

improving upon them is an exciting research direction. Various repositories of 

biomedical device data including registry data can help in the validation of Big Data 

methods and techniques. By properly stressing the techniques proposed for other 

domains and building from them, we believe that they can be successfully employed in 

the domain of patient device data science. In particular, we see avenues for progress and 

development in the domain of novel statistical techniques and visualization techniques. 

Various novel statistical techniques might help overcome challenges in missing data, 

unbalanced data, or generating generalized results from cohort studies of small patient 

populations. Visualization techniques might also provide unique opportunities when 

faced with overlaid data where overlapping points occur enormously. Furthermore, we 

see opportunities for progress in the various lessons previously described, especially in 

how other fields manage, process, and glean insight from data on a huge scale. 

7.10.1. Future Trends 

The growing amount of patient data collected in health and wellness issues provides 

physicians and healthcare administrators with useful information about patient 

conditions to improve diagnosis, care, and treatment procedures. Research data are also 

more and more available, with the aim of designing and assessing novel solutions for 

detecting and addressing patient problems. For specific ailments/conditions, 

collaborative research projects exploit patient-generated health data such as those 

acquired by mobile health sensors, including wearables and implanted devices. In 

particular, these devices gather facilitated access to vast amounts of continuously 

witnessed information about patients’ physiological parameters. However, analyzing 

this data to obtain actionable, personalized knowledge is not simple. To contribute to the 

healthcare knowledge domain, this work provides a compilation of techniques for 

effectively analyzing medical sensor data. 
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