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Chapter 5: Utilizing artificial 

intelligence for biomedical signal and 

image processing applications  

5.1. Introduction 

The importance of biomedical signal and image processing (BSIP) applications is 

increasing heavily in the last decade from both societal and commercial points of view. 

The rampant increase of the size of the aging population worldwide, as well as the rapid 

advancement of computer technology, sensors, and communication networks are some 

of the key factors contributing to this increase. The BSIP applications include health-

monitoring and disease-detection devices based on biomedical signals and images. The 

types of biomedical signals include electrocardiograms, electromyograms, 

electroencephalograms, as well as other electronic signals generated with electrical 

pulses from the human body. For the types of biomedical images, these include X-ray, 

MRI, Ultrasound, CT, and PET images, which are generated by the high-definition 

flexible scanners currently available in the market (Alrowaily & Lu, 2018; Gusev & 

Dustdar, 2018; Harvie, 2024). 

The mainstream use of biomedical signal and image processing is mainly centered 

around clinical and upsized applications. For clinical purposes, the applications are used 

mainly by doctors or caregivers to provide services to patients in hospitals or at home. 

The BSIP applications provide and communicate information to the doctor or the 

caregivers about the disease-related condition of the patient and where the disease is 

situated in the body, and the type of damage, so that they may take necessary action. 

Within the upscaled applications, the devices are aimed at the general public, and are 

used by the general patients to monitor signals and images to help detect any potential 

disease-related condition, and may share this information with their doctors or 

caregivers, so that they can advise the patients about the type of action that should be 

taken (Yu et al., 2018; Jeong et al., 2022). 
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5.1.1. Background and Significance 

The convergence of artificial intelligence (AI) with an affordable and ubiquitous 

computational infrastructure has catalyzed vast advancements in the field of computer 

vision research over the past decade. Although traditional landmark-based statistical 

methods for face recognition have been used for more than a decade, it is only recently 

that deep learning models are able to leverage very large public datasets to completely 

erase the limitations in performance of these methods. This success story in computer 

vision has resulted in vision-based AI systems being used for a plethora of applications 

in domains such as security and surveillance, banking, and smart cities. Finally, the vast 

potential of face recognition systems has made them a target for exploitation, with 

sophisticated malware being developed to compromise the security and privacy of 

vision-based AI systems. In the field of biomedical signal and image processing, activity 

and gesture recognition systems have leveraged the associated advancements in 

computer vision to enable applications for rehabilitation, therapy, human-robot 

interaction, and healthcare. 

The integration of AI into biomedical signal and image processing applications such as 

PA detection, activity recognition via sensible displays, speech and emotion recognition 

via graphical displays, gesture tracking and recognition via smart devices, and 

therapeutic drug delivery via sensitive devices represents the next frontier in the 

development of future HCI systems that will be deployed in a myriad of domains serving 

numerous end-users or specific niche communities. Efficiently detecting and 

recognizing audio-visual activities and non-quiescent gestures in real time will help 

alleviate BA and PA and have their applications in unobtrusive therapy, rehabilitation 

treatment, and therapy robot applications. Essentially, the advances in computer vision 

presented in the previous sections have enabled these seamless HCI systems resulting in 

a high practicality factor. Such non-intrusive and sensitive device-enabled HCI systems 

are an important auxiliary to future Internet of Things ecosystems deployed in homes, 

hospitals, office spaces, and smart cities on a projected scale. These systems represent, 

in our opinion, the true synergy of AI with sensor data processing. 

5.2. Overview of Biomedical Signal Processing 

Biomedical signal processing is a sub-field of signal processing that deals with signals 

originating from or applied to the human body. Such signals may be biological indicators 

of disease as is the case with EEG and ECoG signals, physiology investigated with 

contactless methods such as IR thermal imaging or applied signals leading to the 

interaction with or modulation of physiological properties particularly for therapeutic 

purposes such as electrical stimulation or EMF targeted therapies. The processing of 

such signals is usually carried out with the goal of improving the quality of the signals  
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Fig 5.1 : Overview of Biomedical Signal Processing. 

through noise reduction, increasing reliability for automatic detection of events, 

classification of specific states, monitoring, or analyzing changes over time due to a 

natural cause or for drug testing. Biomedical signal processing has made increasingly 

important contributions to accurate and efficient reliability research through careful 

design of noise reduction, denoising and deblurring, and classification procedures. This 

paper presents an overview of the state-of-the-art of electrophysiological biomedical 

signal processing followed by two novel examples EEG denoising and discrete 

classification. There are three broad categories of biomedical signal processing 

problems: (1) denoising and restoration of minimally processed, acquired signals (2) 

applications of design or feature analysis to processed signals for the detection and 

analysis of conduction known signal events (3) classification of specific held stationary 

or non-stationary states from acquired records for monitoring. To achieve the goals 

mentioned above, a wide variety of techniques have been proposed for various signals 

during the last few decades. The most well-known methods from the early years include 

spatial filtering, epoch averaging, time-frequency representations, and Fourier, Wavelet, 

and Empirical Eigenfunction decompositions. A variety of supervised and unsupervised 

nonlinear machine learning techniques, including local spatial covariance methods, have 

also been utilized. However, it has been one of the drawbacks that many of these 
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techniques were not adequately tested particularly with respect to their detection and 

classification performances. 

5.2.1. Types of Biomedical Signals 

The health and physiological state of a subject can be quantitatively represented with 

biomedical signals, which vary over time or space. Biomedical signals can be broadly 

classified into electrical, mechanical, chemical, optical, thermal, and magnetic signals, 

based on the type of alteration recorded. Most projects utilizing AI for biomedical signal 

processing involve the use of electrical signals. Though EEG, ECG, EGG and EMG are 

common signals from the electrical category, more specific signals for a body part or 

function may also be used. The eye is known as the mirror of the brain and eyelid signals 

are recorded to study fatigue, while galvanic skin activity is indicative of emotional state, 

impedance cardiography is sensitive to cardiac cycle, and SCG is indicative of heart 

function. Bioelectric signals can be obtained from various body tissues like the brain, 

heart, muscles, skin, and viscera. While speech can be considered as a mechanical signal 

such as vibrations occurring after the production and articulation of speech sound, speech 

is also modeled on electrical basis obtained from underlying airflow and pressure in the 

vocal tract and resultant neural activity. Speech and non-speech vocal sounds, the 

vibration of skin around the vocal tract caused by articulation of voiced and voiceless 

phonemes, are involved in non-verbal communication. 

However, there have been studies to classify phonemes utilizing neural activity. Several 

pure chemical signals serve to clinically identify and differentiate health conditions. 

Other biochemical signals such as glucose, cholesterol, triglyceride, sodium, phosphate, 

calcium, magnesium, and potassium levels can be manually assessed for biochemical 

tests of blood or serum. Oximetry utilizes photoplethysmography signals or blood 

absorption spectrum in infrared and red regions to determine oxygen saturation of 

arterial blood. Common examples of optical signals include MRI and fluorescent optical 

images. Infrared-based thermal signals can also be assessed to determine the health 

condition of a subject. Though magnetic signals are not frequently assessed, 

magnetoencephalography has been employed for neurological disorders. 

5.2.2. Challenges in Signal Processing 

In digital signal processing, processing biomedical signals is a challenging task and 

requires a predefined level of expertise. Most biomedical signals contain distortions, 

noise, overlapping patterns, and outliers, which complicate analysis. The frequency 

composition of the biomedical signal is typically low, and detecting low-frequency 

emissions presents a risk of data loss. In some applications, particularly in motor imagery 
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brain-computer interfaces based on electroencephalograms, attracting an observer's 

attention to a detectable task using specified stimuli is difficult. The noise pollution of 

physiological signals by electromyograms, power lines, and the surrounding 

electromagnetic field may corrupt event-related data processing. Moreover, nonlinear, 

nonstationary, and complex multiscale characteristics of physiological signals make 

them difficult to model and process. Using a stationarity mathematical model to evaluate 

a nonstationary signal is also a challenging task. Most nonstationary signals, such as 

blood pressure waveforms, cerebral oxygenation index, and QRS complex, contain a 

high-frequency component and become more pronounced during the labor period. 

Preprocessing signals is a standard block in the biomedical signal processing pipeline 

that solves detection issues, removes stimulated artifacts, noise, and distortions, filters 

out high-frequency components, and improves the susceptibility of event detection. The 

denoising performance is related to the denoising algorithm parameters and the signal-

to-noise ratio. Maintaining content variability using a stringent threshold may adversely 

affect the denoising performance. The requirements of various processing tasks impose 

additional constraints on the design of biomedical signal denoising algorithms. An 

effective denoising algorithm is crucial for signal retention and analysis accuracy. 

5.3. Overview of Biomedical Image Processing 

Biomedical image processing is a technique that makes use of image processing 

techniques to process biomedical data obtained from various modalities such as CT, 

MRI, X-Ray, Ultrasound, PET, SPECT Imaging, Scintigraphy Imaging, Thermograph 

Imaging, Laser Scanning, Near Infrared Spectroscopy, Mass Spectrometry Imaging, 

Micro-CT, Optical Coherence Tomography Imaging, etc. The images acquired using 

these modalities contain various diseases such as tumor, fractures, cysts, multiple 

sclerosis, hematoma, joint disorders, stroke, Alzheimer's disease, epilepsy, cardiac 

disease, bleeding, precancerous states, brain white matter injury, infections, etc. 

The challenge in biomedical image processing lies in the fact that the images are not 

ideal and can be corrupted with noise, blurring, and artifacts. The images are of very low 

contrast and even some areas of the image are absent. The content of the image can be 

touching with adjacent organs in the body and even mixed with other content and also 

have large similar intensity pixels. The volume of biomedical data is also huge and very 

difficult to manage and manipulate; the data are hard to interpret and visualize with the 

available resources. The above parameters lead to misinterpretation of the image data 

due to the use of conventional techniques available in the image processing community. 

Therefore, it is very important to explore AI techniques which can help and make the 

use of this data easier and more accurate. The discussion of various aspects is presented 

in the following sections whose benefits will enhance the process in a variety of manners. 
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5.3.1. Types of Biomedical Images 

Image processing has gained popularity over the last few decades as a powerful tool for 

information analysis in multiple domains ranging from advanced scientific applications 

to daily-life applications. Image processing is applied specifically to the analysis of 

biomedical images, which include but are not limited to, images acquired from medical 

imaging modalities, images acquired in-hospital from video cameras, microscopic 

images, images acquired from non-imaging diagnostic tests, and other biomedical 

images. The advancement in imaging technologies has helped increase both the quality 

and quantity of biomedical images making the quantitative evaluation of these images 

vital for proper diagnosis, follow-up, and treatment of various critical diseases. 

Biomedical images can be classified based on various criteria and aspects. For instance, 

living beings, modification, modality, dimensionality, dimensional resolution, image 

intensity, color resolution, groups, stages, and diagnostic probability are some of the 

criteria used to classify biomedical images. Each biomedical imaging modality offers 

distinctive advantages and disadvantages, which must be considered by the physician 

when performing the medical diagnosis. 

5.3.2. Challenges in Image Processing 

Biomedical images provide valuable information that, if correctly processed and 

analyzed, could support diagnosis decisions and aid healthcare professionals. There is a 

risk that image processing will fail in identifying clinically important features, 

particularly with the massive influx of image data from evolving imaging technologies 

and modalities complemented by features that are challenging to characterize 

incorporating complexities such as proximity to one another and likeness in size, shapes, 

and textures. Moreover, existing diagnostic protocols might be restricted and thereby not 

particularly effective due to images housing diverse artifacts, adopting substantial 

variations, only having little representation of diseased classes with benign samples 

predominating, or lacking important imaging features deemed useful for clinical 

analysis. 

However, achieving effective processing and analysis of biomedical images is not a 

straightforward task. Besides the risk of lack of clinical interpretation when employing 

conventional automated approaches, a need to balance sensitivity and specificity might 

also arise from the prerequisites for ensuring welfare and safety to patients. Finally, 

network architectures for deep learning and their analytics must also be specifically 

tailored to address particular characteristics of biomedical images throughout the 

processing pipeline. Nowadays, frameworks show significantly improved results as long 

as the biomedical images are annotated and the dataset dimensions are larger. 
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Recognizing the above-mentioned challenges, the following sections outline the key 

areas underpinning frameworks alongside their contributions in addressing the 

challenges while analyzing biomedical images. This chapter therefore serves as a 

research guide to the field of biomedical image processing for researchers and 

professionals. 

5.4. Artificial Intelligence Fundamentals 

We begin this section by providing necessary background information on some 

important concepts and algorithms that are commonly used in AI, especially as applied 

to biomedical S/I processing. The topics discussed in this section represent only a small 

subset of AI-related concepts and algorithms; however, they provide a solid foundation 

for understanding the AI techniques used in the subsequent sections. First, we discuss 

the broad concepts of AI and some key application areas, as well as ML and DL, which 

are foundational to the AI algorithms used in the other chapters. Second, within ML, we 

discuss the concept of supervised versus unsupervised learning and the notion of 

classification and regression tasks, and highlight some traditional ML approaches, 

including hidden Markov models, Gaussian mixture models, and support vector 

machines with kernels. Next, we present the DL concept with an overview of artificial 

neural networks and briefly touch upon the convolutional neural network and recurrent 

neural network DL architectures, which are commonly used in biomedical S/I processing 

tasks. Finally, to motivate the use of both ML and DL APs presented, we discuss selected 

ML and DL applications within the biomedical S/I processing areas of detection, 

classification, and segmentation. 

Presently, the focus in the field of AI is on ML, specifically neural network-based DL. 

While AI is indeed an interdisciplinary field, which combines concepts from many areas 

of computer science, it is deeply rooted in the field of mathematics, especially 

optimization, statistics, linear algebra, and computers. Subsequent to the birth of the field 

of AI in the 1950s, advances were made in the AI area of symbolic processing. However, 

advances in other fields of computer science and the predictive power of the subsequent 

data-hungry ML and DL AI approaches have, in recent years, led to the widespread use 

of ML and DL solutions across many application areas, including computer vision, 

natural language processing, robotics, and biomedical S/I processing. 

5.4.1. Machine Learning Basics 

The structure of AI is divided into wide levels; the higher, the more complex the system. 

At the lowest level is programming, where we directly write algorithms that are able to 

recognize or classify. However, programming usually cannot tackle complex problems: 
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instead, Machine Learning comes to serve as an intermediate level, focusing on 

"learning" the tasks directly from data, rather than from explicitly programmed 

algorithms. Finally, the highest level is called Deep Learning, where Artificial Neural 

Networks "learn" complex representations through multiple processing structures. 

Machine Learning seeks to find strategies to emulate typical human behavior, which 

could solve tasks from different areas of knowledge, such as medicine, education, image 

processing, etc. The area has attempted to find "general purposes" solutions that could 

solve different kinds of problems, such as classification, object detection, segmentation, 

etc. Motivated by biological observations of how the human brain works, Artificial 

Neural Networks are inspired by the inner layers of dense cells that compose the cortex 

of the human brain. The observation of how humans recognize objects in photorealistic 

images led to Deep Convolutional Neural Networks. 

Thus, a Neural Network learns a mathematical mapping function, through experience, 

from data of a given feature space to another target space. The main objective to perform 

this mapping task is to minimize an empirical risk, through iteratively adjusting the 

weights of the network. This space minimization is usually carried out using gradient 

descent, its variants, or other second-order methods. The loss function quantifies how 

well the model predicts the target values for a given set of data. During training, design 

choices made by data scientists determine the shape of the network and its 

hyperparameters. Through several iterations, the neural network is prompted to find 

weight values that minimize the loss function defined, thus learning the specific mapping 

function of the given task. 

5.4.2. Deep Learning Overview 

Deep learning, popularly known as hierarchical learning or deep neural learning, is part 

of the machine learning family of methods based on learning data representations as 

opposed to task-specific feature extraction. The term "deep" refers to the use of multiple 

layers in a neural network architecture. The depth of the architecture is the main source 

of performance boost in deep learning over traditional machine learning methods. Deep 

learning also relies on large datasets to train the additional parameters present in deep 

networks, and the advent of large amounts of online data for computer vision as well as 

the ability to use GPUs to accelerate the training of large neural networks made deep 

learning a key component of most state-of-the-art computer vision methods. The term 

"deep learning" has largely come to refer to a class of techniques based on deep neural 

networks, including convolutional networks for images and recurrent networks for 

sequences. There has also been much work on semi-supervised learning from weak 

labels and user-provided supervision, a direction that is especially relevant to biomedical 

applications where labels are often scarce and expensive to acquire. 
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A key aspect of deep learning for supervised tasks such as classification is the need to 

learn good features for the task. Learning to predict tasks such as object relationships 

enables the classification of novel objects and reidentification across multiple locations 

on one object or across objects undergoing a common change. Recurrent networks have 

recently yielded impressive results on sequence prediction tasks, compressing long 

inputs and generating sequences, as well as related tasks such as image captioning. While 

sequence labeling, that is asking labels for every input in a sequence, is perhaps the 

simplest extension to the image classification problem, many other tasks such 

recognizing entity translations or ordered lists of objects undergo a corresponding 

change. 

5.4.3. Neural Networks in Biomedical Applications 

Artificial neural networks provided the first class of algorithms to learn directly from the 

characteristics of the problem, and even in its simpler versions they were able to 

overcome some limitations of classical statistical techniques. For many years, there were 

a lack of training algorithms capable of adjusting the large number of parameters in 

realistic configurations. However, thanks to a better understanding of the optimization 

landscape and major advances in computing power, the introduction of backpropagation, 

and the availability of large datasets, neural networks soon became the preferred method 

for many problems in computer vision, speech recognition, machine translation, and 

other applications. In 2012, neural networks called deep learning led to unprecedented 

improvements in the quality of results for a key milestone for image classification 

accuracy, with the best submissions based on convolutional neural networks that were 

three times better than the best previous algorithms based on hand-engineered features. 

Since then, convolutional neural networks became the preferred choice for image 

processing. The research and success of deep learning for image classification tasks 

sparked interest from other research communities, including medical imaging. Neural 

networks are now the preferred method for many medical image analysis problems, 

including tumor detection, delineation, characterization, and diagnosis. Medical decision 

support systems based on neural networks have been successfully developed for a variety 

of imaging modalities, including computed tomography, magnetic resonance imaging, 

magnetic resonance spectroscopy, digital mammography, and positron emission 

tomography, among many others. 

5.5. AI Techniques in Signal Processing 

Signal processing techniques aiming to extract useful information from a signal 

traditionally rely on block processing. First, any noise must be rejected or compressed, 
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followed by relevant signal features and patterns being identified. Only after these first 

micro-decisions can the classification or segmentation process act on the features 

chosen. Work towards the automation and improvement of these blocks of work 

traditionally done by the engineer involved research in the last couple of decades, and 

thus, several AI-based signal processing techniques are now available. Deep learning 

utilized techniques present state of the art results in most of the block tasks. However, 

being data hungry, they require a lot of annotated data. Structuring the block approach 

in a learning-like scheme that can be trained to deal with what previously required human 

intervention for decisions can in many occasions fill-in the gap.  

 

Fig 5.2:  AI Techniques in Signal Processing. 

We can arrange the use of AI techniques within two broad categories. A first category is 

concerned with methods, tools, and techniques that allow assisting feature extraction 

methods applied to signals, either traditional methods or the implementation of some 

form of transformation in a learning-like scheme. A second category of methods relates 

to the automation of block operational analysis and modifications, or higher macro-

decision blocks as mentioned previously. We can devote the rest of this section on how 

AI techniques have affected both categories and the domains of apprenticeship signal 

processing algorithms researched in this direction. The terminology descriptive of any 

AI sub-field, such as computational intelligence, neuromorphic techniques, and more 

specifically, machine learning, shallow learning, and deep learning, arithmetic 

techniques, blocks operations, algorithms, and learning networks might overlap 

throughout the section. 



  

91 
 

5.5.1. Feature Extraction Methods 

The field of signal processing is undergoing an evolution, primarily spurred by the 

incorporation of powerful computational tools and technologies, which are empowering 

scientists and researchers to make rapid advancements in various knowledge domains. 

Within the signal processing domain, the elemental themes of signal representation, 

detection, restoration, reconstruction, filtering, and feature extraction are gaining 

significantly from artificial intelligence approaches. Researchers and scientists are keen 

to integrate AI-powered algorithms for automating key functions in designing signal 

processing systems. These functions include automatic selection of network architecture, 

model hyper-parameter optimization, and determination of the best loss function, among 

others. Similarly, AI techniques can be effectively employed within signal processing 

paths, such as feature extraction or feature engineering in machine learning-based 

paradigm, where the extracted features can be passed to conventional classification or 

supervised models. 

Whatever the approach, whenever AI techniques are utilized for the signal processing 

task, it is necessary that the core signal processing techniques be generalized with 

integrated enabling mechanisms that can allow these artificial neural networks-based AI 

techniques to learn the underlying signal structure. It is in this context, AI techniques 

involving representation learning, hierarchical learning, or supervised models for 

automatic task-specific learning have gained maximum attention and success in 

elaborate brain signal processing applications. Feature extraction is an essential and 

critical step in biomedical signal processing, especially in classification-based 

supervised learning approaches. Traditional feature design-based methods require expert 

knowledge for designing task-specific features for the desired application, depending on 

the specific type of biomedical signals, applications of interest, and classification 

methods employed. Moreover, these features are often shallow representations of 

perceptually-useful attributes and are affected by the generalization error for incomplete 

features due to the subjective nature of their design. 

5.5.2. Classification Algorithms 

The relationship between features and the target class, learned from the training data or 

feature space, is captured by a classification model at the heart of AI and machine 

learning. To build a relationship matrix and convert new unseen examples into predicted 

classes of interest, a classifier requires a lot of representative examples for each class, 

especially for effective generalization, as well as a final solution of neural network 

architecture and hyperparameters. Neural network-based approaches, such as 

convolutional neural networks for image classification and recurrent neural networks, 

have recently shown remarkable success in representation learning. With sufficient 
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training data, these methods can produce classification accuracy that has reached and 

surpassed human performance on popular benchmark datasets in many areas. However, 

these approaches require a lot of manually labeled examples. In many learning 

applications, it is very expensive to obtain the labels and it's time-consuming to hire 

experts and some specialized tasks, such as image or speech recognition, labeled data 

can be difficult to obtain. In particular, while it is easy to collect data from many sources, 

it is often difficult to obtain the subset of that data that is relevant to the task at hand and 

even more difficult to obtain the labels for the examples in that subset. 

Supervised classification learns the mapping from the available labeled training 

examples. As we may only have a small set of labeled data but possibly a spectrum of 

other data without labels, few-shot learning has emerged as a possible alternative when 

we have a few labeled data of interest and still want to classify new unseen samples for 

which no training data was collected. These methods use a variety of architecture and 

training strategies to achieve this goal. Semi-supervised learning aims to use some 

labeled data together with a significantly larger set of unlabeled data. 

5.5.3. Anomaly Detection Techniques 

Medical Signal Processing is the Field of Study Closely Related to Biomedical Signal 

Analysis. However, a very different study is proposed for the Various files that make up 

the Underlying Signals that make up these Techniques. In general, Methods based on 

Classification Algorithms Require the Patient to Have Reference Signals for 

Classification Purposes, while the Detection of Anomalies Allows the Healthcare 

Professional to Observe Only the Signals. Therefore, for Diagnostic Purposes, Anomaly 

Detection Techniques Assume Greater Importance. These Algorithms Allow the 

Medical Professional to Only Study the Detection of One or More Anomalies in Signals. 

So, After Application, the Signal Will Have to Be Analyzed, Just as in the Classification. 

However, It Will Be Seen that This Study Will Only Pose the Detection of Anomalies, 

with the Over Mend that Are Observed Like Detections in Classification Techniques 

That Will Be Described Later. Due to the Complexity and Diversity of Signals Generated 

by the Human Body, the Use of Different Methods for the Detection of Anomalies and 

the Classification of Signals Is Also Very Varied, Depending on the Type of Detected 

Anomalies. Some Studies Are Only Basic Studies that Explore Different Techniques to 

Observe Which Algorithms Are the Most Efficient in Diverse Situations, and Others Are 

Techniques Used for the Analysis of Different Patients. Different Artificial Intelligence 

Techniques Such as MLP, SOM, or SVM Have Been Used for the Detection of ECG 

Signal Anomalies, Where the Inputs of the Algorithms Have Been the Totals of the 

Segments of the Signals. Different Anomalies Have Been Detected, and Different 

Results Have Been Obtained Depending on the Technique and the Input. Attention Has 
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Also Been Paid to the Detection of QRS Waves or Low-Frequency Noise Correction, 

Where New Techniques Have Also Been Developed. 

5.6. AI Techniques in Image Processing 

Artificial intelligence (AI) approaches have become popular tools for solving image 

processing problems. AI techniques are used for image segmentation, classification, 

enhancement, restoration, description, and recognition tasks. The most important image 

processing techniques are image segmentation, image classification, and image 

enhancement. This section explains the AI techniques in these three areas. 

Image segmentation is defined as the partitioning of an image into specific regions for 

simplifying its representation and analysis. Multilevel thresholding based on 

minimization variance criterion is a useful technique for the segmentation of image gray 

levels into specific regions based on their gray value characteristics. This technique finds 

multiple threshold values in order to divide an image into different segments allowing 

the removal and modifying of non-meaningful areas to ease the image analysis tasks. 

Various AI techniques including support vector machines, artificial neural networks, 

fuzzy rules, and genetic algorithms have been combined with this approach. 

This technique is very useful and has led to spectral band problems. This approach 

integrates various type classification techniques to optimally find characteristic 

threshold values. However, the approach can be slow for large images due to the 

necessity of evaluating large computational loads, high-dimensional search spaces, and 

low convergence rates. Hybrid approaches have utilized efficient exploration operators 

to conduct speed-up computations, improving optimization quality while solving the 

search problem. These methods have been proposed based on fuzzy K-means, genetic 

algorithms and hybrid approaches, artificial neural networks, and other hybrid 

approaches.  

5.6.1. Image Segmentation Approaches 

Artificial Intelligence has been extensively used for image segmentation tasks, which 

cut objects from their backgrounds in images and shapes. Image segmentation 

techniques can primarily be classified into three major categories, including thresholding 

techniques, contour-based techniques, and region-growing techniques. Currently, there 

are many methods using Artificial Intelligence for image segmentation. Image 

segmentation is one of the most challenging problems in image processing, especially 

for color images due to inconsistency in colors in different regions of objects. 
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AI techniques for image segmentation may be divided into four groups. The first group 

is region-based segmentation, which consists of mostly Fuzzy and Neural Network 

thresholding or segmentation methods. The second group is pixel-based segmentation, 

which asymptotically approximates the optimal Bayes or maximum likelihood 

estimators for image segmentation. The third category is Geometric Active Contours, 

which are regularized partial differential equations solving some level set techniques. 

The last group is the recent convolution Neural Network. Convolution Neural Network 

(CNN)-based approaches come with an end-to-end structure, are supervised-trained, and 

have gained great attention since the ImageNet competition in 2012. The supervised 

nature of CNN needs a huge number of labeled training images, which is not always 

possible. Therefore, models based on CNNs trained on associated techniques are 

introduced to other data sets to utilize other data sets due to limited labeled training data. 

However, labeled training data are available for many medical problems nowadays. 

Even though deep learning methods are widely popular for classification tasks, they are 

also used in many segmentation applications. 

5.6.2. Image Classification Methods 

The fields of medicine and healthcare have made extensive use of image classification 

for centuries, with human experts routinely reviewing scholarly images and scans to 

identify anatomical irregularities or physical abnormalities indicating disease. Image 

classification stems from mathematical pattern recognition, deep in the computer science 

and artificial intelligence traditions, and often utilizes mathematical and statistical 

means, especially statistics and probabilities. More recent methods also capture the high-

dimensional nature of medical images through deep learning—using vast neural 

networks to derive representations of imagery conditioned on the presence of different 

diagnostic labels and outcomes.  

These derived representations can then be further analyzed using statistical or 

mathematical means to recognize objects or patterns. Deep learning has several clear 

advantages over traditional means of analysis, which had to be handcrafted by engineers 

with decades of subject matter knowledge and experience: such constraints are either no 

longer necessary or require far fewer expert hours from specialized personnel. Likewise, 

shared representations of input data are typically braiding large collections of public data 

for many classifications tasks; these representations can then be efficiently tuned on 

smaller corpora of ‘private’ labeled data for specific classification tasks or used as is, in 

a transfer learning paradigm, if no further labeling is possible.  

However, labeling large amounts of image data within a supervised paradigm is the 

bottleneck for the vast majority of image classification applications both within and 

outside of the medical domain: the time and cost associated with manual and accurate 
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labeling are two orders of magnitude larger than those for traditional machine-generated 

labels, and deep learning methods can often achieve accuracy levels on par with human 

experts in typical image classification tasks. For this reason, unsupervised 

methodologies, such as traditional clustering analysis and more recent deep learning 

enabled ones, continue to command at least equivalent mindshare among experts, if not 

higher. 

5.6.3. Image Enhancement Techniques 

There are many image enhancement techniques, including image denoising, contrast 

improvement, shadow or haze removal, deblurring, and super-resolution, that have been 

incorporated into deep learning pipelines. Image denoising or removal of additive noise 

is widely studied in computer vision for its vast applications in biomedical imaging. 

Some works apply a CNN model to the noisy images as a direct denoising method or 

incorporate a generative adversarial network to perform image de-noising. An image 

restoration work applied supervised deep learning to pre-trained models to denoise 

magnetic resonance images. A CNN network was proposed to recover clear phase 

contrast x-ray slice images from noisy and gradient-embedded original images without 

de-blurring operation. A multiple learning technique was proposed to reduce noise in 

wet-capturing infrared biomedical images using gray-scale and colored textured models. 

 

Fig : Utilizing Artificial Intelligence for Biomedical Signal and Image Processing 

Applications. 
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Many contrast enhancement techniques exist based on histogram specification or 

contrast-limited adaptive histogram equalization methods. Some methods claimed 

advantages of using deep learning or hybrid models to perform contrast enhancement to 

grayscale or colored natural images due to their simpler architectures. A conditional 

GAN model was also tested for low-light retinal images by conditioning GAN on 

circular patches. Shadow detection and removal pipeline provided an image-based 

solution built with the help of a deep learning network to remove shadows in low contrast 

bioluminescence images. An image shadow effect mitigation on global illumination 

applied deep learning and post-processing techniques to smooth shadow transition areas 

of the negative infrared images. Haze is known to disparate the colors of the image, 

degrade the visibility of faraway objects in images, and diminish the image quality by 

saturating it with light in all directions. Several algorithms are attempted to restore hazy 

images by calculating the atmospheric light and transmission map in a semi-supervised 

way. 

5.7. Applications in Healthcare 

The earliest successful application of artificial intelligence was pioneered in the mid-

twentieth century in the field of clinical medicine. More specifically, the DENDRAL 

system was used to derive chemical structural formulas based on mass-spectra data, and 

then the MYCIN expert system was successfully implemented to aid medical students 

in the diagnosis and identification of infectious diseases. Subsequently, since the late 

twentieth century, several AI studies have been conducted in healthcare domains, such 

as computer-aided diagnostic devices, clinical decision support systems, automated 

medical laboratory systems, clinical patient data mining, medical robotics, and 

psychological support systems. Especially in the past decade, artificial intelligence has 

experienced a renaissance, primarily due to the development of advanced deep learning 

algorithms, and has been successfully applied in various healthcare solutions, such as 

diagnostic imaging, wearable health monitoring, and telemedicine solutions. We will 

review relevant research studies in the following sections. 

The use of AI and machine learning in healthcare applications has been rapidly gaining 

interest in the past few years, with many contributions across diverse healthcare 

domains. These domains include diagnostic and prognostic predictions in multiple 

diseases such as diabetic retinopathy, Alzheimer’s disease, and liver disease. Other 

domains include resource management, patient risk management, predictive and 

historical research for patient demographics, patient satisfaction prediction, and hospital 

readmission, as well as other predictions associated with biomarkers, genomics, and 

proteomics. Indeed, applications of AI in healthcare continue to flourish and multiply, 

covering nearly every healthcare issue of modern clinical importance. 
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5.7.1. Diagnostic Imaging 

During the last decade, artificial intelligence (AI) applied to diagnostic imaging has 

experienced progress on both an implementation and research level, mainly in the 

context of transfer learning. Considerable increases in processing performance by 

graphics processing units (GPUs) led to interrupted developments and improvements. 

The use of convolutional neural networks (CNNs) has become novel and has raised the 

majority of the interest. Research with doing it with little labeled data and without 

labeled data is ongoing. 

 The present chapter describes available AI methods and their application, particularly 

deep learning (DL) methods, in diagnostic imaging, starting with imaging of the brain 

with magnetic resonance imaging (MRI), followed by the remaining body and 

multimodal imaging. Neural networks go back to their formulation in 1943, having the 

merit of exhibiting behaviors asymptotically analogous to those of certain types of 

biological neurons. For the first time in 1986, parallel distributed processing, which used 

backpropagation, was proposed for a multilayer perceptron (MLP). It was only in 2012, 

however, that a MLP had features for designing CNNs, followed by a suitable 

architecture for CNNs designed in 2014. With CNNs having indeed a superior image 

classification performance compared with MLPs, CNNs had the merit of breaking the 

celebrity image classifier. 

Research has included having virtually but not entirely eliminating the need for expert 

labels, generating prospects with segmentation, and using unsupervised learning for 

unusual radio-morphologies, among many examples. Considerable increases in transfer 

learning and processing performance have enabled image rectification; landmark-based 

sparse landmark-less, generative adversarial networks (GANs)-based, and part-based 

image registration; image inpainting and video inpainting; image and video restoration; 

image and video super-resolution; image and video compression; image quality 

enhancement; and model selection method. Some of these developments are still 

awaiting rigorous validation, but several of such methods have patients undergoing 

testing or even being clinically deployed. For the remainder of the chapter, the focus is 

mainly on the above methods using convolutional and GANs. 

5.7.2. Wearable Health Monitoring 

Digital health monitoring is commonly associated with smartwatches capable of 

recording user  health data. However, a great variety of wearable devices have emerged 

since the 1990s, monitoring not only heart and respiratory rates, but also different aspects 

of user health. Wearable health monitoring is mainly based on sensors that continuously 

acquire user physiological data, typically placed on body parts, such as the wrist, finger, 
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ear, temple, scalp or torso. Newer sensing modalities include approaches for 

biomolecular sensing and Tattoo Electronics for monitoring electromyography signals. 

Wearable technologies have demonstrated to be useful for detecting user health status, 

e.g., symptoms of heart disease, sleep apnea, or respiratory disease, as well as for 

monitoring user health, e.g., chronic obstructive pulmonary disease or neurological and 

cardiac diseases, mainly associated with aging. 

Wearable health monitoring devices face the same limitations of traditional sensors, such 

as non-appropriate sensor signals, interference with other signals, lack of some key 

physiological parameters, or data loss associated with low sampling rates. Major 

advantages of wearable devices with respect to standard methods are continuous 

acquired data over a long time period, easy to wear, wireless, small, lightweight, and 

maybe also less expensive and non-invasive. These advantages lead to a high user 

compliance and may increase the real-time detection of deviation from normal ranges 

and status changes when the person is at home. User data are typically stored in a cloud 

where algorithms perform health signal processing, detect anomalies or patterns, infer 

user health status, train an alert model, and send alerts to physicians for enabling early 

diagnosis. 

5.7.3. Telemedicine Solutions 

Conventional medicine relies on centralized clinics or hospitals, where specialists 

diagnose patients and issue prescriptions based on physical examinations and tests. 

While this approach ensures accurate diagnoses, it is inefficient and inaccessible for 

large populations. Telemedicine leverages technology to remotely assist patients, 

relieving the pressure on specialist clinics and allowing real-time treatment anywhere in 

the world. However, for telemedicine solutions to become even more widespread in the 

future, they need to perform as well as in-person examinations. Intelligent or 'smart' 

telemedicine buildings are quickly becoming the answer due to their flexibility, real-

time interaction with patients, and support for a large range of applications. These 

buildings are based on the integration of intelligent solutions, such as AI-driven medical 

devices, which feature mobile, wearable, and wired autonomous sensing and diagnostic 

units for various medical specialties, and AI-assisted actions to deliver confidence and 

precision to patients.'Smart' solutions provide real-time assistance and prescription 

validation to patients, and improve the doctors' ability to manage and take timely 

decisions. Vision-based AI algorithms can be deployed on the camera sensor built into 

mobile devices or wearable hardware. They provide assistance in real-time 

consultations, during tele-assistance sessions, remote examinations, or even during 

remote and continuous monitoring of patients. Infrared and visible-light cameras can 

capture important medical signs, including movement analysis; eye tracking, with and 
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without the use of eye glasses; body imbalance determination; eye iris and pupil 

recognition; and facial expression recognition. Contacts between physicians and patients 

through sensors allow for better monitoring of diseases, real-time signals of clinical 

changes, possibilities to preventive therapy to apply new treatments and allow physicians 

to give prescriptions and solutions for medical conditions easier. 

5.8. Conclusion 

As research progresses, Artificial Intelligence (AI) is quickly entering the biomedical 

signal processing and imaging field as a method, simplifying the development of high-

performance solutions for numerous issues. Now that it has demonstrated its efficacy, 

there is a genuine alarm that in a few years AI could substitute the nervous systems of 

biomedical engineers, reducing their function to simply a box containing input/output 

data. This is a lost opportunity, as the supervisory function of these engineers permits 

the signification and anthropomorphism of models that on their own are nothing more 

than a mathematical representation of a problem. There would be a clear risk of wasting 

vital knowledge wealth about the implementation of many subsystems decoupled from 

the model. This would ensure that some components continue to be used without an 

adequate scientific basis and a real understanding of how and why they work, which can 

be harmful. But in addition, these models may not generalize outside the available 

population or not have sufficient robustness to be used in personalized medicine, an area 

in which little or nothing has been developed. 

The present state of the art in AI implementation in biomedical signal and image 

processing demonstrates this reversal of roles: Machines serve to help scientists and 

engineers, to make them much more efficient and capable of providing answers that 

machines alone could not offer. This presents numerous advantages in validation and 

interpretation and allows for the reduction of time and resources needed to complete 

complex image analysis and biomarker discovery. Consequently, in the very near future, 

computer vision and AI will both continue to grow almost omnipresent within the BSI 

domain. Large annotated data may create a distribution shift, where class distributions 

differ for the training data compared to the test or application data. However, it is 

essential to check whether the need for large numbered annotated training datasets is 

conditioned only by current technological limitations or whether it is intrinsic to the 

nature of the analyzed problems. 

5.8.1. Future Trends 

The rapid development and growing popularity of AI, especially deep learning, has 

inspired many research works in the broad area of biomedical signal and image 
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processing. For biomedical applications, experts often know what kind of features are 

required for different tasks based on their hands-on experiences. In the last few years, 

we have witnessed a great success in hand-crafted feature engineering based statistical 

models, or "shallow" machine learnt classifiers. With the growing popularity of AI, it is 

easy to forget the existence of such research works by medical experts, as they are not 

as easily accessible as deep neural net codes. 

Deep learning is a great tool but it is not the only tool. In this chapter, we have 

emphasized, analyzed, and showcased the collaborative aspects between AI and domain 

researchers for biomedical applications. Throughout the entire chapter, we have laid 

specific examples of how to integrate domain knowledge with AI technologies. As we 

move towards a future of AI applications, the right combination of machine learnt 

models and domain handcrafted models is likely to be the right way forward. With the 

excitement around AI, it is important for the domain experts to know and understand its 

capabilities as well as limitations. From folklore, we know that with intelligence comes 

arrogance. It is therefore important to bridge increased dependency on AI and waning 

spirit of exploration by domain experts. The future of biomedical signal and image 

processing is likely to be an expert + AI model rather than an AI only model nor a feature 

engineered only model. Hence, we foresee collaborative models would remain as the 

gold standard even with the growing applicability and scalability of AI. 
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