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Chapter 2: Fundamentals of embedded 

systems for the design of smart medical 

equipment  

2.1. Introduction to Embedded Systems 

Research on Embedded Systems has become increasingly common and important in 

recent years. The successful implementation and design of such systems have recently 

gained notoriety given the common integration of Embedded Processors in commercial 

Electronics. Although these were traditionally found only in specialized usage, the 

development of high performance programmable microcontrollers and the parallel 

advances in Sensor Technology have brought their use to areas such as Electronics for 

Robotics, Telecommunication and Medical Electronics. In these areas, Embedded 

Processors have shifted from having only a supportive function in dedicated circuitry to 

a more controlling role in complex innovative solutions.The Medical Electronics field 

has made a rapid and broad move to the architecture of Smart Medical Equipment. The 

move from traditional Electro-Medical Equipment has led to changes in design 

philosophy. Devices now possess high information content and rely on sophisticated 

Software Algorithms that often enable the visualization and storage of data (Ahmed et 

al., 2018; Jagadeeswari, 2018; Firouzi et al., 2022). The bundle of Electronics with other 

areas of knowledge in the design of a medical product may involve rehabilitation 

therapists, orthopedists, bio-mechanic engineers, dentists, physiologists, cardiologists, 

vascular surgeons, and neurologists, among other professionals. Interdisciplinary 

collaboration may lead to the successful completion of a medical product, or pieces of 

autonomous “high-tech” cure or diagnostic equipment can become available.An 

Embedded System is Computer Hardware and Software with a dedicated function within 

a larger mechanical or electrical system or Product. Embedded Systems have been 

essential in designing Smart Medical Equipment. Device smartness is expressed, for 

instance, by data Communication, User Interface, Storage, Display, Information 

Processing, and Diagnostic Capability. Typically, Embedded Systems contain 
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specialized hardware designed for devices that have pre-defined functions. Their 

Software enables the realization of auxiliary tasks inserted for coordination of the diverse 

system functionalities. With just a few exceptions, Smart Medical Devices are digital 

Electronics composed of Analog and Digital Processing Circuits connected to 

Microcontrollers or Microprocessors (Mathew, 2018; Liu et al., 2019). 

2.1.1. Definition and Importance 

From the very beginning, the design of embedded systems has accompanied man on his 

journey of technological evolution. The need to carry on monotonous, or dangerous tasks 

at a distance, led to the creation of machines that, by mimicking the cognition and 

behavior of a human being, could fill those gaps.  

 

Fig 2.1: Fundamentals of Embedded Systems for the Design of Smart Medical 

Equipment. 

These machines were created to work for a long time, with incredible precision, were 

able to withstand adverse environmental variations, and were often used outside the 
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facilities in companies or laboratories. In this sense, machines had a specific function to 

perform, with cycles that required to be repeated with high degree of regularity, 

following a programmed sequence. However, the passage of time, with an ever 

increasing demand for complexity and variability of the tasks to be performed, led to the 

need to broaden the range of capabilities of the machines used in preemption of human 

work. This led to the evolution from the original industrial automation, achieved through 

the use of fixed or programmable machines performing specific operations, to the 

formation of flexible or smart production systems or cells. Such systems and cells are 

able to combine the advantages of industrial automation with the need for diversity, 

variability and intelligence in the product performed. 

The term 'embedded system' is commonly used to indicate special purpose computers 

designed to carry out specific tasks. In a more precise definition, it can be considered 

that an embedded system is a computer-based system designed to perform a dedicated 

function or functions within a larger mechanical or electrical system. According to this 

definition, embedded systems have, typically, the following three characteristics: - They 

are not programmable by the user, meaning that the internal programming is done at the 

time of manufacturing, - They perform only one dedicated function, with possible 

variations in function due to variations in input data; - They are not stand-alone systems, 

in that they must interact with other physical systems from which they normally receive 

their input information. 

2.1.2. Historical Context 

The term Embedded Systems used in the context of the title specifically applies to 

computerized control systems that are part of a larger system, such as a medical device. 

When this text refers to medical devices it could refer to diagnostic, monitoring, or 

therapeutic devices used in treatment of medical conditions. Computerized control 

systems have been in existence for a long time. Simple analog control systems were 

present in the 18th century when a steam engine that used a flyball governor to control 

the engine speed was developed. 

The word computer however has a more specific meaning and is associated with a device 

that is able to perform arithmetic/logarithmic computations very quickly and can handle 

large amounts of data. The first computers were discussed by a pioneer who proposed 

an early computing engine. While this engine was not actually built, the first working 

computers were developed and rebuilt during the Second World War by various 

individuals. Medical devices were probably the earliest application of computing 

systems. Early computers were used to develop atomic bomb simulations during World 

War II, and radiation treatment plans were developed for patients that received radiation 

treatment for nose cancer. The first computers were large, heavy, expensive, and used a 
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lot of power. In spite of these problems, the speed and accuracy with which computers 

were able to perform tasks meant that when they were used for various applications, the 

cost of the systems was actually far less than when these tasks were performed manually. 

2.2. Core Components of Embedded Systems 

For designing dedicated systems something that is commonly used is Embedded 

Systems. Embedded systems deliver, very often, the best performance at the lowest cost, 

size and power consumption thanks to the high level of integration achieved with the 

integration of a computer with other digital or engine components like sensors and 

actuators. Embedded systems are a highly-integrated mix of electronic and firmware 

components including hardware, software, middleware, and operating systems that are 

developed to work in electronically-controlled devices. Embedded system applications 

often require to deal precisely with events happening outside the physical 

implementation of the systems and, very often, inside the device, at a very high speed 

and at a very low cost. Although highly flexible embedded systems offer best design 

tradeoffs for many consumer, industrial, and medical applications, they are not always 

the best solution possible from an overall performance perspective. 

Microcontrollers 

Traditionally, Embedded Systems were built with classical and stand-alone sensors 

interfaced to classical computer circuits. Their intelligence comes only from the 

processing elements available in the computer. The development of Embedded Systems 

has accelerated with the invention of microcontrollers that are basically integrated 

circuits that provide a digital computer and one or more appropriate sensors/actuators 

interfacing circuitry on one silicon chip. Microcontrollers have all the features of a 

computer, such as CPU, memory, and input/output capability and include processing 

elements targeted at the specific applications, such as read-only memories for storage of 

microprograms unique to the individual microcontrollers. 

Sensors and Actuators 

Sensors are transducers that convert physical signals of interest into electrical signals. 

They have become very powerful components of embedded systems, providing the 

systems with awareness of the external environment. They can measure several natural 

phenomena such as temperature, pressure, motion, and velocity. Actuators sense the 

existence and characteristics of information in other systems and use the information to 

control the other systems. The existing actuators include electromagnetic, thermal, light, 

liquid pressure, and piezoelectric actuators. 

Power Management 
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Power management sections have started appearing in embedded systems due to a 

combination of applications and design methodologies. Five trends that influence design 

methodologies are the establishment of more diverse cores inside SoCs, the introduction 

of new packages with more cores and advanced thermal management techniques, 

support for more diverse application presenters to help different application 

performances, involvement of more process technologies, and the high cost in power for 

applications in badge technology. 

2.2.1. Microcontrollers 

Microcontrollers have become increasingly important in today's technological world. 

They are the core embedded systems responsible for the collection of data from the 

external environment, processing it for further actions, and finally commanding external 

devices to take actions. Microcontrollers are utilized in automatic feedback systems that 

have helped in taking over boring works. They have advantages over chips or FPGAs, 

being mid-level integrated circuits. They provide more on-chip integration of functions, 

which can replace many chips, while allowing non-reconfigurable software 

programming as compared to chips. 

Microcontrollers consist of many elements, such as processors, memories, I/O 

peripherals, etc. A microcontroller consists of embedded CPU and on-chip memory and 

peripherals. In simpler words, microcontrollers can be defined as a single-chip computer, 

with a CPU, memory, and I/O peripheral devices integrated within it. Microcontrollers 

are continuously evolving to become chip solutions. Present-day microcontrollers are 

integrated solutions for specific market requirements. They help in reducing overall 

system costs and offer real-time performance by overcoming the bottlenecks of general-

purpose microcontroller-based systems. Although additional functions like Bluetooth 

interface and Wi-Fi are included in the present-day microcontrollers, most of them still 

require custom hardware for various power management requirements. Low-power 

applications still require important solutions for logic voltage levels, which are not 

provided by general-purpose microcontrollers, but fabricated as specific solutions for a 

particular design. 

Standard workhorse microcontrollers do not provide for low power requirements. They 

have become increasingly important in today’s advanced semiconductor technology 

with the capability of maintaining higher speed while dealing with very low voltages. 

They have become competitive not only in terms of their price but also in performance 

with special purpose standard microcontrollers. 
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2.2.2. Sensors and Actuators 

Sensors play a crucial role in the interaction between embedded systems and the physical 

world. They are critical components that allow embedded systems to obtain data from 

the environment; in sensor networks, sensor nodes are capable of capturing and 

processing data from the environment and transmitting it to remote servers for further 

analysis or data fusion. A typical smart medical system incorporates multiple sensors to 

monitor different variables, including physiological sensors to monitor vital signs, 

pressure sensors to detect ventilation and assessment of sleep disorders, temperature 

sensors to monitor pathological variations, gas sensors for the detection and diagnosis of 

diseases, glucose sensors to control diabetes mellitus, and acceleration sensors for 

location-based diagnosis. For these reasons, sensors will be introduced in detail in this 

section. Actuators, which are parts of embedded systems capable of translating 

commands into physical actions, are essential components of embedded systems that 

interact with the world. The output processed by the embedded system generates 

reactions in the physical world through actuators. The most common external actions 

generated by actuators can be the infusion of prescribed drugs, the electric stimulation 

of biological tissues, and the generation of mechanical movements to react to physical 

events. The types of motors can vary according to the need, and might be DC motors, 

step-controlled motors, linear motors, or solenoids. These motors are usually paired with 

relays and brake drivers. In the case of intricate or precise movements, hydraulic or 

pneumatic actuators can be used. For some specific applications, the combination of 

heaters, LED lights, and loudspeakers can also be used to stimulate a reaction from the 

physical world. 

2.2.3. Power Management 

To cope with their limited energy storage capacity, smart medical equipment running on 

embedded systems require power management. Possible design flows to achieve this 

objective are presented in this section, ranging from hardware components to operating 

system techniques, combined or not. 

There are basically three design options. The first one is to spend money and time at the 

design cycle to make the hardware as efficient as possible. This strategy is commonly 

required when the device is expected to reach its end of life without maintenance. The 

second option is to use specially developed components that allow us to harvest energy 

from the environment. This option is still in the early stages of development but there 

are expectations of an interesting progress. Energy harvesting can create a dedicated 

power supply for the device and allows its batteries to be slowly charged, prolonging the 

natural battery life. The third strategy is to spend a considerable time during the 

embedded operating system design and choice, addressing power management features 
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in a flexible and efficient way. The more common power saving strategies for hardware 

are reducing voltage levels and clock frequencies. At the OS level, the major options are 

transferring to a sleep state, suspending or shutting-off specific components, changing 

the execution frequency of an incoming signal processing algorithm, and defining 

dynamic rules to take these actions. Hardware features can be mixed and let the OS make 

use of them according to intended objectives. 

Power management has to be accounted for in the whole system design, not only in the 

embedded OS. Avoiding or deliberately inserting specific operations, especially during 

the system boot process, can save a considerable amount of energy when not accounted 

for. Special functions at a determined frequency may demand to increase the component 

working frequencies and so the costs. 

2.3. Software Development for Embedded Systems 

Embedded systems comprise not only hardware but also firmware to yield a complete 

functional system. In many development cycles, only one hardware prototype is 

manufactured. Once the system specification is outlined and hardware is designed, 

engineers create firmware that is tested and verified on the single hardware prototype. 

After testing, the production system will use the primary hardware, but the firmware will 

change whenever software upgrades are necessary. Such programming is usually created 

in high-level languages. However, in cases where high performance and stringent 

resource utilization is a requirement, firmware is coded in assembly language. Even in 

high-level languages such as C or C++, chips that are not too complicated are 

programmed using assembly. This is because C is originally not a system programming 

language and is neutral to hardware configurations. In the case of C++, as a result of its 

features of objects, dynamic binding, and virtual functions, C++ has not been fully 

accepted as a programming language for embedded systems. 

Nevertheless, the trend continues. Embedded systems manufacture is a process 

dominated by small companies and firms. But large companies have also begun to 

participate in the embedded market. These corporations offer a complete product line 

that covers the major domains of embedded systems. In addition, many offers are 

expansion kits that allow developers to create their own product using the complete 

package. The development software includes library functions that control the hardwired 

circuit. The functions facilitate easy and rapid implementation. Many embedded systems 

found in smart medical equipment, especially in low-cost and popular devices, are also 

developed with the help of expansion kits and supporting software. 
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2.3.1. Programming Languages 

Introduction Various programming languages are available to build software for 

embedded systems. These languages are categorized based on their suitability for 

specific applications and audiences. Choosing an optimal language is crucial for the 

software project's efficiency, maintainability, and performance, and understanding the 

language's properties is a prerequisite for making the decision. Factors such as execution 

speed, memory footprint, portability, performance monitoring, and cost affect the choice 

of language. The development team also influences the development time, flexibility, 

and maintainability of the final product. Assembly Languages Mandated by resource 

limitations, assembly languages remain the optimal choice for embedded system 

application. The Achilles’ heel of assembly languages lies in the delicate design flow 

and lack of testing and verification capabilities. Therefore, reliability-sensitive 

embedded applications cannot be developed with assembly languages. Nevertheless, the 

unique advantages of assembly languages lead to the development of embedded 

applications requiring fine-tuning on the engineering floor. For lifetime- and safety-

critical systems, these applications reach production level and are validated with 

dedicated testing tools. Notably, assembly boards can be marketed. These boards are 

validated by embedded product software developers who write application programs in 

C, VHDL, Verilog, or PLM, in conjunction with analog and digital designers managing 

the hardware boards. However, industry experts warn that utilization of assembly 

language should be confined to commercial boards with no close competitors and well-

defined market niches, such as application specific integrated circuits or complex 

programmable logic devices. In other cases, the investment in timing and debugging 

tools for board fabrication does not return any dividend. C and C++ C and C++ have 

multiple advantages including wide availability on multiple embedded platforms, ease 

of interfacing with hardware, pre-defined external libraries, and relative ease of 

debugging. They are therefore the primary languages for embedded development, and 

most commercial boards come with development tools to read and write in C or C++. 

With the current prevalence of field-programmable gate arrays on embedded boards, 

languages for hardware description come into play in coprocessor design. Hardware 

implementation refines and speeds up core functionalities of the embedded application 

and transfers the other functions to the possible software layers. 

2.3.2. Development Environments 

In principle, development environments are tools that help implement systems using 

only the programming and assembly languages available. However, the major advantage 

of development environments is that they help a lot in the most complex phase of an 

embedded software project, when no code at all has been written, using a concept in 
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software engineering: the concept of a software model. The idea is that drawing in a 

graphical way pieces of software will generate most of the code of the software project, 

including the code of the part of the project that is the most complex to implement and 

that has no code at all yet. 

Development environments can be divided into five categories according to the support 

they provide: simple code writer tools for specialized embedded software; Integrated 

Development Environments; Graphic Interface Design Environments; Software Model 

Development Environments; Hardware Description Language Development 

Environments. Simple code writer tools for specialized embedded software are code 

editors for specific software implementation tools, such as cross assemblers, linkers, and 

loaders; but, those tools may have the advantage of being mini compilers based upon the 

model presented below as an example so as to allow us to visualize their simplified 

implementation. 

Integrated Development Environments are a code editor for specific software 

implementation tools, such as cross compilers, assemblers, linkers, loaders, and 

debuggers, all together to facilitate the embedded software development, debugging, and 

maintenance phases. Graphic Interface Design Environments are IDEs for developing 

only the part of the code related to the Graphic User Interface. Software Model 

Development Environments implement on embedded systems the software model 

concept in software engineering, that is, sections of the embedded software can have 

their code generated by the tool just by drawing structures in a graphical way, as if they 

were flowcharts, making use of a software block library that is specific for the embedded 

software in development. 

2.3.3. Debugging Techniques 

A number of different methodologies are employed for effectively isolating logic errors 

in program code when debugging an embedded CPU and a user-developed application 

program. The methods fall into two general categories, hardware and software. The 

hardware-oriented methods rely to a great degree on the use of special tools, while the 

software-oriented methods depend mainly on the application program code. Of course, 

combinations of these different techniques are most often used in practice. 

Consequently, each programmer develops their own set of preferred debugging methods. 

Typically, users begin with trial-and-error techniques and then move onto more effective 

methods. 

Hardware-oriented techniques are so called because they involve interacting with the 

CPU hardware while the application program is being executed. In general, the more 

sophisticated the external debugging tool, the less intrusive it is to the actual CPU 
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operation. Simple hardware-oriented debugging methods involve the use of displays to 

report variable values or program execution state. A series of predefined state or status 

values are usually stored in memory, as opposed to real time computation as a method 

of reducing timing overhead. 

A more sophisticated hardware debugging technique involves the use of external debug 

timers which use hardware interrupts to automatically monitor the operation of the CPU 

while the program is running. These tools are useful for monitoring program execution 

state for all instruction cycles, or a specific set or range of instruction cycles. Timing 

analysis is essential for timing-critical tasks or when interacting with timing-sensitive 

peripherals. Simultaneous interaction with external peripheral devices via I/O lines while 

the program is being executed enables useful debugging information to be developed. 

2.4. Design Principles for Medical Equipment 

At its heart, the design of medical equipment seeks to restore or maintain health and 

improve safety and quality of life to the patient. Although it seems that nothing should 

be simpler than to design an efficient piece of hardware like a container or a vacuum, 

this task is made significantly more complex as the throughput capability increases to 

handle more patients, for example during surgery. Additionally, the need for sterilization 

hampers the use of commonly used materials like plastics, stainless steel or aluminum. 

The design also needs to take into consideration that a possible failure of any equipment 

in the OR may result in drastic consequences, for example by stressing a patient’s 

cardiovascular system at an inappropriate time during surgery. Thanks to previous 

experiences both in the OR and in an environment closely related to medicine, for 

example aerospace, the following design principles have been defined and have been 

successfully integrated in medical devices. 

User-Centric Design 

Health professionals and surgeons strive to improve medical service quality and patient 

safety. As experts in the field, they offer high potential input into the equipment design 

and thus mold user-centric devices. However, often their busy hospital schedules do not 

allow time-consuming interactions with developers during long design and testing 

cycles. We propose to shorten these cycles, especially in the early phases of 

development, by assisting product designers with high-level user feedback early and 

often. Using a combination of sketching, physical mockups, and low-cost technology, 

fledgling products can gain direction quickly and implement iteratively in short cycles 

to yield devices that will see use and ultimately benefit both the healthcare team and the 

patients. 
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Safety and Compliance 

The overwhelming need to prevent injuries to patients, care-givers and medical 

personnel ultimately comes from painful past experiences. Patients’ misfortune by 

undergoing an unnecessary second surgery, parents grieving a loss of their child by a 

medical error, and the public outrage caught by journalists when the health system 

collapses are some incentives for medical equipment manufacturers to abide by the 

safety standard which governs the design of practically all medical devices used. 

 

Fig 2.2 : Design Principles for Medical Equipment. 

2.4.1. User-Centric Design 

User-centric (or user-centered) design (UCD) is a design philosophy that aims to 

improve user experience (UX) and increase the usability of machines for the intended 

end user. This is accomplished by paying close attention to end-user needs and 

preferences during the design process, allowing them to evaluate prototypes, and making 

iterative changes to arrive at a final design. In particular, for medical equipment that has 

a direct effect on the well-being of patients and is operated by medical practitioners, a 
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UCD approach is vital to the successful design and deployment of the technology. User-

centric design has many positive effects, such as increasing user happiness, leading to 

fewer user errors, and decreasing learning time; for medical equipment, this results in 

increased practitioner efficiency, reduced operating costs, and improved patient safety. 

The concept of user-centric design has parallels with human factors engineering (HFE), 

user experience design, usability engineering, participatory design, and interaction 

design. However, UCD generally has a specific philosophy and process centered around 

the user and user feedback, while all the other concepts mentioned focus on specific 

aspects of design or specific ways of incorporating the user. UCD is also predicated on 

the understanding that design is an iterative process and not a linear path, as is normally 

emphasized in nominal engineering design processes. HFE and UX emphasize the 

psychological aspects of the user experience and are usually not part of the engineering 

design process. Because of its increased focus on the user, UCD makes use of extensive 

user input during the design process, typically with testing and feedback; many other 

concepts take that feedback and input as an assumption during the design process, using 

other validation or design methods. Therefore, it is important to use UCD at the very 

beginning of the design process, and work with it through subsequent revisions or 

iterations of that design. 

2.4.2. Safety and Compliance 

A medical device must meet a great plurality of requirements given the intentional 

medical purpose. Although some devices provide only diagnostic information or simply 

collect data, many will provide a diagnosis, or more importantly, lead to a medical action 

that will influence a person’s health and degree of wellness. As a consequence, the role 

of a medical device within the ecosystem of care delivery is central. This will impose a 

huge number of constraints that a medical device must respond to. Most medical devices 

work together in a coordinated manner toward an overall purpose of enhancing the 

quality of the care delivered, while seeking to avoid iatrogenic consequences, and 

constantly aiming for the prevention of disease, delivery of treatment, and even cure. 

This involves another contradictory design principle – the company’s commercial 

initiative linked to Engineering for the Delivery of Medical Solutions must be 

harmonized with economics. 

The unintended consequences of a medical device being unsafe or effecting an 

unfavorable iatrogenic consequence can be severe. This was amplified in recent years 

by the large use of software-based approaches, increasing the complexity of embedded 

systems in medical devices. As a consequence, the requirements driven by Safety 

Assurance and Compliance become some of the most critical for the Design outfit of the 

embedded system, and also for the validation of its behavior and performance prediction. 
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This becomes even more challenging when we take into consideration that Safety, highly 

abstract and unintuitive cannot be designated into concrete architectural rules, but 

instead must be demonstrated at every level of the Safety Assurance and Validation 

process. 

2.5. Communication Protocols in Medical Devices 

Communication between devices, equipment, and systems can be both wired and 

wireless. Typically, equipment that is not portable or is in a controlled environment is 

connected with cables that can also provide power to the equipment. However, 

equipment that is portable or within free movement or the patient is connected through 

cableless protocols. The cables that are used in wired protocols should be insulated and 

covered to avoid exposure and damage. The same risk is not present in wireless 

protocols. However, careful consideration should be provided to security and privacy 

policies when implementing readily available wireless communication protocols in 

embedded systems of medical equipment. 

Wired Protocols 

General equipment interfaces implemented by wired communication protocols include 

Universal Serial Bus and RS-232 protocols. USB is used mainly for connecting portable 

data storage devices, but many data transferable medical devices connect using USB. 

For example, USB is used in digital microscopes. Serial Communication Protocol is 

present in a wide range of medical devices, especially less advanced diagnostic and 

therapeutic devices. Other wired interfaces include FireWire, Serial Peripheral Interface, 

Inter-Integrated Circuit, and Ethernet. With ever-advancing technology in low-power 

models, Ethernet connections have been implemented in portable medical devices too. 

Ethernet is the most common LAN and is implemented in computer networks in 

hospitals. 

Wireless Protocols 

There are many wireless communication protocols available, including Wi-Fi Direct, 

Bluetooth, Near Field Communication, Zigbee, Z-Wave, Insteon, WI-Sun, and ANT and 

RFID. There are quite a few health-related applications using Bluetooth and Zigbee 

embedded in mobile phones, tablets, and computers for health care. NFC is gaining 

popularity in the area of medical devices as it is a short-range communication system 

with an automatic connection approach. 
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2.5.1. Wired Protocols 

This chapter introduces the main communication protocols used in medical systems, 

focusing on the wired industrial protocols applied in smart medical devices. The 

communication protocols presented are addressed in their usage in medical systems, the 

abstract model of execution and data flow, their basic frame structure, and the data types 

supported. After the protocol description, pertinent considerations are included to 

address relevant aspects such as energy efficiency, security, fault tolerance, and safety. 

Although medical systems may make use of common wired and wireless communication 

protocols, such as RS-232, RS-485, Ethernet, IP, MQTT, WebSocket, and HTTP, the 

smart medical devices must use specific industrial protocols. In this chapter, the data 

link protocols are discussed. These specific protocols have been developed based on 

strict requirements, defined in standards. The industrial protocols guarantee 

deterministic execution and data transfer on time, security against external attacks, fault 

tolerance through redundancy of commands and data, safety by verifying the integrity 

of data communication, support for different data types, low processing overhead with 

possible use in low-cost smart medical devices, and low power consumption using sleep 

mode, allowing the device to operate for several years with a small battery. Due to the 

mentioned aspects, smart devices used in medical systems must use industrial wired 

protocols. Wireless protocols do not exhibit one or more of these properties, making 

them incapable of being safely used in medical applications. 

2.5.2. Wireless Protocols 

Wireless communications offer physical advantages in such applications as the data 

collection from capsules, sensors in the body, and distant non-immersible sensors. The 

proprietary protocols in use often incur difficulties in connecting to received nodes, and 

their range and data rate are inferior to the standards. Their use was justified due to their 

insurance of safety, low power (for the periodic waking up of nodes), and a small number 

of associated nodes. Most of the proposed wireless infrastructure use the standards: 

Bluetooth, Zigbee, and Wireless Fidelity. Their quality and cost of a transceiver is small 

enough to be used in Body Area Networks, and moved to a similar low-power and low 

data rate on-the-radio frequency for Wireless Personal Area Networks standard. The 

standard, adopted in 2003, is the bottom MAC level of the higher standards with off-the-

shelf transceivers at low power and cost. It is an order of an elongation in the type of 

both the order frames and beacons for three levels of the priority traffic and a 2 ms wake 

up in each 100 ms are possibly issued. The protocol is an adaptation to infrastructures as 

Networks Medical Association and Open Systems Foundation Communication Protocol. 

ZigBee is a multilevel standard based on and proposes several security mechanisms 

when coexisting with standards to monitor and secure the other channels. Medical 



  

34 
 

implants usually have the following restrictions: low area, long battery life (usually on 

the order of years), and periodic use (ms). They use ISM channels below 1 GHz: MICS, 

402–405 MHz, near the RFID: 13.56 MHz, and 860–960 MHz frequency-modulated, at 

2.4 GHz: ZigBee, and at 5.8 GHz. 

2.5.3. Data Security and Privacy 

With wireless and Internet-enabled medical devices rapidly expanding, data security and 

privacy have taken a serious step forward. These are no longer simply technical niceties; 

they are now part of the regulatory requirements for the sale of devices in many larger 

markets and are often demanded by clinicians in charge of patients’ care. 

The two widely known compromises against user privacy are interception and misuse of 

the information transmitted from a medical device, for instance, a heart rate monitor, and 

injection of misleading information into the end-users’ data streams. The challenges 

faced by manufacturers of commercial off-the-shelf medical devices operating on 

commercial platforms differ from those in other fields. The affordability, direct 

engagement with end users, access to substantial aggregate data, competitive forces, and 

regulatory requirements often underlying quality solutions with sufficient scrutiny 

mitigate against security challenges. 

There are four cybersecurity goals for the production and deployment of medical 

devices: confidentiality to ensure that sensitive patient information is not disclosed 

inappropriately; integrity to allow the authorized party to control medical device data so 

that it is not modified inappropriately; availability to guarantee that a medical device can 

perform its intended function reliably; and authenticity to protect against unauthorized 

access that would permit compromise of confidentiality, integrity, or availability. 

A typical critique of a specific medical device is use of an insecure communication 

protocol in a device that uses or transmits patient-facing data that are both sensitive and 

potentially injurious to that patient, and that is critical to the health of the patient. 

2.6. Real-Time Operating Systems (RTOS) 

Real-time systems are those that respond to events within a time that is determined 

according to the behavior of the system, that is, the response time must be as low as 

required. In some cases, even if the system is not in real-time, its response should happen 

as quickly as possible, for example, when the user is waiting. The important thing is that 

these deadlines are defined according to the user’s requirement and must always be 

satisfied, especially in critical systems. Critical systems are those in which the absence 
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of a response, an erroneous response, or an untimely response creates some damage to 

their users. A well-known example of critical users is the airbag system, which needs to 

respond instantly so that it does not cause further damage. A non-critical system example 

is a printer connected to a computer. 

Embedded systems are present in most smart devices currently developed, as the name 

implies, either to perform some ancillary function, which may be critical or non-critical 

according to the user’s criteria. Given the great variety of applications (critical and 

noncritical), the description of these systems is quite broad. However, the 

characterization of real-time embedded system presents some specific requirements, 

some combine several features, such as: These systems have strict temporal 

requirements; They have a continuous, repetitive, periodic operation; Most of them 

require a predictable behavior; In general, they require deadline management; They often 

have more critical tasks than non-critical tasks; Generally, they require low-cost, small 

processors and low-power consumption; These systems present difficulties in changing 

the data and programs in the field; and Most are dedicated and reusable, but there are 

some non-dedicated. 

 

Fig :  Medical Equipment of  Fundamentals of Embedded Systems for the Design of 

Smart Medical Equipment. 

There are embedded systems that do not require real-time characteristics, but given the 

answer time of these devices, we have a temporal response that we can consider as real 

time. An example is the electronic game console of endless games that can be produced 

and launched on the market. The need for a real-time response and the only reliability of 
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the system defines real-time systems. These deadlines have a physical form, such as the 

fact that the system must be effective for the display of a film. These characteristics 

presented above describe the strict real-time embedded system, which is the focus of this 

study. 

2.6.1. RTOS Characteristics 

Real-time operating systems (RTOS) are specialized software systems designed for 

embedded computing applications where the computing demands of a real-time process 

must be coordinated by the RTOS together with other embedded computing tasks. 

Unlike general-purpose operating systems (GPOS), where no deadline is imposed on the 

executing task of an application, an RTOS assures that for each periodic or aperiodic 

executable task its computations are completed within the specified worst-case response 

time. This is of extreme importance in critical embedded systems such as smart medical 

equipment, avionics control, financial banking, etc. Suppose the duty of a certain 

application task is to sample an analog sensor input every n seconds, filter the raw data, 

and publish it for use by other tasks. In that case, if the task takes much longer than n 

seconds to execute, the system will announce incorrect information, which is often fatal 

in smart medical applications. 

By having control of scheduling of all the executing tasks according to specific timing 

regulations, RTOS can manage to meet the real-time deadlines of embedded 

applications. Therefore there are some particular technical features that distinguish 

RTOS from GPOS. The following are the more essential RTOS characteristics utilized 

in current-day embedded applications: (1) Guaranteed response time: for periodic tasks, 

response time can be predicted and specified. (2) Minimal interrupt latencies. (3) 

Minimal jitter: disturbance in the periodic task response time. (4) Multithreading 

support: while one application may be a sequential one requiring only a single task to 

react to a periodic event, more and more applications consist of many periodic segments 

requiring multithreading support. (5) Priority CDC: Embedded applications often 

predefine the sequence of executing application tasks. Therefore, efficient priority 

scheduling support is of utmost importance. (6) Kernel: A small kernel, often including 

just a thread management function, a scheduler function, and combinatorial functions 

for thread waiting, is adopted. 

2.6.2. Scheduling Algorithms 

In a real-time system, it is often necessary to execute jobs according to a defined 

temporal order and with a specific timing constraint. The latter can be either hard or soft. 

When a timing constraint needs to be met strictly, missing it means the job is said to be 



  

37 
 

tardy or missed and the system is considered to be in error, even if such tardiness does 

not affect the remaining jobs of the system. Hard real-time systems usually find 

application domains in safety-critical processes, such as the brake control system of 

automotive equipment. On the contrary, for some applications in specific domains, 

missing the timing deadline of some jobs may be acceptable, provided that the timing 

limitations of other jobs are satisfied. Besides, the system integrity is not at risk at all for 

those missing jobs. In that case, the system is considered to be soft real-time. Soft real-

time systems are often used in non-critical applications, such as multimedia ones. 

In this section, we will overview the scheduling algorithms used in hard and soft real-

time systems. Some of the scheduling algorithms need to ensure that the timing 

constraints for all the jobs are satisfied. Other scheduling algorithms do not need to 

ensure that all the timing constraints are met. Such scheduling algorithms enable the 

system administrator to allocate a higher priority for defining the timing constraints of 

some jobs than others. For soft real-time systems, some scheduling algorithms will allow 

the missed jobs within certain limits, but ensure that the timing constraints for the other 

jobs in the job pool are satisfied. These scheduling algorithms are also known as best-

effort algorithms. We assume that every task is a periodic task if there is no special 

mention. Task scheduling can be divided into two classes. These are periodic task 

scheduling and aperiodic task scheduling. 

2.7. Integration of IoT in Medical Equipment 

The adoption of the Internet of Things paradigm has opened even more opportunities in 

several domains, including the one for monitoring medical parameters, as what will be 

discussed in this chapter. Captain Medical has realized a spirometer instrument that aims 

to solve the use problem of spirometric measures in hospitals and clinics. The matrix 

from which this device arose represents a larger idea, focused on integrated medical 

devices capable of allowing telehealth in any situation. They are intended, first of all, for 

patients with chronic respiratory diseases, who need to evaluate their condition at home 

daily. 

The advantage of the new design regards not only the ability to perform the 

measurements independently and the portability but also the remote control of the 

devices, making them easy to use and able to give early warnings in adverse situations. 

Yet this new device is not only a function for a smart spirometer. It is a platform to which 

it is easy to connect other medical devices targeted to the most disparate needs and 

parameters, during the possible exit of the patient from the monitoring with the logistic 

supervision of the clinic or authorized structure. In this phase, medical embedded IOT, 

also called e-IOT, enters in action. Considering this large new world of devices, we need 
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to understand if we can apply to them the known paradigms for conventional IoT, or if 

we need to modify them or adopt entirely new ones. 

Therefore, we need to adopt a healthcare IoT or m-health IoT (where m stands for 

medical). To this aim, we review the three classic component segments for an IoT 

architecture: perception, transport, and application segments. The perception segment is 

responsible for acquiring environmental parameters and the object set of interest, and 

acting locally on the same object, using sensors, actuators, and microcontrollers. The 

transport segment transmits the information classified about the object of interest from 

the perception segment to the application segment. The application segment receives the 

information, processes them, and possibly sends back new instructions to the object of 

interest. 

2.7.1. IoT Architecture 

The integration of the Internet of Things (IoT) into various industries has made systems 

smarter and simpler. The IoT business is primarily focused on unifying all of the required 

devices under one umbrella and providing users with useful data to assist in making 

intelligent decisions. An IoT architecture is a conceptual structure that describes the 

organization of how IoT devices communicate with one another and with the cloud. 

Different devices are utilized across different IoT applications, and there are various 

ways in which devices can be integrated. Regardless of the type of devices being utilized, 

each IoT solution comprises hardware, connectivity, and software. Software, in addition 

to hardware, is what drives the recognition of an IoT solution. The core function of any 

IoT solution is data processing and analysis. 

A simple IoT solution consists of four layers: perception, network, edge, and application. 

The perception layer possesses the devices that sense environment information; the 

network layer transports information between layers; the edge layer provides storage and 

computing service; and the application layer offers business functions to users. Smart 

cities, industries, and other checked areas make up an IoT application. The IoT 

perception layer consists of smart sensors, RFID tags, big/ultra HD cameras, and other 

sensing devices, which are capable of obtaining important status parameters from 

surrounding areas. Their abilities determine the coverage of the IoT system. The network 

layer consists of wireless networks, including cellular networks, Wi-Fi networks, 

LPWANs, and other modern communication techniques. Different data traffic, 

coverage, and latency requirements/preferences from users’ applications cause a multi-

tier and hybrid structure of the networking layer in most IoT applications, resulting in 

the challenges of data transmission for both reliability and latency requirements. 
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2.7.2. Data Analytics and Cloud Computing 

The integration of smart medical equipment with data analytics and cloud computing 

permits the analysis of patients' health status, thus increasing quality achievement and 

assuring healthcare assistance costs' reduction and optimization, and their effectiveness. 

Data is transported to the cloud from the gateways, being processed through powerful 

Data Analytics frameworks allowing the coupling between processed medical data and 

patient information coming from the Electronic Health Records. Being deeply exploited, 

coupled, and correctly discussed by doctors, the listed health parameters allow 

personalized patient monitoring and allow their manual or automatic hospital services 

requesting or triggering alarm systems. 

The data processing and analysis allow the detection of the specific patients' illnesses 

through pathology patterning, discovering depression by measuring the social avoidance 

level through phone log data and extracting behavioral patterns, and the promotion of 

connected health through the digital therapeutic.  

2.8. Conclusion 

Embedded systems have acquired a new dimension by allowing objects to be 

programmed, communicating, and historical data to be stored. Unprecedented amounts 

of computational power and memory, available at attractive prices, permit the 

implementation of features that were previously considered science fiction. Future 

products will be equipped with modular embedded systems with unique and innovative 

features. This abundance of hardware and embedded software offers tremendous 

opportunities to the developer. However, hardware and software have to be very 

carefully designed: they are at the same time system enablers and system obstacles: 

mistakes in the design of the system can make impossible to control costs or to optimize 

the reliability and the speed of the design process. Furthermore, possible errors in the 

design of the embedded software are at the same time very costly in terms of human 

resources and time and could trigger legal consequences due to the unintended action of 

the device. European and national regulations in the field of devices have been 

implemented or are in the process of being implemented in order to specify the 

requirements that a device has to satisfy, and to promote a uniform approach to the 

market throughout Europe in the field of certification. 

The increase in the number of smart medical devices that are available on the market 

raises the problem of choosing one of the many available systems, as well as raises the 

requirements from the user. As technology becomes ubiquitous, additional layers of 

support and new functionalities are expected to be offered with new designs of embedded 

systems, fulfilling the specific needs of smart medical devices. The design of the system 
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should support the pack around the user, and the new wave of devices for every 

application, every age and every need, with. 

2.8.1. Future Trends 

Rising healthcare costs combined with technological advances have paved the way for 

provider and consumer interest in smart medical devices for health monitoring and 

patient record-keeping. Consumers, through their increasing access to health data online, 

are becoming more engaged in their own medical decisions and are communicating their 

needs and wants to physicians and other care providers. These changes have driven 

market demand for smart medical devices. Recent survey results indicate that health 

applications are the second most common functionality people want on their smartphone 

or tablet. For many, the smartphone is the preferred computing platform for health 

applications. Efforts are currently under way to enable the smartphone and the tablet as 

the preferred monitoring platforms for many smart medical devices. Advantages for 

using smartphones and tablets as smart medical device monitoring platforms include 1) 

ubiquity of the smartphone, 2) portability of the smartphone, 3) diverse sensor 

applications already built into the smartphone, 4) display functionality for alerts and 

graphics, 5) telecommunication capabilities, and 6) Web connectivity. Some of the many 

examples of smartphone platform development include blood-glucose sensor systems, 

electrocardiograms, and ultrasound imaging. 

The smart medical device development effort must also pay attention to regulatory 

requirements. Although mobile-health applications must provide consumers with the 

data and information needed to make informed healthcare decisions and enable 

consumers to fulfill those decisions, consumers must also be assured of the reliability 

and functionality of the applications. The best way to provide consumers with this 

confidence is to develop smart medical devices that meet regulatory requirements. 

Fortunately, some capital-intensive device applications may have relatively low-volume 

produced systems, mainly because of the high costs associated with regulatory 

requirement compliance. 
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