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Chapter 9: Performance monitoring and 

optimization of machine learning models 

in production environments 

9.1. Introduction 

Significant progress has been made toward deploying machine learning (ML) models in 

real-world production environments. Such models are able to analyze large datasets, 

generate predictions, or classify and categorize data in seconds or minutes. They are 

capable of automating high-stakes, important tasks, such as transcribing digital 

recordings of court proceedings, automatically approving loans for thousands of 

customers every minute, and identifying failures in manufacturing machinery through 

sensor data analysis. Highly successful models may soon be analyzed and tuned by 

automated systems for optimization and performance monitoring in the same way that 

highly optimized systems for hyperparameter tuning exist today. Given the investment, 

promise, and pervasiveness of ML, there is a compelling need to explore effective 

techniques and systems to operationalize performance monitoring, diagnostic analysis, 

and performance optimization of such models efficiently, accurately, and effectively 

(Urs & Zaharia, 2019; Sharma, 2020; Mahmoud, 2021). 

Even though many mature ML frameworks exist today to build data processing 

pipelines, train, and deploy ML models into production settings, there currently exists a 

lack of automated software systems for model performance monitoring and 

optimization. Today’s ML systems often lack adequate ML model tuning, performance 

monitoring, and diagnostic analysis capabilities built into them. As a result, ML 

engineers spend a lot of time and effort building and deploying custom solutions to 

achieve these ML model lifecycle capabilities. Such custom systems are often hard to 

implement, fragile, difficult to maintain, and may not necessarily be scalable to the ML 

workload for a given problem. In addition, many of them may lack adequate security 
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and privacy protections against unauthorized access, or robust, end-to-end, performance 

monitoring and analytic capabilities. Many of the significant business costs and risks of 

deployed models stem from these fundamental limitations. A survey of companies using 

ML technology found that development and operational challenges came up frequently, 

and that market need is sufficient for companies to pay for solutions. Performance 

monitoring of deployed models is a fairly broad and active area of research (Urs & 

Zaharia, 2019; Sharma, 2020; Mahmoud, 2021). 

 

Fig 9.1: Performance Monitoring and Optimization of Machine Learning 

9.1.1. Background and Significance 

Machine learning technology has advanced tremendously in the last twenty years 

because of the simultaneous advancements in computational power, storage capacity, 

networking complexity, availability of data, and algorithms. These advancements make 

it possible to deploy complex and large machine learning models to production, 

generating significant value for society in terms of revenue, time savings, labor wage 
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reduction, and performance improvements in diverse areas, including finance, 

healthcare, advertising, ecommerce, and so forth. However, there is an increasing 

realization that deploying a machine learning model is just the first step in taking 

advantage of its predictive power. There is a business need to monitor the performance 

of machine learning models in production, in the context of real data, realistic user 

behavior, and other external dependencies. By using these monitoring platforms, 

organizations can catch degradation of model performance, data drift or shadow data 

issues, model saturation, and so forth. As needed, users can pause model updates and 

performance, and roll back to the previous version while addressing the reasons for the 

model or data performance degradation. This has led to the emergence of a number of 

startups, doing monitoring, auditing, and compliance of machine learning systems. 

In parallel, there are further discussions in the academic community about exploring 

ideas on how to mitigate issues caused by bad inputs during model serving. Misleading 

data can obviously lead to incorrect outputs. More advanced ideas such as self-

supervised learning, multi-task learning, test-time training, and test-time optimization 

also seek to use additional data and computations at prediction time to further improve 

the output quality. However, an organization should balance the cost of additional 

computations versus the value of improvements. Moreover, a model can also be 

deducted in an instance-dependent manner, depending on the type of input dataset. In 

this chapter, we create a framework where we can audit models on methods to simulate 

data drift, shadow data issues, model saturation, as well as insight tire dying. 

9.2. Understanding Machine Learning Model Performance 

Performance evaluation is essential for the successful deployment of any machine 

learning model, and the specific performance metric used is usually chosen according to 

the type of problem - classification, regression or clustering - and the type of machine 

learning algorithm employed. Numerous metrics are available for evaluating machine 

learning model performance, each measuring different aspects of model performance. 

For most supervised machine learning problems, model performance is evaluated from 

a set of test data that is not visible to the model. Model performance is typically reported 

as a number between 0 and 1 or as a percentage, where higher values usually indicate 

better performance. It is important to be careful about considering what metrics to report 

at least model performance and model training time, as well as making appropriate 

model performance comparisons using those metrics. 

The choice of metric is also influenced by the type of business context in which the 

model will be used. For example, spam classification should ideally have false-negative 

and positive error rates close to 0, but the business may be more concerned with the 

false-positive error rate than the false-negative error rate. Despite being a relatively 
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simple concept, there are subtleties involved in measuring model performance. First, 

although most performance metrics are reported as numbers in the range 0-1, numerous 

metrics are designed to provide very different ranges. For example, accuracy is evaluated 

as the ratio of correctly classified samples divided by the total number of samples, which 

falls in the range 0-1.  

9.2.1. Key Performance Indicators (KPIs) 

When machine learning models are employed in production, it is essential that the 

performance of the models be assessed to determine whether the solutions are achieving 

the expected results. An important process in this monitoring is the updating or refining 

of a system when the performance is not desirable anymore because of data drift, model 

decay, or alterations in business strategy. Performance assessment thus requires 

measurement of the discrepancies between the predictions made by the ML production 

system and the actual results corresponding to the input data generated by customers or 

other end-users. 

Prior to development of a machine vision system, the desired goals of a deployment 

should be established. This is part of the system definition life cycle. The model which 

best solves the problem must comply with business objectives and customer-related 

issues such as latency constraints, uptime requirements, and the cost of mistakes. It is 

important that the KPIs defined by data scientists reflect the unique production 

environment and address the priorities set in the definitions. In addition, these KPIs 

should remain constant throughout the life of the machine learning system. Also, since 

the purpose of the model is to optimize a larger business goal, it is essential to define the 

model performance only in context. The KPIs representing the highest business-level 

goals are often specified in the production environment. Output KPIs may be forensics 

and robustness related, since model failures are tied to business solutions and indicate 

many of the underlying issues in most production scenarios. 

9.2.2. Common Performance Metrics 

Certain model performance metrics are ubiquitous and can be calculated and compared 

independently of the task in a uniform manner. In this section, I provide a few examples 

of such commonly computed performance metrics. Note that the metrics discussed in 

this section are evaluated on the test set defined in Section 6.2. 

Cross-Entropy Loss (Log Loss). The negative log likelihood of the ground truth from 

different label distributions is commonly used for evaluating classification models. 

Typically, for each sample in the test set, the cross-entropy loss is calculated as the 
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negative log of the model predicted probability for the true label. Then, the average loss 

across samples is calculated: 

Loss(y, ŷ) = -\frac{1}{N} \sum\limits_{i}^{N}y_i\log{\hat{y}_i}, 

where y = [y_1, \dots, y_N]^T is the true label, ŷ = [ŷ_1, \dots, ŷ_N]^T are the model 

predicted probabilities computed by a softmax function after the linear classification 

layer, N is the number of samples, y_i is a one-hot encoded vector for sample i, and ŷ_i 

is the model predicted probability for label j of sample i. 

Precision/Recall/F1-score. Precision/recall is a commonly used method to evaluate 

binary or multilabel classification tasks. Given a threshold, precision is defined as the 

fraction of samples correctly classified as positive out of all samples labeled as positive 

by the classifier: 

Precision = \frac{TP}{TP + FP}, 

where TP is the number of true positives, and FP is the number of false positives. Recall 

is defined as the fraction of correctly classified positive samples out of all positive 

samples: 

9.3. Challenges in Production Environments 

At the heart of all work processes involving AI and machine learning are models that 

require maintenance and upkeep, just like the software and hardware resources of an 

organization. Maintaining the validity of machine learning models, deployed as part of 

a broader AI system and creating value by virtue of generating predictions, 

recommendations, or generating decision actions, is used less than conventional software 

for the decision making of an organization. In part, this is due to the reliance on complex 

machine learning systems, which question the need for transparency and explicability 

after deployment. The traditional presumption that validation is only required earlier in 

the life cycle is also relevant. As decision making increasingly relies on model 

predictions after their original development and training, it begs the question of 

monitoring model predictions, and of what actions should be taken if there is a 

deterioration in the quality of predictions. 

Machine learning models deployed in a production environment must communicate with 

external environments, mostly the streams of data that are used to train the models. A 

large number of questions and requirements emerge, not least of which is whether the 

data stream remains stationary from the time the model is created and validated. Many 

of the requirements that need to be dealt with are similar to those faced by AI and 

machine learning practitioners during the training and creation of valid, generalizable 
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models. The production phase also differs from the training lifecycle in what happens if 

a performed model decisively deteriorates with respect to pre-specified metrics after 

being deployed. In conventional software, errors found after deployment are less 

frequent, more costly than those found as part of the conventional lifecycle, and a 

determinant driver of many software development processes and phases. In most cases 

involving machine learning models, prediction errors are present, for example, an online 

recommender may have an accuracy of only 20%, but these error rates are declining, 

thus providing a reliable, time-sensitive suggestion regarding action. 

9.3.1. Data Drift and Concept Drift 

The input data fed into a model, or the data distribution, is often different to the one that 

existed when the model was trained. This difference is termed data drift or covariate 

shift. Most supervised models are sensitive to the distribution of input features because 

the features are either used directly or in some function to model the output. For example, 

all classifiers use some function of the features to compute the probability of different 

classes. Sensitivity to data drift implies that small shifts in the distribution will often lead 

to shifts in model performance, and large shifts will almost always lead to significant 

performance drops. 

Many times we find that a classifier is predicting the correct class, but this is simply an 

accident of the model having learned spurious correlations. In such cases, drift is possible 

without any significant change in model performance. Performance drop is a necessary 

but not sufficient condition for data drift detection. The model making the wrong 

predictions may correctly assign the data to the prior class distribution, but have a zero 

likelihood when tested on prior class conditional distributions. This leads to a word of 

caution when using metrics such as KL divergence. 

When such data distributions are fed into the model dashboard, instead of the actual 

prediction probabilities, monitoring dashboards that visualize data statistics would raise 

alarms for data drift alerts, visualizations where audio can also be added. Alarms for data 

drift detection models can also be set up for data collection pipelines. Such data shifts 

are detected by comparing some features of interest that were present during model 

development and those that are present on actual production data. 

9.3.2. Resource Constraints 

When a machine learning model works as expected in a testing environment where all 

of its resources are unlimited (mostly time, memory, and processing power) it is often 

the case that this does not hold true in a production environment. Resource constraints 
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in a production environment often limit the performance of machine learning models to 

such an extent that it may not be cost effective or even possible to use the model at all. 

Sometimes, inferences take excessive time or resources to produce, or memory or 

processing capacity to run the model locally is insufficient. Even if the response time is 

acceptable, the computational and financial costs of running the model in production 

may be excessive. Additionally, resource constraints do not – with rare exceptions – only 

affect big, complicated models. Even a simple linear regression model stored on a very 

large device, such as a smartphone, may lead to an unacceptable combination of latency 

and resource consumption if a feature in the feature set is produced by a CPU-intensive 

process which is run for every new input that has to be processed at that moment. It is 

therefore essential to recognize and understand any possible resource constraints before 

deploying a machine learning model. If, in spite of considerable risks and trade-offs, 

resources are constrained, then a regular retraining or fine-tuning schedules can help 

maintain a functioning model for a longer time, preferably throughout the model 

lifecycle. 

9.4. Monitoring Techniques 

Several monitoring techniques have been introduced to date, with each approach 

designed to address certain monitorability constraints. These monitoring techniques can 

be grouped into two categories: real-time monitoring and batch strategy monitoring. The 

first approach is suitable for real-time production pipelines where immediate corrective 

action is warranted. The second batch monitoring approach is designed for production 

pipelines where batch scoring techniques are more appropriate. A summary of the two 

techniques is presented. 

Real-time Monitoring Tools 

There are three classes of real-time monitoring tools developed to address certain unique 

constraints for models deployed in production environments. These classes include 

middleware layer monitoring, logging, and custom functions. Middleware monitoring 

tools are monitoring systems designed to sit in the middle of the input and output path 

in the input transformation, model application, and output processing locations in 

production pipelines. These tools require minimal engineering grunt work, by supporting 

commonly used ML pipelines without modification. 

In our experience, most production ML pipelines are, however, highly customized 

scripts built from popular ML Python libraries. These highly customized scripts do not 

have the necessary plug-and-play functionality needed to support middleware 

monitoring. As such, they lack the common programmable APIs needed to plug into the 

polish and completion functions of the middleware. The primary functions of the 
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middleware include data validation, model validation, model monitoring and predictive 

drift checks, predictive monitoring, and automatic model switching, model retraining, 

and model scheduling. For machine learning, pipelines with unique middleware scraping 

functions designed to recompute model training errors or stats, model inference errors 

or stats, or class predictions are also needed. 

9.4.1. Real-time Monitoring Tools 

The concept of monitoring is central in Information Technology. A proper monitoring 

system can inform a company about relevant aspects of its services and warn it about 

issues that might lead to downtime and end-user satisfaction. In the Software 

Development Lifecycle, monitoring is one of the pillars of the Operation and 

Maintenance phase. The Operations team is responsible for ensuring that all services are 

running properly by using tools that catch misbehaviors in real-time. 

 

                                  Fig 9.2: Real-time Monitoring Tools 

At this point, you may be asking yourself why machine learning models are different 

than any other software services. The answer is that data-driven services present a unique 

set of complexities that need proper monitoring tools to ensure proper performance. In 
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particular, the quality of the data used during prediction needs a specialized set of 

monitoring tools to ensure that the model is applied to the appropriate data range. If the 

model is used outside its data range, it might start producing invalid outputs. These 

outputs might have serious, real-world consequences. Think, for instance, about a credit 

approval model that is applied to a previously unseen demographic but still has the final 

verdict dictated by its predictions. If that model starts to inaccurately approve new clients 

purely based on the model prediction, the financial institution might suffer heavy losses. 

In order to perform such monitoring functions, a monitoring tool can be created. A 

monitoring tool can sample in real-time the predictions done by the model, fetching the 

input values as well as the output values. The monitoring tool should be capable of 

detecting prediction momentum as well as shifts and drifts in the input data distribution. 

9.4.2. Batch Monitoring Strategies 

We have already discussed how several tools enable seamless and automated periodic 

monitoring of ML models deployed in production. For certain model types or specific 

performance metrics that matter, this might be sufficient for a large variety of use cases, 

but these periodic tool checks might not catch the drift or drop in performance at the 

right time preventing potential hazards to the organization and client, especially if the 

notifications or alerts are not triggered at the correct threshold levels. Moreover, some 

sensitive industries may be required to keep track of the model’s performance data more 

scrupulously along the entire lifespan of the model in production. This kind of 

requirement is frequently rather common in niche industries such as financial services, 

pharmaceutical industry, and data-driven government strategies, to mention a few. These 

industries have a major need for batch monitoring modeling strategies that allow for a 

more persuasive analysis of all factors affecting the model output, potentially outlining 

the areas needing more focus or scrutiny. Keeping this in mind, we cover some batch 

monitoring modeling strategies that allow for a more explicit exploration and analysis 

of ML models in production. Batch approaches can be simple post-hoc analysis tools 

using the test set or holdout validation set to detect data drift or anomalous prediction 

values. For example, a classifier monitoring strategy may track the accuracy of the model 

over time to verify that the value remains stable. If not, the testing data can be used to 

assess the model further. It is also very typical to plot the predicted values against the 

target value for classification tasks just like with regression tasks checking for outliers. 

The same goes for logits in classifiers as they expose the classifier’s confidence. These 

quantitative and qualitative approaches may also bring to light prediction failures, 

possibly allowing for data-driven mitigation strategies. 
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9.5. Performance Evaluation Frameworks 

While performance statistics from the testing phase provide some evidence about how a 

model may behave in production, they do not provide strong evidence about how a model 

will behave in production. The statistics are based on a sample of data from a particular 

distribution. Model decisions on test data are also not executed. Demonstrable 

performance using a model in production should involve execution and yet, opening a 

new model to large volumes of new data can be high-risk. Performance evaluation 

frameworks allow for safety in model decision making while providing feedback about 

the model’s behavior. The insights from these frameworks can help in making decisions 

for deployment with accuracy and efficacy. 

 

Fig : Optimization of Machine Learning Models in Production Environments 

A/B Testing 

The primary purpose of A/B testing is to test competing hypotheses to assess which 

model performs better with real user interactions. It is best for comparing two candidate 

models that differ only in a small number of features. In an A/B test, the users are 

randomly assigned to a control group and a treatment group. The control group is 

exposed to the current model being used in production while the treatment group is 

exposed to the new model. The model performance for the two groups is recorded and 

compared using, chiefly, two performance measures. One that determines success of the 

operation or activity and a measure such as mean squared error, root mean log error or 

any other task-specific performance measure. A/B testing is primarily used for 

supervised models in production to monitor performance and behavior against metrics 

of interest. 
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Shadow Testing 

Shadow testing is a method for comparing the performance of a new machine learning 

pipeline and the production pipeline without any impact on the users. In shadow testing, 

raw or feature-engineered input features are fed to the candidate model and predictions 

are generated but not acted upon. In parallel, predictions are made for the same data 

using the current model in production. The model decisions for each of the two pipelines 

are compared using task-specific performance measures. 

9.5.1. A/B Testing 

Performance evaluation of machine learning systems in production environments is 

hard, since there are lots of confounding factors that affect the ground-truth signal when 

assessing model performance on the user-facing system. A/B testing, also known as split 

testing, is a method in which a certain percentage of traffic is routed to an alternative 

“B” model while the remaining traffic continues being served by the “A” model (the 

original model). During this period, the output of the experiment is monitored which 

allows for comparison of the two variants with respect to defined success metrics. The 

statistical significance of the difference between the two metrics can be computed and a 

decision can be made. 

For any changes being attempted or any new model being deployed, a data-driven 

evaluation during A/B testing helps create trust in the new system or in the changes being 

done to it. For example, in the case of the proposed new system being a new model 

altogether with a change of modeling strategy, it would give a clear sense of 

trustworthiness of the new algorithm design itself and possibly would help others in the 

organization working in the same or similar domains to understand the benefits of the 

new modeling strategy and apply it in their domains as well. A successful testing also 

allows for comfortable switching of traffic to the new system and a shorter duration of 

the delay before the new system is put into effect fully or threshold for sufficient 

confidence is achieved. Further, it makes subsequent switchbacks less painful. However, 

a caveat is that while running an A/B test, you usually cannot be serving the two systems 

simultaneously in the rest of the infrastructure in parallel unless they are set up already 

in a distributed fashion to handle requests from both systems, with possibly no 

guarantees on model versions. 

9.5.2. Shadow Testing 

A lighter alternative to A/B testing that evaluates a subset of predictions made by a model 

in production is known as shadow testing. In our fraud detection use case, imagine that 
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we build a new model with improved performance metrics based on cross-validation but 

are unsure whether the new model will actually provide improved performance in 

production. The shadow testing mechanism can help us determine whether the new 

model will in fact offer increased performance while avoiding the business costs 

associated with any errors. Shadow testing is similar to A/B testing. The difference is 

that A/B testing will return responses based on either Model A or Model B depending 

on the random number drawn, while in shadow testing, Model A will be used for all 

responses, and only Model B will be tested for a small subset of responses. These 

responses will be used to compare the models, typically using performance dimensions 

such as precision and recall. 

Shadowing can be performed in two ways: passive shadowing and active shadowing. In 

passive shadowing, only the subset of responses for which we run Model B will be 

accounted for in calculating the performance dimensions by comparing Model A and 

Model B. In active shadowing, on the other hand, both models will be used for the 

responses, but all responses will be factored in the performance dimension calculations. 

While passive shadowing can give a good estimate of differences in the precision and 

recall between the models, active shadowing can provide a better estimate of differences 

in overall error rates between two models, especially when the sizes of the two models 

used in shadowing are very different. 

9.6. Conclusion 

This chapter presented a collaborative approach towards models performance 

monitoring and optimization. The proposed solution is exploratory, where an interactive 

and flexible interface fosters user engagement and co-creation, necessary for all semi-

automatic processes that influence crucial enterprise decisions. A set of plugins was 

implemented to build a flexible and modular interface. An experimentation and case 

study were carried out with several stakeholders, in order to create actionable and 

reliable performance reports, define usability requirements over user interfaces, as well 

as validate and identify stages and decisions in the model life cycle that would require 

automated user engagement. The prototype was put to the test with one model used for 

credit risk analysis, revealing how the solution can provide meaningful alerts on models 

performance degradation, as well as insights on user-defined data changes and user help 

in further improving model reliability. 

In addition to the framework, which was used to create the designed modules and 

corresponding models to create the reports’ recommendations, we propose four 

additional measures to reinforce the model audit. Those recommendations are based on 

the work developed which uncovered the fragility of several use-case based models due 
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to important bias problems, data leakage and overfitting. If those measures are 

implemented in addition to our approach, we believe that model monitoring will be even 

more robust, and not only able to signal model performance issues, but also far more 

reliable audits of the models performance over time. Modulo a few additional resources 

and slight modifications in the logic used for the performance degradation checks, the 

solution can also be adapted and integrated to any monitoring system designed for other 

high-stakes models on different domains. 

9.6.1. Emerging Trends 

Recently, several trends related to performance monitoring of machine learning models 

emerged: the move to the cloud, machine learning as a service, edge computing and the 

digital twin, the focus on interpretability, connection to the business, and the awareness 

of the dark side of machine learning deployment. 

The shift to the cloud presents many benefits related to deployment time, scaling and 

cooperation, and technology. Traditionally, researchers implemented machine learning 

algorithms as libraries in languages. Users had dependency issues when integrating the 

libraries into frameworks. For production purposes, researchers have made several 

implementations of algorithms and techniques in many technologies, although using the 

best implementation is critical for maximum performance. This integration level 

increases so much with the cloud or machine learning as a service that deployment and 

execution become trivial, and users should focus only on proper modeling. The cloud 

offers data servers, storage, processing, analytics tools, machine learning libraries, and 

communication frameworks. With the cloud, a company can build a complete production 

loop from model training to feature and model updating and offer to improve predictive 

performance automatically. 

Edge computing replaces data centers deployed far from devices that provide tons of 

information with devices that are close to the data center or device sensors. With edge 

computing, an equilibrated portion of data preprocessing will be executed close to the 

sensors or devices, near the point of origin, with another portion processed on the cloud. 

There will be a shift from cloud computing to edge computing and then back to the cloud. 

The sensors will connect to the cloud using short-range communication protocols. The 

near and far infrastructures will exchange information to work as a digital twin, a digital 

replica of physical assets. With the digital twin and edge computing, predictive 

monitoring will be usable on lower investment budgets. 
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