
99

Chapter 8: Applying data engineering

principles to build distributed, scalable,

and fault-tolerant data systems

8.1. Introduction

Over the past two decades, we have seen the rapid adoption of distributed data

management systems in industry, with many early adopters leading the way. Preferences

are shifting from smaller, local, centralized, monolithic systems towards larger,

distributed, concurrent, global systems that are scalable, fault-tolerant, and can provide

diverse functionalities over a wider range of data types. Organizations are building next-

generation data services using many innovations in distributed systems and information

management technology: peer-to-peer and web services architectures, industrial-

strength clustering and fault-tolerance technologies, large scale reliable storage systems,

and efficient indexing and retrieval methods for unstructured data (Armbrust et al., 2010;

Bass et al., 2012; Gollapudi, 2021).

At the same time, research efforts in data systems are focusing increasingly on the

development of distributed, scalable, and fault-tolerant techniques that can support

services such as web-search, information-sensors, click-stream analysis, peer-to-peer

storage and publish/subscribe services. There have been interesting ideas, especially in

the areas of scalable data access and retrieval services, reliable storage, and high-

performance data dissemination services. Today, large amounts of data are being

generated and collected by organizations. Simultaneously, businesses are realizing that

enormous improvement in profitability can be achieved by employing new tools and

approaches for data analysis: mining for knowledge; learning predictive models;

performing trend analysis over historical data; performing on-line, real-time analysis and

filtering of current data.

Many of these organizations are beginning to analyze transaction data from their

business processes in conjunction with traditional data-analysis techniques. By

Deep Science Publishing

https://doi.org/10.70593/978-93-49910-08-9_8

100

employing technology to analyze and filter the data, businesses can make intelligent

decisions about managing customer relationships. With increasingly complete data

repositories, businesses are increasingly looking to drive customer relationships by

collecting explicit data from customers and analyzing their behavior. A strong tool-set

for large scale data analysis will allow organizations to automatically enhance their

intelligence infrastructure. As these organizations have entered into the hype cycle for

such analysis tools, they expect an understanding ecosystem (Krishnan, 2013;

Kleppmann, 2017).

Fig 8.1: Applying Data Engineering Principles to Build Distributed, Scalable, and

Fault-Tolerant Data Systems

8.1.1. Background and Significance

Real-world applications, especially in areas such as e-commerce and finance, need to

process a colossal quantity of transactional data. The existing redistributive data

processing architectures achieve scalability by distributing workloads over a large

cluster and using a disk-based strategy to maintain fault-tolerance. Traditional disk-

centered database management software has proved to be effective for transactional

workloads, thus forming a foundation technology for enterprise data processing and

101

management. However, the rapid growth of available system memory has shifted this

perspective, as more applications may now run completely in RAM.

Such memory-centered solutions achieve very high throughput and low latency, and are

easy to manage and use. However, when considering the need for high availability and

support for large data stores, the issues of distributing, scaling up to clusters, and

tolerating node failures become complicated. Current solutions achieve one aspect while

failing at others: redistributive systems provide scalability and fault-tolerance while

sacrificing performance; hyper-table and similar systems provide single-node

transactional performance while failing on support for very large data sets; other

systems, such as Bigtable, scaling support at the expense of transactions; use of shared

memory and DRAM buffers provides performance but fail on scale for very large data

sets.

8.2. Fundamentals of Data Engineering

Data engineering applies to that aspect of the process, eventually realized in code, that

deals with the physical manipulation of data. This manipulation can be considered to

exist on a hierarchy of levels, from low-level programmer assignment of numerical

values to computer memory to high-level configuration of distributed databases. The

levels of data engineering most relevant to this book are proper to historical data

management and can be subsumed under two somewhat overlapping constructs. The

first and more mundane is data management – that aspect of computer use that affects

the physical storage of data and its retrieval for viewing and updating; that is, the data

store and the associated software routines to be invoked when necessary. The second is

data management design – that aspect of the design of a computer system that

specifically deals with storage, retrieval, and updating of data through the establishment

of data models, domain dictionaries, database management system specifications, file

organization techniques, and so on.

Why even at this late date has so much data pedantry remained in the world? There are

really two answers, one of which has always been there early in near the end of the Data

Processing Era. During that time, which lasted at least 25 years, computers were

regarded as boxes and what went on inside them was regarded as a black box using a

language of integers, floating-point, and magnetic core. Surfacing early in the Data

Processing Era, and still enduring in the Information Systems Era, was the data models-

like record and file organization techniques, and the associated never-ending disputes

over how many data elements to have in an address record and what should happen to

them when one gets a message from the marketing department concerning a change in

the product line.

102

8.2.1. Definition and Scope

Data engineering is the discipline and field of study concerned with the systems,

processes, and structures that enable acquisition, storage, and analysis of data at scale.

Data engineering encompasses data integration and preparation, storage, architecture,

orchestration, ETL and ELT, and interoperability. It also addresses governance and

security issues around data. Data engineering does not discuss statistical, mathematical,

or model building issues with data. Nor does it discuss application-level use or

exploitation of data. For example, program-level techniques for biological sequence

searching, image classification, or natural language understanding are not within the

scope of data engineering. Facilitating business intelligence and operational analytics

applications is a primary goal of many data engineering systems. Data engineering also

plays a key role in enabling other forms of data analysis like scientific discovery and

machine learning-based prediction. It underpins applications in business, government,

and science in the areas of health, safety, transportation, energy, manufacturing, and

many others. Data engineering is a collaborative discipline. For successful execution,

data engineering projects require the participation of software, reliability, and

deployment engineers as well as domain experts, software developers, and end users of

the deployed systems.

8.2.2. Importance in Modern Applications

As our applications process increasing amounts of data, the skeleton of distributed,

scalable, and fault-tolerant data systems is becoming a critical shared resource. Unlike

application code, which can (and often should, for innovation) be specific to a single

application, these data systems must be generic; they must provide a variety of

capabilities that allow a diverse set of applications to extract utility from data.

Domain-specific applications demand available and low-latency services. Search and

recommendation are classic examples of applications that deliver value by processing

high volumes of queries. In the last decade, new application domains like machine

learning have become critical for the Internet. ML today is a complex combination of

modeling decisions and large data processing jobs that require distributed systems for

gradient computation. The rapid innovation in flows like AutoML and Federated

Learning is built on these foundations. Clearly, we cannot afford to delay the execution

of gaze prediction in an augmented reality application because federated learning is

building a model in the cloud. The model is stored in a distributed, scalable, and fault-

tolerant data system. For other application domains, like computer vision, the ML system

for prediction is also the data system. These systems can thus accelerate processing even

more, using shared resources for shared work. These transient demands require transient

103

data systems, elastic data systems which can automatically expand and contract their

resources based on the demand.

8.3. Distributed Systems Overview

coordinated manner on multiple computer systems. These systems can consist of rack

servers in the same data center, computers over a wide area network, or any combination

thereof. Distributed systems solve multiple redundant copies of data and queries,

distributing their execution across multiple computer systems. By also allowing

replication of data, the processing workload for individual data queries may be reduced,

allowing for increasing throughput.

Fig 8.2: Distributed Systems Overview of Applying Data Engineering

The main two advantages of distributed systems driving their deployment are reliability

and performance. Reliability is achieved through both data replication and failure

isolation. The data is replicated across multiple nodes such that a failure of one node

does not render any data unavailable. Failure isolation is the idea that not all data has a

single point of failure. This is critically important for units of work that modify stateful

104

data and rely on a sequence of operations being done in a specific order. If two operations

on the same stateful data are executed on two different nodes, the system has no way of

guaranteeing that they will be executed in the correct order. Some operations may

conflict with each other and lead to system inconsistency by violating invariants.

While performance improvement is one of the driving pushes towards adopting

distributed data systems, it is also one of the foremost challenges associated with them.

To understand the challenges and limitations in optimizing performance in distributed

systems, it is important to understand what factors contribute to performance in such

systems. For a single machine executing a process, the relevant characteristics are clock

cycle speed, the number of cores, throughput of main memory and cache, and

performance of the storage medium. These factors are relevant in achieving performance

speedups and improvements in efficiency of work done per computational resource.

8.3.1. Characteristics of Distributed Systems

In this section, we briefly discuss the characteristics of distributed systems and highlight

the key differences that define distributed data processing. There are a lot of definitions

on what a distributed system is. The broadest definition is as follows:

A distributed system is a system that consists of multiple autonomous components

communicating via a computer network.

While this definition is broad enough to capture any sort of networked system, there are

some aspects of distributed systems and applications that differentiate them from

systems that communicate via a computer network in a microkernel architecture. Some

of these characteristics are as follows:

Transparency: The users perceive the distributed system as a whole and not as a

combination of different components. The clients of a web application see it as a whole

entity regardless of how many components run on how many servers. The designers of

the system will have to understand the complexities introduced by distribution, such as

result synchronization and communication failure, among others, and use those to

provide a uniform interface. The operating mechanism behind a distributed database is

usually different from that of a centralized database, but the end users see both as the

same.

Scalability: A distributed system is often composed of multiple servers and each of these

servers has capabilities that are limited by the underlying hardware. A distributed

database or computation has to be designed to effectively utilize the resources available

on all servers such as CPU, memory, and network bandwidth to provide liveness,

availability, and performance.

105

Autonomous components: Each of the components in a distributed system is, or can be,

an autonomous unit. In the context of a distributed data system, each of the component

databases can operate independently and, within certain limits, tolerate failures of other

component databases.

8.3.2. Challenges in Distributed Data Processing

Distributed file systems, cluster schedulers, and bulk data processing systems represent

contemporary implementations of several decades of research into file system, task

scheduling, and programming model design. This overwhelming body of work indicates

decades of practical experience in building and using these systems. This experience

makes understanding the underlying design choices essential for developing the next

generation of computing infrastructure. Before diving into the details of several

distributed data processing systems, it is necessary to understand the main challenges—

and possible engineering tradeoffs—perceived over the years.

Despite their shared goal of providing a scaled-up computation platform, the above-

mentioned systems address different problems, implement different interfaces, and

expose different tradeoffs. The main difference in these approaches is in the specific data

movement operations that they optimize for. This data movement task—the actual data

transfers for obtaining the inputs and returning the outputs for a task execution—

accumulates very fast in modern services processing large volumes of data. Depending

on the nature of the tasks deployed at the cluster, the data movement may actually

account for an overwhelming portion of the overall processing, overshadowing the

computation logic, specifically in adversarial situations where different user jobs

compete for shared resources. Hence, systems that merely aim to offer as much

computation power as possible fail to consider this important factor and are of limited

use. Other systems that do offer a variety of optimized data movement operations, expose

the underlying complexity and do not automate the high-level data movement design

choice boilerplate, making it completely impractical for the majority of domain

developers to actually use those.

8.4. Scalability in Data Systems

One of the most important considerations in any system that stores data is its power to

scale. If there are 100 stored data objects, throughput will be a function of object size,

but if there are a billion objects, it will also depend on the number of storage nodes and

how they are organized. As web-based applications for social interaction, shareware

distribution, and instant messaging grow in popularity, the data systems used in these

and other applications are frequently subject to demands that would cripple a traditional

106

system. Millions of users interact simultaneously, creating data objects for themselves

and their friends — and perhaps later deleting them — at rates of 1000 per minute. Data

about user interactions is logged for analysis of user behavior and for behavioral

advertising. If only a fraction of the appropriate subset of data can be mined for these

last two functions, response times become too long, degrading user experience.

Data storage and management systems that can meet these demands must be designed

and constructed so that they can be scaled economically as the enormous volume of

similar data grows. They must be distributed so that the job of managing all of the data

is efficiently handled by a large number of computers rather than by a single machine.

High system throughput is of little use if it can only be achieved by a supercomputer. By

these criteria, almost all of the data storage and management systems being used to

handle big data today are housed on clusters of commodity computer nodes connected

by a Local Area Network and running a Linux-based operating system.

8.4.1. Vertical vs. Horizontal Scaling

Before we delve into the various scaling techniques available in modern data systems,

we should distinguish between two different classes of scaling. A system can be scaled

in one of two directions—vertically or horizontally. The most typical form of scaling,

what is called vertical scaling, is one in which a single node is made larger (usually by

adding more and faster core processors, more memory, and more I/O bandwidth and

capacity). The main virtue of vertical scaling lies in its simplicity. Entities that have

outgrown a small system, such as a single workstation, are able to move to a larger but

still small system without having to change any programming or data management

paradigms (the same is true when a department or laboratory entity moves to a larger

mid-range system).

But although vertical scaling is simple, it is fraught with potential problems. The

foremost one is physical limitation—there can be only so much packaging space, power,

and dissipated heat from large numbers of chips. When I was doing research in the area

of multiprocessor performance more than twenty years ago, I would have been foolish

to bet that anything larger than a two-processor symmetric multiprocessor was ever

going to be commercially viable, given the limitations of power and heat dissipation,

interprocessor bandwidth, and reduced per-chip performance scalability. I am now very

grateful for my stupidity. Although it took a long time, multi-piece chips or very large

chips are now available, and allow performance scaling for traditional workloads. And

for some highly parallel workloads, larger chips have been built, and multi-chip

processors are available that support viable performance scaling.

107

8.4.2. Techniques for Achieving Scalability

When faced with a scalability need, one of the first design considerations is how to

increase capacity without compromising original design decisions. For example, it is

possible to serve many more requests with the same number of machines if the machine

servers are fast enough. However, dependably and cheaply increasing capacity by

merely scaling-up vertically is often not a design choice. Likewise, other original design

decisions may constrain future response time. Scaling out horizontally using clusters of

commodity components typically leads to design modifications to support distribution,

including creating better defined and simpler abstractions, designing around failure, and

using replication and partitioning.

Once the software has made the necessary architectural adaptations for scale-out design

and has implemented coarse-grained abstractions and away from failure, provisioning

and monitoring concerns become paramount. Machines need to be added or removed

from the cluster, and requests routed appropriately. Often there is a third-party service

that handles this task; when this or a comparable service is not available, we need to

build Reserved Kick-Ass Data Systems to automate scale-out.

8.5. Conclusion

Throughout this book we have analyzed various design patterns, methodologies, and

technologies to implement scalable and resilient data systems, stressing that these

systems are enablers of technical innovativeness in many different areas in the economy.

You have acquired the knowledge needed to plan, build, or operate such systems, and

built some of your own by following case studies and doing the exercises at the end of

most chapters. When thinking back to what challenges motivated this book, we see at

least three kinds. First, there is still much to learn about the specific ways of

implementing storage, processing, or streaming systems. These are exciting challenges

in areas such as system architecture, resource allocation, storage mechanisms, or

programming models. The second challenge is related to making data systems better

collaborators: how do we enable data scientists, data engineers, and the domain users to

interact more effectively to achieve the goal of efficient machine learning systems? The

last challenge is the interaction of data systems with other areas in computer systems.

Recent years have seen amazing developments in the area of AI and machine learning.

The question remains whether these developments will affect how we build data

systems. Adaptive systems could be able to make more intelligent decisions about

storage, I/O, or compute allocation decisions. There have also been recent claims that

the great advantage of deep learning will come as much from the development of

effective pre-trained models as from building better systems. Will this reduce some of

the traditional strengths in the area of systems?

108

Fig : Data Engineering Principles to Build Distributed

8.5.1. Future Trends

Chapter 8 has outlined a veritable zoo of data systems that a modern software architect

may have to deal with during the construction of large-scale applications. As related to

the discussion in Chapter 1, it seems evident that data systems have evolved in response

to nine identifiable problem threads. So how might these threads grow and mutate in the

future? What trends do data systems architects need to keep an eye on as they evaluate

new systems and techniques?

A long-standing desire in the database community has been to invent mechanisms to

automate all or part of the work of a database administrator. With the exception of auto-

tuning SQL query optimizers for fairly restricted queries, this desire has not been

realized in practice. A more recent trend is to build self-managing data systems. This is

an idea that is gaining traction with the recent emergence of self-managing capabilities

in data systems, where additional servers are automatically provisioned to share the load

when certain load thresholds are reached, or which takes advantage of community

sharing to load balance essentially interactively as demand for concurrent query

execution on a single cluster of hardware fluctuates. But these are relatively modest

steps. How the all-the-way-to-self-managing data systems can be automated remains an

open research question.

109

Another area of continuous growth is support for Big Data workloads in traditional data

systems. Deployed data processing systems originally built to support operational

workloads have taken on some analytics workloads as users have learned that many

queries are amenable to being expressed as SQL-92 queries. Similarly, analytics data

systems designed for large batch workloads are continuously extending beyond their

traditional workload domains to support all more modes of operation.

References

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., ... & Zaharia, M.

(2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd ed.).

Addison-Wesley.

Gollapudi, S. (2021). Applied Machine Learning Operations (MLOps). Apress.

Kleppmann, M. (2017). Designing Data-Intensive Applications. O'Reilly Media.

Krishnan, K. (2013). Data Warehousing in the Age of Big Data. Morgan Kaufmann.

	Chapter 8: Applying data engineering principles to build distributed, scalable, and fault-tolerant data systems
	8.1. Introduction
	8.2. Fundamentals of Data Engineering
	8.3. Distributed Systems Overview
	8.4. Scalability in Data Systems
	8.5. Conclusion
	References

