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Chapter 6: Architecting advanced data 

pipelines using real-time streaming and 

batch processing technologies 

6.1. Introduction 

Today, data is one of the most important company resources after human resources. It is 

therefore important to handle data in an adequate way. More and more organizations 

choose to advance their data strategies beyond simple data warehousing, so they can 

analyze bigger and bigger data that is produced in a more real-time basis, in a distributed 

manner, and with increasing variety. Over the past decade, different technologies have 

emerged which promise to be the answer to the big and fast data challenge. Organizations 

utilize these technologies in different ways, as well as different combinations (Dean & 

Ghemawat, 2008; Chauhan & Saxena, 2022; Arora & Talwar, 2023). 

Traditional techniques that move data to a Data Warehouse to transform it with a set of 

users’ business rules and create a DW model for easy business reporting have proven 

not only to be slow, but also not to have the capabilities needed to support advanced data 

analysis. Organizations have been attempting to augment their DW or replace it 

altogether with best practices that take advantage of flexible techniques. In doing this, 

they have learned that while the front-end report access process is a critical part of a data 

architecture, it is not the only component. In addition to the DW (often augmented with 

big data capabilities), organizations have created separate and unique big data 

environments to support custom application development, business intelligence, and 

advanced analytics. Data from both environments are often served to business reports, 

for true enterprise reporting. Both types of environments have different requirements 

and play different roles, and we believe that the solutions to the new data challenges 

require a new data architecture that takes advantage of the strength of both types of 

environments in combination, each with different technologies tailored to their 

respective strengths and weaknesses (Elgendy & Elragal, 2021; Malik, 2023). 
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Modern data pipelines can be classified in two main categories, according to how they 

process the data: **Batch Processing Pipelines** and **Stream Processing Pipelines**. 

Pipelines working on quanta of data that have been previously staged and moved in bulk 

into the processing system using batch processing technologies represent the traditional 

and most common data pipeline example where the data is made available in large 

amounts at predictable intervals. Upon consuming the new batch, a data processing job 

queries the data and executes various transformations that prepare it for querying and 

analysis . 

 

                                          Fig 6.1: Advanced Data Pipelines 

6.1.1. Background and Significance 

Architecting data pipelines with real-time streaming and batch processing technologies 

has become a popular big data analytic use case in information technology organizations 

and led to the emergence of several new real-time data stream processing systems and 

frameworks. This also led to the emergence of numerous factory cloud data pipeline 

services both to build customer-facing products and monetization models using machine 
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learning. Business leadership and decision makers want to take a strategic approach to 

architect and evaluate their real-time data processing solutions with other traditional 

batch-based solutions. 

Architecting data pipelines with hybrid data processing capabilities using batch and real-

time stream processing technologies is one of the most requested capabilities from end 

customers and stakeholders coming from multiple industry verticals. What is interesting 

to notice is the new innovative technology solutions that came from implementation of 

such systems. Streaming and batch processing frameworks. Explainable ML Solutions. 

Interactive Business Intelligence Tools and Conceptual and Realizable System 

Architectures. In addition to opened solution assets, cloud platform vendors also 

organize cloud-based pipeline and streaming services to help industries evaluate the 

building of custom solutions and monetization offerings. 

6.2. Understanding Data Pipelines 

A **data pipeline** is a set of data processing elements that moves data from one system 

to another. Data pipelines present a flexible architecture to transform raw data from 

heterogeneous sources into information ready for analysis and to move it to presentation 

systems in an efficient way. A simple data pipeline can be made of a single processing 

step. However, most times the data modeling is substantial and it becomes important to 

break the process down into multiple processing steps, ensuring each individual step 

does one thing well. The pipeline will then take on a topology of connected processing 

nodes. Each step consumes a data stream from upstream and produces another data 

stream that is consumed by the downstream, thus providing the chaining of processing 

stages that characterize a pipeline. 

6.2.1. Definition and Importance 

Despite their growing prominence and application, data pipelines are not often clearly 

or academically defined, nor is their importance elaborated upon. A concise definition 

for data pipelines describes them as automated workflows that ingest and move data 

between storage and processing systems. It continues by explaining how they ingest data 

from one place, transform it if needed, and move it to another. That transformation 

process inside the pipeline is what differentiates the simple ETL and ELT procedures 

from a true data pipeline. In the case of a data pipeline, the automated process is what 

allows organizations to have real-time access to their data, while other patterns may only 

be able to apply batch processing, leaving data unreconciled for longer periods of time. 
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A data engineer elaborates further on why organizations depend on data pipelines for 

their operations. He states that, first and foremost, companies need pipelines to be 

successful. Without them, people would not be able to find the actionable insights 

necessary to create systematic changes to clients' businesses. He continues by explaining 

how pipelines are essential for any business solution that has any sort of real-time insight, 

whether that insight is being delivered after some sort of manual analysis or automated 

via a model that is sending out predictions, allowing machine learning processes to be 

automated and standardized. In short, data pipelines play an increasingly vital role in 

organizations for optimizing decision-making and communications, without which 

clients and management do not have the most accurate or thorough up-to-date 

information available to them. 

6.2.2. Components of Data Pipelines 

When designing data pipelines, there are several critical components to consider, 

depending on whether you are building batch or streaming nodes of the pipeline. The 

components we describe in the following sections are not unique to data pipelines and 

apply to many distributed systems. A data pipeline itself is a distributed system with 

some specific features that make it special. In the sections to follow, we take a deeper 

dive into some of the specific components of data pipelines. As we compare and contrast 

batch and streaming components, keep in mind that one major feature of such distributed 

systems that we are interested in at the level of data ingestion nodes is data volume, 

velocity, and variety. 

The first component is the source system or the system from which data is being ingested 

into the data pipeline. Indeed, in data engineering projects involving enterprise 

applications, source systems usually expose their data through or they may have to write 

to location services, where they may directly write data in a file system, database, object 

store, and message queues. In the case of mobile applications, the consumers of data 

usually write to a centralized data store in the cloud or they may send event messages to 

a central messaging service. Sources are critical to a data engineering project because 

they enable us to ingest data from different systems and consolidate them into a common 

location for processing or analysis. They can have different formats like or different APIs 

such as or. 

6.3. Real-Time Streaming Technologies 

The highest available assurance of reducing the time delay between data creation and 

data availability is to use a real-time streaming architecture, which provides continuous 

queries over live streaming data from sources such as sensors, stock markets, social 
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media, or other events. In the traditional data processing batch processing world, data is 

usually accumulated in a store for some time interval and then a process is invoked to 

analyze the data, usually resulting in delayed data availability. But the nature of some 

applications requires that the catalog or store continuously reflect the current result, i.e., 

be continuously updated with the results. Lately, we have seen a huge focus on real-time 

streaming architectures due to our ability to create and collect data continuously. 

The data collected is either continuously processed and updated in stores or continuously 

queried. A growing host of big data stores allow for continuous querying but there is a 

limitation to what can be achieved in the store. To counterbalance the limitations, the 

companies are also implementing solutions in the query languages or supporting 

constructs for the database. Most of these streaming computing systems have 

traditionally lacked a persistent mechanism to store data, even for quick lookups. As 

demand for low-latency data analysis has surged, so too has the number of products that 

are providing complex event processing, streaming technology. 

 

                                Fig 6.2: Real-Time Streaming Technologies 
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6.3.1. Overview of Streaming Technologies 

Streaming technologies are powerful tools that have revolutionized the way we think 

about data engineering and the construction of real-time data-driven applications. 

Traditionally, event-driven data processing was a rare phenomenon, mostly relegated to 

extremely specialized or mission-critical applications. For the overwhelming majority of 

organizations, most data was collected into large aggregations, broadcast on a periodic 

basis, and processed through conventional ETL techniques. In fact, for most 

organizations, the key words in data management up until a few years ago were “batch” 

and “periodic.” The driving model for data access was “set at rest” rather than the more 

recent and more appropriate “continuous.” An explosion in the volume of data collected 

from numerous sensors, tweets, tracked user clicks, and transactions has created a need 

for applications that demand both immediate actions based on these data streams and/or 

the aggregation of the events over various temporal windows and time periods. Over the 

last few years, streaming technologies have evolved at a rapid tempo, driven by 

substantial contributions from cloud-based vendors, open-source projects, and projects 

sponsored by traditional data warehouse vendors. Streaming applications take many 

forms, from massively scaled event generation with high availability and fault tolerance 

to real-time data analysis on multiple large-scale data streams to real-time large-scale 

triggered event generation from numerous data streams. 

6.3.2. Apache Kafka 

Apache Kafka is arguably the most popular enterprise data streaming ecosystem, 

originally developed and later open-sourced. As a very high-throughput distributed 

commit log with partitioned publish/subscribe semantics, Kafka allows you to build 

many streaming-based applications in a fast, scalable, and fault-tolerant way. The 

producer is the process that writes events into topics. A producer can send events to the 

Kafka cluster using either a synchronous or an asynchronous API. If the producer uses 

the synchronous API, it blocks until a response is received from the Kafka cluster, and 

event records are published to the topic’s partition. If it uses the asynchronous API, 

events are sent to the broker without waiting for a response, which is recommended for 

better throughput performance. The consumer is the application that reads records from 

Kafka topics. Depending on the consumer type, it can use either a simple or a long 

polling APIs to read records. 

Topics are split into partitions to achieve high throughput and scalability. When a 

producer sends a record to Kafka, it specifies only the topic to which the record belongs. 

Kafka then appends records to a partition based on a partitioning key of the message or 

by round-robin mapping records in the topic. On a partition, records are ordered. Each 

record has a unique offset/timestamp assigned by the Kafka broker when the record is 
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created, which allows clients to efficiently locate and fetch records within the partition. 

Partitions allow the Kafka cluster to distribute the recording load across many brokers 

to achieve high write/read throughput. By adding more partitions for a topic, you can 

easily scale its figures of merit. This design makes Kafka a 0-Latency Messaging system, 

enabling both the publishing of large volumes of data and processing with the lowest 

possible delay. 

6.4. Batch Processing Technologies 

Batch processing refers to executing a series of non-interactive tasks (or jobs) in a group 

while producing a batch of output data. In batch processing, data is collected over a given 

period and used as input to programs (also known as job or tasks) that process large 

volumes of data. Batch processing is advantageous for performing complex processing 

over huge volumes of data. It is also useful when it takes a long time to generate output 

data. As an example, batch processing generates the output of advancing the interest on 

a savings account. The interest is calculated once a week based on the balance present at 

the end of each day and is usually small in value compared to the total balance. It 

typically takes a couple of hours to run the batch program and generate the interest report 

for hundreds of thousands of bank accounts. Batch Processing is useful when processing 

large volumes of structured data, and thus it is typically used in Data Warehousing, ETL, 

Reporting, and Business Analytics. 

Apache Hadoop is an open-source batch processing framework that runs on distributed 

computer clusters. It utilizes and expands on the MapReduce paradigm for creating 

large-scale distributed Data Processing jobs. Hadoop was designed to work with 

commodity hardware. Instead of having a high-availability solution, where every node 

is a high-end server, it works on a cluster of cheap servers. The data in Hadoop is 

replicated across the nodes to provide fault tolerance and higher reliability. Hadoop is 

primarily used for hosting large-scale ETL, Data Processing Pipelines, and Data 

Warehouse workloads. Hadoop is not a good fit for Interactive Queries, which are better 

run on OLAP Services. Hadoop excels at scheduled Batch Jobs and at volumes where 

traditional ETL tools fail. 

6.4.1. Overview of Batch Processing 

Batch data processing refers to the jobs that act on a stream of data that is finite, which 

is received over time at any random actual time but is typically not available in real time, 

while remaining inert for possibly a long time before being analyzed to help in the actual 

decision making. The batch job is typically submitted and scheduled to run for a 

predetermined duration of execution, until completion, possibly on a dedicated 
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computing cluster. Batch processing in data analytics is the original way in which data 

analytics took place, which enabled the democratization of analytics. Due to the discrete 

workloads, batch processing is typically more economical in terms of computing costs 

and can free up resources during idle time, provided there are other workloads available 

that can afford to wait for processing. Additionally, it allows batch data processing 

technologies to compete with other technologies like traditional business intelligence 

tools in terms of the time taken to produce insights. 

Batch processing is also responsible for the reduced costs of data storage incurred by 

organizations that choose to store data for long periods of time for regulatory compliance 

by moving such data into lower cost cloud storage, and to have it processed there using 

batch processing technologies, which traditionally charged customers not on the typical 

metered usage of real time resources but rather on the storage utilization during the 

company’s exact peak storage duration, if any during the month. Although near real time 

processing of data is possible with the technology with results issued in seconds, even 

milliseconds, after data is newly ingested, this would obviously incur much higher costs 

by virtue of reducing system parallelism. 

6.4.2. Apache Hadoop 

In the year 2005, a number of research and technical papers introduced systems such as 

MapReduce for computation and BigTable for data storage, which could be scaled to 

thousands of nodes, to process huge datasets. These papers opened the floodgates for the 

massive amounts of research being done today in the general purpose parallel/distributed 

processing systems space, and thousands of systems have been created. At the end of the 

day, however, there can be only one or a few systems that will be widely used in the 

industry, regardless of how many others are created. In this domain, it appears that the 

open-source project has emerged as the clear leader at the current time. It is a 

combination of the distributed file system support as well as the MapReduce 

implementation. Based largely on the earlier papers, it was created in 2005 by 

individuals. 

It has continued to advance significantly in recent years. Some of the more significant 

advances in the system have been the addition of support for streaming data processing 

with the introduction of components such as Streaming and Flume, the addition of a data 

warehousing solution called Hive, in addition to other projects including Pig and Jaql, 

and the evolution of the systems as specializations of similar systems. There is even an 

implementation of MapReduce for the Windows environment! Supporting technologies 

are now widely deployed and used in production applications, and it is being used 

successfully in a variety of scenarios in addition to search engine indexing such as for 

social network analysis and malware detection. 
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6.5. Architectural Patterns for Data Pipelines 

Architecting a data pipeline is more about solving a technical problem in the right way 

rather than employing a particular technology or deployment model. It is, therefore, quite 

useful for both architects and developers to understand the common architectural 

patterns for data pipelines across industry verticals. These architectural patterns broadly 

fall within the umbrella of the lambda and kappa architectures. Even though the lambda 

architecture is an older paradigm, it is a very popular model for data pipelines that need 

to serve both real-time and historical analytical use cases – especially for companies in 

the online retail, advertising, and entertainment business. The kappa architecture is a 

relatively newer paradigm that has evolved out of the limitations and constraints of the 

lambda architecture. Even though the kappa architecture is a popular model for 

operational applications that need real-time analytics, it is often seen as a very niche 

model compared to the lambda architecture. The lambda architecture has also evolved 

over the years into several deployment patterns that combine concepts from both 

architectures. 

 

Fig : Advanced Data Pipelines Using Real-Time Streaming and Batch Processing 

Technologies 

Lambda architecture defines the concept of batch and speed layers. The batch layer not 

only manages the master data store that is used to generate results for queries over the 

historical data but also runs at regular intervals very large batch jobs on the historical 

data to generate the results which will be used most frequently by the serving layer to 

respond to queries. The speed layer serves the most recent data while the month or year 
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old results are served from the batch layer. The serving layer combines the results from 

both the batch and speed layers to respond to queries, thus acting as the glue that 

integrates both the batch and speed layers. Hence, the lambda architecture integrates 

both batch and real-time processing models into a single analytical layer. 

6.5.1. Lambda Architecture 

Distributed systems have been indispensable for data processing, where we run various 

workloads and handle different types of data across many servers to speed up the 

processes. With that, we have big storage systems, distributed clusters, communication 

abstractions, and frameworks built for batched data. Although storing the information of 

the measured phenomena is strongly necessary, having a pure batch processing system 

cannot satisfy the low latency response requests required when dealing with Data-in-

motion. 

The Lambda Architecture, proposed at the beginning of the Big Data era, is the first 

architecture that ties together and generalizes the entire heap of new technologies in 

order to process data for near real time and for historical analysis, all together in a simple 

way. This architectural pattern reconciling the additive data evolution pattern proposes 

to process data in both real time as well as using the good-old batch paradigm; everything 

to manage to answer to those queries that are put on top of the stored data. 

That being said, the typical architecture relies on three layers: Firstly, the data is ingested 

into the system from the sources using an ingestion layer – like an ETL, often using a 

Stream Processing system. This huge data flow is then split and the data events are stored 

in two different systems: a realtime (or speed) layer with Raw Non-aggregated data, and 

a batch layer with the Aggregated results over a time interval for the analysis. The batch 

system will never be enabled to respond to near real time queries. The last component 

of the Lambda Architecture is the Serving Layer that manages to deliver responses to 

the user queries, having them equipped with both the real time and batch pre-computed 

data. 

6.5.2. Kappa Architecture 

In data intensive applications, events are frequently ingested at high volume and high 

velocity. In many cases, a record of old events is retained for a (short) period of time so 

they can be re-consumed if errors are found or business logic changes. Kappa 

Architecture recognizes this common set of practical concerns, and introduces the idea 

of a system in which all processing happens in a stream processing layer. The status of 

the long-term views is stored within a key-value distributed storage system. Accordingly 
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when a user request comes, it accesses the view in the KV store. Kappa Architecture 

attempts to simplify the Lambda Architecture approach in an effort to make building and 

operating data intensive applications easier. Specifically, it posits that the batch 

processing layer essentially boils down to, and is dramatically simplified by, the ability 

to recompute views of select key-value pairs when they become stale, and that embedded 

in the stream processing layer is a system for storing the resulting views, and for recalling 

them when necessary. The coalescing of these facets within the stream processing layer 

also greatly simplifies maintaining consistency across batch and streaming data, as the 

Kappa Architecture suggests that they are one and the same. In fact, both highlights and 

contributes to the capability of stream processing as an event by event computation 

model on data. 

Kappa Architecture results in a simpler architecture, and it eliminates the batch layer, 

the complexity from Lambda Architecture. However, this is only plausible when the 

business cases suit. If a query requests information about the last five months for 

example, if the stream layer in the Kappa Architecture is the only one possible then, then 

it is impossible to answer this request without computing a batch first. It’s a matter of 

computing using Kappa Architecture and then answering the request or doing nothing 

and then answering the request as querying a view stored. 

6.6. Conclusion 

This chapter highlighted several best practices and various technologies to implement 

advanced data pipelines. These pipelines can use both real-time streaming and batch 

processing technologies to implement ETL for analytical applications. Each of the 

technologies in the pipeline can be implemented on standardized platforms to provide 

the capability of pushing the workloads down to big data processing engines, which run 

on clusters of commodity machines. 

Through the various sections of this chapter, we provided insights about choices to 

consider while architecting data pipelines. We applied these best practices while also 

reaping the benefits from the advanced capabilities of the various technologies that were 

discussed, to solve real analytic use cases at scale efficiently. We believe that with 

enterprise data moving to the cloud, there will be an increased demand for building 

advanced data pipelines, especially using serverless, managed services, as the required 

experience and expertise to run and maintain the individual technologies and their 

optimization for scale would be minimized. Such pipelines will also manage the 

complexity of serving the reliable analytics demands through a mix of traditional ETL, 

Lambda, and Kappa architectures. 



83 
 

As enterprise data processing starts taking advantage of the elasticity, cost-effectiveness, 

and sheer compute power offered by cloud infrastructure, we believe there will be a 

growth in not only the capacity and speed of the data pipelines being built, but also the 

volumes of diverse data flowing through them. Virtualization of the various advanced 

technologies, both on-premise as well as in the cloud, coupled with close integration 

between them, will help implement these data pipelines. Serverless computing will 

stimulate demand for real-time pipelines that will enable enterprises to seamlessly 

process enterprise data to meet the operational and analytical demands. 

6.6.1. Future Trends 

As organizations continue their digital transformation journey, the demand for advanced 

data analytic solutions is expected to skyrocket. In parallel, significant increases in the 

data volume as well as velocity are fueling the emergence of faster and faster high-

quality data pipelines that are built using groups of diverse pipeline design patterns. 

More specifically, the design of faster enterprise pipelines must address the integration 

of diverse data sources that span real-time streams such as Internet of Things devices, 

external application programming interfaces, clicks, orders, stocks, social media, and 

mobile and web logs among many others; internal operational batch and near-real-time 

updates, and historical archives of data stored in cold batch repositories. 

Moreover, this growing data pipeline complexity must be addressed with more flexible 

and faster integrated data pipeline development frameworks that are architected using 

the best-of-breed library of reusable high-quality design components and tools that 

simplify the pipeline design, create pipelines from a library of pipeline components that 

support any type of source and sink integration, and support diverse data transformations 

including cleaning, data preparation, enrichment, and model score and data publishing, 

especially for batch and stream hybrid design patterns. In parallel, we expect to see the 

proliferation of enterprise-grade data ops tools that support collaborative DevOps and 

MLOps teams, empowered by best-of-breed metadata services, library MLOps, data ops, 

source control, CI/CD, and self-service data provisioning tools. 

Finally, although machine learning capabilities are slowly becoming easier to integrate 

into enterprise applications, they remain arduous, especially for batch and real-time 

hybrid pipelines that implement advanced business logic. To help reduce this 

complexity, we expect to see the growth in adoption of the library of reusable, 

documented, open source pre-trained ML components. 
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