
72

Chapter 6: Architecting advanced data

pipelines using real-time streaming and

batch processing technologies

6.1. Introduction

Today, data is one of the most important company resources after human resources. It is

therefore important to handle data in an adequate way. More and more organizations

choose to advance their data strategies beyond simple data warehousing, so they can

analyze bigger and bigger data that is produced in a more real-time basis, in a distributed

manner, and with increasing variety. Over the past decade, different technologies have

emerged which promise to be the answer to the big and fast data challenge. Organizations

utilize these technologies in different ways, as well as different combinations (Dean &

Ghemawat, 2008; Chauhan & Saxena, 2022; Arora & Talwar, 2023).

Traditional techniques that move data to a Data Warehouse to transform it with a set of

users’ business rules and create a DW model for easy business reporting have proven

not only to be slow, but also not to have the capabilities needed to support advanced data

analysis. Organizations have been attempting to augment their DW or replace it

altogether with best practices that take advantage of flexible techniques. In doing this,

they have learned that while the front-end report access process is a critical part of a data

architecture, it is not the only component. In addition to the DW (often augmented with

big data capabilities), organizations have created separate and unique big data

environments to support custom application development, business intelligence, and

advanced analytics. Data from both environments are often served to business reports,

for true enterprise reporting. Both types of environments have different requirements

and play different roles, and we believe that the solutions to the new data challenges

require a new data architecture that takes advantage of the strength of both types of

environments in combination, each with different technologies tailored to their

respective strengths and weaknesses (Elgendy & Elragal, 2021; Malik, 2023).

Deep Science Publishing

https://doi.org/10.70593/978-93-49910-08-9_6

73

Modern data pipelines can be classified in two main categories, according to how they

process the data: **Batch Processing Pipelines** and **Stream Processing Pipelines**.

Pipelines working on quanta of data that have been previously staged and moved in bulk

into the processing system using batch processing technologies represent the traditional

and most common data pipeline example where the data is made available in large

amounts at predictable intervals. Upon consuming the new batch, a data processing job

queries the data and executes various transformations that prepare it for querying and

analysis .

 Fig 6.1: Advanced Data Pipelines

6.1.1. Background and Significance

Architecting data pipelines with real-time streaming and batch processing technologies

has become a popular big data analytic use case in information technology organizations

and led to the emergence of several new real-time data stream processing systems and

frameworks. This also led to the emergence of numerous factory cloud data pipeline

services both to build customer-facing products and monetization models using machine

74

learning. Business leadership and decision makers want to take a strategic approach to

architect and evaluate their real-time data processing solutions with other traditional

batch-based solutions.

Architecting data pipelines with hybrid data processing capabilities using batch and real-

time stream processing technologies is one of the most requested capabilities from end

customers and stakeholders coming from multiple industry verticals. What is interesting

to notice is the new innovative technology solutions that came from implementation of

such systems. Streaming and batch processing frameworks. Explainable ML Solutions.

Interactive Business Intelligence Tools and Conceptual and Realizable System

Architectures. In addition to opened solution assets, cloud platform vendors also

organize cloud-based pipeline and streaming services to help industries evaluate the

building of custom solutions and monetization offerings.

6.2. Understanding Data Pipelines

A **data pipeline** is a set of data processing elements that moves data from one system

to another. Data pipelines present a flexible architecture to transform raw data from

heterogeneous sources into information ready for analysis and to move it to presentation

systems in an efficient way. A simple data pipeline can be made of a single processing

step. However, most times the data modeling is substantial and it becomes important to

break the process down into multiple processing steps, ensuring each individual step

does one thing well. The pipeline will then take on a topology of connected processing

nodes. Each step consumes a data stream from upstream and produces another data

stream that is consumed by the downstream, thus providing the chaining of processing

stages that characterize a pipeline.

6.2.1. Definition and Importance

Despite their growing prominence and application, data pipelines are not often clearly

or academically defined, nor is their importance elaborated upon. A concise definition

for data pipelines describes them as automated workflows that ingest and move data

between storage and processing systems. It continues by explaining how they ingest data

from one place, transform it if needed, and move it to another. That transformation

process inside the pipeline is what differentiates the simple ETL and ELT procedures

from a true data pipeline. In the case of a data pipeline, the automated process is what

allows organizations to have real-time access to their data, while other patterns may only

be able to apply batch processing, leaving data unreconciled for longer periods of time.

75

A data engineer elaborates further on why organizations depend on data pipelines for

their operations. He states that, first and foremost, companies need pipelines to be

successful. Without them, people would not be able to find the actionable insights

necessary to create systematic changes to clients' businesses. He continues by explaining

how pipelines are essential for any business solution that has any sort of real-time insight,

whether that insight is being delivered after some sort of manual analysis or automated

via a model that is sending out predictions, allowing machine learning processes to be

automated and standardized. In short, data pipelines play an increasingly vital role in

organizations for optimizing decision-making and communications, without which

clients and management do not have the most accurate or thorough up-to-date

information available to them.

6.2.2. Components of Data Pipelines

When designing data pipelines, there are several critical components to consider,

depending on whether you are building batch or streaming nodes of the pipeline. The

components we describe in the following sections are not unique to data pipelines and

apply to many distributed systems. A data pipeline itself is a distributed system with

some specific features that make it special. In the sections to follow, we take a deeper

dive into some of the specific components of data pipelines. As we compare and contrast

batch and streaming components, keep in mind that one major feature of such distributed

systems that we are interested in at the level of data ingestion nodes is data volume,

velocity, and variety.

The first component is the source system or the system from which data is being ingested

into the data pipeline. Indeed, in data engineering projects involving enterprise

applications, source systems usually expose their data through or they may have to write

to location services, where they may directly write data in a file system, database, object

store, and message queues. In the case of mobile applications, the consumers of data

usually write to a centralized data store in the cloud or they may send event messages to

a central messaging service. Sources are critical to a data engineering project because

they enable us to ingest data from different systems and consolidate them into a common

location for processing or analysis. They can have different formats like or different APIs

such as or.

6.3. Real-Time Streaming Technologies

The highest available assurance of reducing the time delay between data creation and

data availability is to use a real-time streaming architecture, which provides continuous

queries over live streaming data from sources such as sensors, stock markets, social

76

media, or other events. In the traditional data processing batch processing world, data is

usually accumulated in a store for some time interval and then a process is invoked to

analyze the data, usually resulting in delayed data availability. But the nature of some

applications requires that the catalog or store continuously reflect the current result, i.e.,

be continuously updated with the results. Lately, we have seen a huge focus on real-time

streaming architectures due to our ability to create and collect data continuously.

The data collected is either continuously processed and updated in stores or continuously

queried. A growing host of big data stores allow for continuous querying but there is a

limitation to what can be achieved in the store. To counterbalance the limitations, the

companies are also implementing solutions in the query languages or supporting

constructs for the database. Most of these streaming computing systems have

traditionally lacked a persistent mechanism to store data, even for quick lookups. As

demand for low-latency data analysis has surged, so too has the number of products that

are providing complex event processing, streaming technology.

 Fig 6.2: Real-Time Streaming Technologies

77

6.3.1. Overview of Streaming Technologies

Streaming technologies are powerful tools that have revolutionized the way we think

about data engineering and the construction of real-time data-driven applications.

Traditionally, event-driven data processing was a rare phenomenon, mostly relegated to

extremely specialized or mission-critical applications. For the overwhelming majority of

organizations, most data was collected into large aggregations, broadcast on a periodic

basis, and processed through conventional ETL techniques. In fact, for most

organizations, the key words in data management up until a few years ago were “batch”

and “periodic.” The driving model for data access was “set at rest” rather than the more

recent and more appropriate “continuous.” An explosion in the volume of data collected

from numerous sensors, tweets, tracked user clicks, and transactions has created a need

for applications that demand both immediate actions based on these data streams and/or

the aggregation of the events over various temporal windows and time periods. Over the

last few years, streaming technologies have evolved at a rapid tempo, driven by

substantial contributions from cloud-based vendors, open-source projects, and projects

sponsored by traditional data warehouse vendors. Streaming applications take many

forms, from massively scaled event generation with high availability and fault tolerance

to real-time data analysis on multiple large-scale data streams to real-time large-scale

triggered event generation from numerous data streams.

6.3.2. Apache Kafka

Apache Kafka is arguably the most popular enterprise data streaming ecosystem,

originally developed and later open-sourced. As a very high-throughput distributed

commit log with partitioned publish/subscribe semantics, Kafka allows you to build

many streaming-based applications in a fast, scalable, and fault-tolerant way. The

producer is the process that writes events into topics. A producer can send events to the

Kafka cluster using either a synchronous or an asynchronous API. If the producer uses

the synchronous API, it blocks until a response is received from the Kafka cluster, and

event records are published to the topic’s partition. If it uses the asynchronous API,

events are sent to the broker without waiting for a response, which is recommended for

better throughput performance. The consumer is the application that reads records from

Kafka topics. Depending on the consumer type, it can use either a simple or a long

polling APIs to read records.

Topics are split into partitions to achieve high throughput and scalability. When a

producer sends a record to Kafka, it specifies only the topic to which the record belongs.

Kafka then appends records to a partition based on a partitioning key of the message or

by round-robin mapping records in the topic. On a partition, records are ordered. Each

record has a unique offset/timestamp assigned by the Kafka broker when the record is

78

created, which allows clients to efficiently locate and fetch records within the partition.

Partitions allow the Kafka cluster to distribute the recording load across many brokers

to achieve high write/read throughput. By adding more partitions for a topic, you can

easily scale its figures of merit. This design makes Kafka a 0-Latency Messaging system,

enabling both the publishing of large volumes of data and processing with the lowest

possible delay.

6.4. Batch Processing Technologies

Batch processing refers to executing a series of non-interactive tasks (or jobs) in a group

while producing a batch of output data. In batch processing, data is collected over a given

period and used as input to programs (also known as job or tasks) that process large

volumes of data. Batch processing is advantageous for performing complex processing

over huge volumes of data. It is also useful when it takes a long time to generate output

data. As an example, batch processing generates the output of advancing the interest on

a savings account. The interest is calculated once a week based on the balance present at

the end of each day and is usually small in value compared to the total balance. It

typically takes a couple of hours to run the batch program and generate the interest report

for hundreds of thousands of bank accounts. Batch Processing is useful when processing

large volumes of structured data, and thus it is typically used in Data Warehousing, ETL,

Reporting, and Business Analytics.

Apache Hadoop is an open-source batch processing framework that runs on distributed

computer clusters. It utilizes and expands on the MapReduce paradigm for creating

large-scale distributed Data Processing jobs. Hadoop was designed to work with

commodity hardware. Instead of having a high-availability solution, where every node

is a high-end server, it works on a cluster of cheap servers. The data in Hadoop is

replicated across the nodes to provide fault tolerance and higher reliability. Hadoop is

primarily used for hosting large-scale ETL, Data Processing Pipelines, and Data

Warehouse workloads. Hadoop is not a good fit for Interactive Queries, which are better

run on OLAP Services. Hadoop excels at scheduled Batch Jobs and at volumes where

traditional ETL tools fail.

6.4.1. Overview of Batch Processing

Batch data processing refers to the jobs that act on a stream of data that is finite, which

is received over time at any random actual time but is typically not available in real time,

while remaining inert for possibly a long time before being analyzed to help in the actual

decision making. The batch job is typically submitted and scheduled to run for a

predetermined duration of execution, until completion, possibly on a dedicated

79

computing cluster. Batch processing in data analytics is the original way in which data

analytics took place, which enabled the democratization of analytics. Due to the discrete

workloads, batch processing is typically more economical in terms of computing costs

and can free up resources during idle time, provided there are other workloads available

that can afford to wait for processing. Additionally, it allows batch data processing

technologies to compete with other technologies like traditional business intelligence

tools in terms of the time taken to produce insights.

Batch processing is also responsible for the reduced costs of data storage incurred by

organizations that choose to store data for long periods of time for regulatory compliance

by moving such data into lower cost cloud storage, and to have it processed there using

batch processing technologies, which traditionally charged customers not on the typical

metered usage of real time resources but rather on the storage utilization during the

company’s exact peak storage duration, if any during the month. Although near real time

processing of data is possible with the technology with results issued in seconds, even

milliseconds, after data is newly ingested, this would obviously incur much higher costs

by virtue of reducing system parallelism.

6.4.2. Apache Hadoop

In the year 2005, a number of research and technical papers introduced systems such as

MapReduce for computation and BigTable for data storage, which could be scaled to

thousands of nodes, to process huge datasets. These papers opened the floodgates for the

massive amounts of research being done today in the general purpose parallel/distributed

processing systems space, and thousands of systems have been created. At the end of the

day, however, there can be only one or a few systems that will be widely used in the

industry, regardless of how many others are created. In this domain, it appears that the

open-source project has emerged as the clear leader at the current time. It is a

combination of the distributed file system support as well as the MapReduce

implementation. Based largely on the earlier papers, it was created in 2005 by

individuals.

It has continued to advance significantly in recent years. Some of the more significant

advances in the system have been the addition of support for streaming data processing

with the introduction of components such as Streaming and Flume, the addition of a data

warehousing solution called Hive, in addition to other projects including Pig and Jaql,

and the evolution of the systems as specializations of similar systems. There is even an

implementation of MapReduce for the Windows environment! Supporting technologies

are now widely deployed and used in production applications, and it is being used

successfully in a variety of scenarios in addition to search engine indexing such as for

social network analysis and malware detection.

80

6.5. Architectural Patterns for Data Pipelines

Architecting a data pipeline is more about solving a technical problem in the right way

rather than employing a particular technology or deployment model. It is, therefore, quite

useful for both architects and developers to understand the common architectural

patterns for data pipelines across industry verticals. These architectural patterns broadly

fall within the umbrella of the lambda and kappa architectures. Even though the lambda

architecture is an older paradigm, it is a very popular model for data pipelines that need

to serve both real-time and historical analytical use cases – especially for companies in

the online retail, advertising, and entertainment business. The kappa architecture is a

relatively newer paradigm that has evolved out of the limitations and constraints of the

lambda architecture. Even though the kappa architecture is a popular model for

operational applications that need real-time analytics, it is often seen as a very niche

model compared to the lambda architecture. The lambda architecture has also evolved

over the years into several deployment patterns that combine concepts from both

architectures.

Fig : Advanced Data Pipelines Using Real-Time Streaming and Batch Processing

Technologies

Lambda architecture defines the concept of batch and speed layers. The batch layer not

only manages the master data store that is used to generate results for queries over the

historical data but also runs at regular intervals very large batch jobs on the historical

data to generate the results which will be used most frequently by the serving layer to

respond to queries. The speed layer serves the most recent data while the month or year

81

old results are served from the batch layer. The serving layer combines the results from

both the batch and speed layers to respond to queries, thus acting as the glue that

integrates both the batch and speed layers. Hence, the lambda architecture integrates

both batch and real-time processing models into a single analytical layer.

6.5.1. Lambda Architecture

Distributed systems have been indispensable for data processing, where we run various

workloads and handle different types of data across many servers to speed up the

processes. With that, we have big storage systems, distributed clusters, communication

abstractions, and frameworks built for batched data. Although storing the information of

the measured phenomena is strongly necessary, having a pure batch processing system

cannot satisfy the low latency response requests required when dealing with Data-in-

motion.

The Lambda Architecture, proposed at the beginning of the Big Data era, is the first

architecture that ties together and generalizes the entire heap of new technologies in

order to process data for near real time and for historical analysis, all together in a simple

way. This architectural pattern reconciling the additive data evolution pattern proposes

to process data in both real time as well as using the good-old batch paradigm; everything

to manage to answer to those queries that are put on top of the stored data.

That being said, the typical architecture relies on three layers: Firstly, the data is ingested

into the system from the sources using an ingestion layer – like an ETL, often using a

Stream Processing system. This huge data flow is then split and the data events are stored

in two different systems: a realtime (or speed) layer with Raw Non-aggregated data, and

a batch layer with the Aggregated results over a time interval for the analysis. The batch

system will never be enabled to respond to near real time queries. The last component

of the Lambda Architecture is the Serving Layer that manages to deliver responses to

the user queries, having them equipped with both the real time and batch pre-computed

data.

6.5.2. Kappa Architecture

In data intensive applications, events are frequently ingested at high volume and high

velocity. In many cases, a record of old events is retained for a (short) period of time so

they can be re-consumed if errors are found or business logic changes. Kappa

Architecture recognizes this common set of practical concerns, and introduces the idea

of a system in which all processing happens in a stream processing layer. The status of

the long-term views is stored within a key-value distributed storage system. Accordingly

82

when a user request comes, it accesses the view in the KV store. Kappa Architecture

attempts to simplify the Lambda Architecture approach in an effort to make building and

operating data intensive applications easier. Specifically, it posits that the batch

processing layer essentially boils down to, and is dramatically simplified by, the ability

to recompute views of select key-value pairs when they become stale, and that embedded

in the stream processing layer is a system for storing the resulting views, and for recalling

them when necessary. The coalescing of these facets within the stream processing layer

also greatly simplifies maintaining consistency across batch and streaming data, as the

Kappa Architecture suggests that they are one and the same. In fact, both highlights and

contributes to the capability of stream processing as an event by event computation

model on data.

Kappa Architecture results in a simpler architecture, and it eliminates the batch layer,

the complexity from Lambda Architecture. However, this is only plausible when the

business cases suit. If a query requests information about the last five months for

example, if the stream layer in the Kappa Architecture is the only one possible then, then

it is impossible to answer this request without computing a batch first. It’s a matter of

computing using Kappa Architecture and then answering the request or doing nothing

and then answering the request as querying a view stored.

6.6. Conclusion

This chapter highlighted several best practices and various technologies to implement

advanced data pipelines. These pipelines can use both real-time streaming and batch

processing technologies to implement ETL for analytical applications. Each of the

technologies in the pipeline can be implemented on standardized platforms to provide

the capability of pushing the workloads down to big data processing engines, which run

on clusters of commodity machines.

Through the various sections of this chapter, we provided insights about choices to

consider while architecting data pipelines. We applied these best practices while also

reaping the benefits from the advanced capabilities of the various technologies that were

discussed, to solve real analytic use cases at scale efficiently. We believe that with

enterprise data moving to the cloud, there will be an increased demand for building

advanced data pipelines, especially using serverless, managed services, as the required

experience and expertise to run and maintain the individual technologies and their

optimization for scale would be minimized. Such pipelines will also manage the

complexity of serving the reliable analytics demands through a mix of traditional ETL,

Lambda, and Kappa architectures.

83

As enterprise data processing starts taking advantage of the elasticity, cost-effectiveness,

and sheer compute power offered by cloud infrastructure, we believe there will be a

growth in not only the capacity and speed of the data pipelines being built, but also the

volumes of diverse data flowing through them. Virtualization of the various advanced

technologies, both on-premise as well as in the cloud, coupled with close integration

between them, will help implement these data pipelines. Serverless computing will

stimulate demand for real-time pipelines that will enable enterprises to seamlessly

process enterprise data to meet the operational and analytical demands.

6.6.1. Future Trends

As organizations continue their digital transformation journey, the demand for advanced

data analytic solutions is expected to skyrocket. In parallel, significant increases in the

data volume as well as velocity are fueling the emergence of faster and faster high-

quality data pipelines that are built using groups of diverse pipeline design patterns.

More specifically, the design of faster enterprise pipelines must address the integration

of diverse data sources that span real-time streams such as Internet of Things devices,

external application programming interfaces, clicks, orders, stocks, social media, and

mobile and web logs among many others; internal operational batch and near-real-time

updates, and historical archives of data stored in cold batch repositories.

Moreover, this growing data pipeline complexity must be addressed with more flexible

and faster integrated data pipeline development frameworks that are architected using

the best-of-breed library of reusable high-quality design components and tools that

simplify the pipeline design, create pipelines from a library of pipeline components that

support any type of source and sink integration, and support diverse data transformations

including cleaning, data preparation, enrichment, and model score and data publishing,

especially for batch and stream hybrid design patterns. In parallel, we expect to see the

proliferation of enterprise-grade data ops tools that support collaborative DevOps and

MLOps teams, empowered by best-of-breed metadata services, library MLOps, data ops,

source control, CI/CD, and self-service data provisioning tools.

Finally, although machine learning capabilities are slowly becoming easier to integrate

into enterprise applications, they remain arduous, especially for batch and real-time

hybrid pipelines that implement advanced business logic. To help reduce this

complexity, we expect to see the growth in adoption of the library of reusable,

documented, open source pre-trained ML components.

84

References

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1), 107–113.

Malik, A. (2023). Zero Trust in Intelligent Cloud Architectures. Journal of Cybersecurity & Cloud

Technologies, 2(2), 60–73.

Chauhan, A., & Saxena, V. (2022). Serverless MLOps pipelines: Architectures and strategies.

International Journal of Cloud Applications, 11(3), 149–168.

Elgendy, N., & Elragal, A. (2021). Big data analytics: A literature review paper. Journal of

Computer Science and Technology, 31(3), 381–396.

Arora, A., & Talwar, A. (2023). Trustworthy AI systems for cloud-native environments.

Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (FAccT).

	Chapter 6: Architecting advanced data pipelines using real-time streaming and batch processing technologies
	6.1. Introduction
	6.2. Understanding Data Pipelines
	6.3. Real-Time Streaming Technologies
	6.4. Batch Processing Technologies
	6.5. Architectural Patterns for Data Pipelines
	6.6. Conclusion
	References

