
56

Chapter 5: Infrastructure as code and

automation tools for efficient multi-

cloud resource provisioning

5.1. Introduction

Cloud computing, with its features such as low initialization cost, low long-term cost,

and high scalability, provides technical support for enterprises to build large-scale

information systems and adopt advanced technologies such as big data, artificial

intelligence, and the Internet of Things. With the rapid development of cloud computing,

especially in the last decade, various cloud service providers have sprung up. Enterprises

are provided with a cloud-computing platform with different service modality of

Infrastructure as a Service, but they have been struggling with resource management and

utilization. Given the resource management and utilization become increasingly

complicated with the extremely wide variety of factors involved in the decision-making

process, it has made the whole process inefficient and ineffective. Workload

Management Systems are commonly used by Service Providers and cloud customers to

manage the distribution of workloads among resources. However, they are designed for

a single-cloud environment and cannot efficiently and effectively manage the workflow

tasks in a Multi-Cloud Environment (Lakshman & Malik, 2010; Sharma & Lamba, 2020;

Liu & Shao, 2021).

Due to the emergence of multi-cloud systems, it is getting common for an enterprise to

utilize resources from multiple cloud service providers. And for an enterprise to

efficiently and effectively utilize the resources from the Cloud Service Providers, it

prefers to set up a Multi-Cloud Environment which consists of various types of resources

from diverse providers. However, the heterogeneous properties of the assets, works, and

service levels in a Multi-Cloud Environment with multiple assets originating from

multiple providers have rendered the workflow management a much more complicated

problem than for a single-cloud system. On the one hand, for a more complicated multi-

Deep Science Publishing

https://doi.org/10.70593/978-93-49910-08-9_5

57

cloud environment with more diverse conditions, objectives, properties, and

specifications of different resources, it is getting demanding and crucial that a workflow

is optimized according to its defined settings and characteristics. On the other hand, with

the development of cloud-computing technologies and innovations such as storage

management and deployment technologies, more and more large-scale workflows are

migrated to the cloud for management and execution. It has consequently increased the

pressure on the interest convergence of multiple providers in the booming multi-cloud

system (Zaharia et al., 2010; Tsai et al., 2019).

Fig 5.1: Infrastructure as Code and Automation

5.1.1. Background and Significance

Traditionally, the creation of IT infrastructure to support application development has

been both an art and a science. The vital importance of such infrastructure for application

development, particularly new application development, has made it an area of

investment and innovation in all types of organizations. For new application

development, the requirement to accomplish development objectives using weighted

combinations of timing, cost, and quality, often leads to the creation of significant

58

technical debt. The importance of IT infrastructure in concept projects has dramatically

increased. Indeed, it is difficult to imagine a concept project that would be completed by

developing the application alone without using IT infrastructure. Consequently, the

recognition of the critical importance of IT infrastructure for both application

development and for organizational competitive advantage has been rewarded with

heavy investment to reduce the burden of infrastructure provisioning, often seen as an

administrative function. The evolution of cloud computing and cloud services has made

it easier and faster than ever to provision IT infrastructure.

Infrastructure, in this model, simply becomes another product or service on the menu.

However, reducing the burden of infrastructure has not always been an easy business

decision, especially when the pressure to deliver new applications is intense. On the one

hand, there is the argument that just-in-time provisioning of IT infrastructure is the best

means of encouraging speed and agility in new application development. After all, every

day of delay in allocating IT infrastructure inevitably adds to the cost of delay. And, it

is not uncommon for sponsors of new business initiatives to constantly monitor progress

for lack of focus. Burdening already stressed IT departments with complex portfolio

management processes around allocations of IT infrastructure would be

counterproductive.

5.2. Understanding Infrastructure as Code (IaC)

Understanding Infrastructure as Code (IaC) Infrastructure as Code (IaC) is a technology

revolution marked by the introduction of high-level languages into computer science.

Moreover, in the theater of cloud computing, the concept of infrastructure as code

emerged allowing the management of cloud resources using programming techniques.

Cloud users realized that they could manage resource creation using separate

programming techniques, and later the programming team began to create their own

libraries, offering support to users of these environments. Thus, libraries were created to

meet the demand for resource management, exposing the language provided by cloud

providers, which allowed the modeling of all or part of the capabilities offered by service

providers. These libraries allow the creation and documentation of processes that execute

resource management on any of the cloud providers on a scheduled basis or on demand.

They expedite several actions and give consistency to the processes as they avoid failures

caused by execution time since libraries contain and utilize characteristics defined for

each resource during its modeling.

5.2.1. Definition and Importance Infrastructure as Code (IaC) as a concept came to widen

the thinking of system administrators. In the early days of the internet, system

administrators and network administrators implemented and configured all devices

manually. As the number of devices grew larger and larger, they would script repetitive

59

tasks to make their lives easier. Some years later, Configuration Management Tools

(CMT) started to appear making it easier for administrators to map an entire environment

and implement and manage their configurations in a simpler way.

5.2.2. Benefit of IaC The automation of these repetitive tasks, whether via shell scripts,

CMT, or IaC tools, released the administrators of these smaller tasks, allowing them to

focus their valuable time on what was more important to their organization: ensuring

security and improving the infrastructure. With the appearance of cloud computing,

many resources and services needed to be created and configured. These services

required a defined configuration to have a consistent environment and avoid failures

caused by misconfigurations. These configurations were delivered through the cloud

providers’ interfaces exposing their APIs, which allowed the creation of more

sophisticated scripts. Soon, libraries were developed to wrap the APIs and started

popping everywhere.

5.2.1. Definition and Importance

Infrastructure as Code (IaC) is a revolutionary approach to managing and provisioning

IT infrastructure that automates the entire process, transforming manual work into an

efficient code-based solution. With IaC, developers or operations engineers write

machine-readable configuration files that contain the exact rules and parameters to

provision and manage the necessary infrastructure for app components. The IaC

approach involves three broad levels of automation, namely Client-Service, Scripted

Automation, and Fully Integrated Automation. Though automation is a necessary goal

of these levels, passing the task of configuring and managing the infrastructure to code

is the primary motivation for adopting the IaC approach. Adoption of the IaC approach

has several proven advantages, the most important ones being cost reduction,

consistency, and speed.

The importance of IaC for Multi-Cloud strategy stems from the fact that the primary

problem with a Multi-Cloud strategy today is that the inherent diversity across all major

cloud offerings makes it tedious to provision and manage the required cloud

infrastructure, especially as the number of application components and services scale

into the hundreds. Each cloud provider has its own APIs for infrastructure management.

This brings us back to the dreaded burden of dealing with the variability in the languages,

libraries, and constructs needed to invoke the different APIs across the cloud providers.

A critical capability that enables the needed automation is the ability to define

infrastructure in a simple, code-based format, abstracting away the complexities of the

underlying cloud provisioning architectures and implementation details. IaC is the

means through which this capability is realized. This, coupled with a comprehensive

Multi-Cloud resource manager, will allow us to enjoy the promise of our Multi-Cloud

60

strategy without being bogged down by a tedious, error-prone, and inconsistent

provisioning and management process.

5.2.2. Benefits of IaC

Organizations continue to adopt Digital Transformation strategies to be competitive and

have scalable solutions. There are many components to successfully achieve this

adaptation. Migrating Corporate Infrastructure to Multi-Cloud helps for a better

dislocation and provides better services to the final customers. To operate and manage

those configurations for infrastructure provisioning and other Automation services,

having Automation Tools for this support is crucial. To request those services with the

respective tools, having the resources managed through Infrastructure as Code is

essential.

Infrastructure as Code is a Configuration Model where software development tools and

methodologies for code development and maintenance are used to develop the

configuration files for Infrastructure provisioning and configuration. That way it enables

software development teams or DevOps teams to work together with the same tools and

the same techniques they are used to. Through IaC, teams have Designs, Testing

Frameworks, Version Control tools and Deployment processes for the infrastructure as

they have for the application. It provides all the benefits from those techniques, to the

Infrastructure configuration services.

There are many advantages for Infrastructure as Code and applying those techniques will

provide several advantages to your Organization and your services. Adopting IaC will

enhance Agility, Decrease Time, Improve Quality and Control Access. All of those

advantages are obtained through the Automation tools adopting infrastructure as code as

the way those tools will help on Building, Testing and Deploying the infrastructure

requested. Besides the advantages obtained with an Infrastructure as Code, those

Automation Tools will help with the Security and Compliance of your environment with

Monitoring Systems for Services availability and configuration control.

5.2.3. Common IaC Tools

Among the numerous IaC tools available, the most popular are Terraform,

CloudFormation, Ansible, and Azure Resource Manager Templates. Terraform: It is an

open-source, low-level IaC tool that allows provisioning a wide range of cloud providers

and supports DevOps workflows. Terraform has become increasingly popular because

it supports the most widely used cloud providers, such as AWS, Azure, GCP, and

DigitalOcean. CloudFormation: It is a high-level IaC tool that allows the declarative

61

configuration of resources into a single template file. The major advantage of

CloudFormation is that it exploits many of the unique features and services of AWS and

has the greatest tight coupling with AWS, thanks to AWS being its sole provider. In

addition to resources, CloudFormation also supports third-party resources available in

the Marketplace. Ansible: It is an open-source project written in Python, designed for

provisioning and automating deployment in both cloud and on-prem environments.

Ansible uses playbook YAML files, is agentless, and supports infrastructure

provisioning in a push mode. Ansible is best suited for automating deployment processes

in hybrid cloud environments. Since its focus is on automation of deployments and not

just infrastructure provisioning, Ansible is mostly used in the post-provisioning phase.

ARM Templates: These are the building blocks of Azure Resource Manager, the

deployment and management service for resources. ARM Templates create resources in

a declarative way and are ideal for provisioning large and intricate interdependent

architecture patterns. ARM Templates leverage Azure's unique services and features, as

well as support third-party services connected with the Marketplace. ARM Templates

are especially useful for deploying Azure-based microservices since they can deploy

multiple instances of a microservice quickly and easily.

5.3. Overview of Multi-Cloud Environments

A multi-cloud strategy is to use multiple cloud computing providers with different cloud

services. The cloud environments, services, and resources can be different: for example,

mixing public cloud from a public cloud service provider, dedicated cloud in a private

facility from another vendor, and private clouds instantiated in an on-premises datacenter

using virtualization technology from a third vendor. A multi-cloud strategy may also be

defined as the use of different cloud services from the same cloud environment. For

instance, a private cloud is owned by a specific company, but it may host different cloud

applications from its own private business as well as cloud applications from another

organization, such as government agencies and healthcare services, in a local multi-

cloud together. It also may deploy different cloud applications integrated with a public

cloud owned by the cloud service provider, but should ensure a trusted multi-cloud with

high levels of service quality. A company may also use multiple public clouds from

different cloud service providers with complementary cloud services.

From a business point of view, the advantages of multi-cloud strategies are to avoid

vendor lock-in scenarios, to support cloud bursting applications, and to lessen the risk of

service interruption due to external security risks, such as cyber-attacks. From a technical

point of view, the benefits of multi-cloud strategies are to achieve specific goals, such

as latency and legal concerns, and to access mature cloud services offered globally from

different vendors. New technology developments in specific areas with specific

62

advantages are commonly adopted at different speeds, so that if a cloud service provider

has latencies in offering a technology-enabled service capability, a business with a multi-

cloud strategy can easily choose a different vendor instead of waiting. Moreover, about

80% of the most critical applications are affected by privacy rules or industry regulations

that restrict the use of certain cloud services within a geographical location. Providing

on-premises deployment options for these applications can alleviate those concerns.

A clear goal of Multi-Cloud Tools is to decouple the Enterprise from the dependent

lockin on any CSP. Vendor lock-in avoiding is an essential argument against the Public

Clouds Adoption. The gradually bookkeeping style of Cloud Services Providers, picking

cloud services from every provider to achieve the best enterprise results is set to become

a cloud computing standard. Multi-cloud computing refers to the strategy and outcome

of utilizing and managing multiple Cloud Service Providers for a single business

purpose. Multi-cloud usage can include private Cloud infrastructures, hybrid Clouds,

and distributed public Cloud services. The cloud services comprise Tradeable, ranging

from adjacent computing needs, but the services may be offered by different vendors.

Fig 5.2: Overview of Multi-Cloud Environments

63

5.3.1. Definition of Multi-Cloud

Definition of Multi-Cloud A Multi-Cloud Environment is composed of Services from

more than one Cloud. Some of the characteristics that usually include when we talk about

Multi-Cloud are first, the integration of different Services Standards, and second, the

integration of different Services Release Models. The last one is useful to identify a

Multi-Cloud trigger. A Multi-Cloud environment contains private and/or Community

Clouds interconnected to one or more Public Clouds at different stages of their life

cycles. Moreover, a Multi-Cloud is the result of Cloud's evolution. Small Clouds

Organizations, which deploy Multi-Clouds composed of a Frequency combination of

Public Clouds Production, presence in Countries with no effective Public Cloud, Private

Cloud that extensively use the traditional Private Cloud Services, which, because of idle

variety of Resources, also Turbo Charge their Services, ideally expose Cloud Services

integrated to the Multi-Cloud. Actually, one of the tingles of Multi-Cloud Appear is the

increasing interest of Large Corporations in Inter-Cloud Services Adoption, where

Public Cloud Providers help their Customers to integrate Services of other Public Cloud

Providers. Another possible definition of Multi-Cloud is composed of a toolset of

Services that allow Enterprises to import and release Cloud Services.

5.3.2. Advantages of Multi-Cloud Strategies

A multi-cloud approach will introduce some level of management complexity when

orchestrating between multiple public cloud services and possibly some private cloud

services. That being said, organizations opt for adding this complexity for more

specialized capabilities in relation to price, geolocation, and business continuity. The

capabilities of different cloud vendors are not equal in every aspect. For example, not

every public cloud can offer computation services in the local region of an organization

that requires very low latencies. Also, not all cloud vendors can offer optimal pricing for

every single cloud service they provide. Maximizing discounts while retaining

customizable cloud services capabilities is an organization advantage in a multi-cloud

strategy.

Most organizations and enterprises require operational redundancy to guarantee business

continuity in case one public cloud at some location goes down. A service dependency

on any one cloud vendor would be high-risk exposure. During sensitive hyper-scaling

operations, organizations might be dependent on the availability of more resources than

those being used normally. Providers might take advantage of the situation and increase

the prices of cloud resources or increase the times for resource provisioning, or even

allow no new provisioning. Many organizations might require adherence to service

levels agreements that can be optimized with a selection of multiple cloud vendors.

During peak traffic times, the normal costs for some cloud services might be unbearable.

64

A business dependent on a single cloud vendor for resource provisioning could be paying

extraordinary amounts for such traffic if no multi-cloud deployment is possible.

5.3.3. Challenges in Multi-Cloud Management

A multi-cloud environment, defined as the utilization of at least two public clouds from

different vendors without private cloud deployment, has become increasingly popular in

the last few years. Although there are benefits for organizations to adopt a multi-cloud

strategy, there are still many challenges in managing multiple cloud environments. One

of the most significant challenges found in a multi-cloud environment is creating and

managing connectivity between the different cloud environments. Different cloud

providers have different tools available to connect to other cloud environments, which

is an added burden to cloud administrators. Moreover, these tools may need to be

updated constantly as the interconnections between cloud environments are often

patches that do not last long term, which in turn can lead to misconfigurations.

Another challenge faced by organizations that implement a multi-cloud strategy is the

management of security. A multi-cloud deployment introduces multiple points of failure,

with potentially differing levels of security for each service, and access to cloud

resources in various cloud environments should be limited. Managing a multi-cloud

environment can also be an obstacle for organizations that can experience vendor lock-

in, excessive cloud expenses, and loss of visibility. They may need to reconsider their

initial motives for deploying a hybrid cloud strategy as they manage their infrastructure

across multiple geographic areas and services from different vendors. For instance,

monitoring and managing cloud costs can be difficult as cloud providers do not have

standardized pricing across all services. Either large internal teams or third-party tools

need to be put in place to help organizations analyze the cloud utilization from multiple

vendors.

5.4. Automation Tools for Multi-Cloud Provisioning

Automation tools facilitate the efficient management of multi-cloud environments,

enabling organizations to operate across various cloud infrastructures without becoming

constrained within the limitations and specificities of any single one of them. By

implementing automation tools, organizations save considerable time and effort in

deploying protected and secure workloads on the cloud. Moreover, since automating

processes reduces the number of manual interactions, organizations boost the

productivity of the teams involved in infrastructure provisioning and management

because such tasks are highly repetitive and prone to human error. Multi-cloud

65

automation software reduces complexity, cost, and risk while increasing scale, speed,

and flexibility.

Automation tools perform resource provisioning either through native language

processing, where the tool has its own resource provisioning language for interacting

with cloud providers’ native APIs to provision cloud resources, or through agent

installation on the resource. The benefit of agent installation is that provisioning tools

do not have to use multi-cloud providers’ APIs, which is usually cumbersome and

complex. The downside is that administration in agents is usually at a single point of

failure, and provisioning tasks cannot proceed if the agent is not functioning. However,

because cloud providers are now also releasing the federated API standard and its

platform-independent language, which is now enabling the handling of complex requests

through a single command, native language processing is being used increasingly for

cloud resource provisioning. Although there are certainly more automation tools in use,

we will focus on three other representative multi-cloud automation tools.

5.4.1. Terraform

Terraform is an open-source infrastructure provisioning tool that focuses on

Infrastructure as Code. It is mainly developed by a company, and its popularity has been

steadily climbing, especially with regard to its use in multi-cloud provisioning. Today,

there are many companies and developers contributing to the development of Terraform.

The advantage of Terraform is that users can take advantage of a wide variety of provider

plug-ins, allowing the provisioning of a variety of resources not only on supported cloud

services but also on other platforms as well. Some examples of Terraform's supported

clouds include various major cloud providers.

As of version 0.12, Terraform utilizes a domain-specific language allowing

infrastructure to be described as code. Terraform enables automated cloud provisioning

through a series of manifest files, known as Terraform configuration files, describing a

desired cloud infrastructure. The Terraform engine then parses these manifest files and

makes sequential API calls to a desired cloud service provider. Using the domain-

specific language, users define cloud services utilized in their infrastructure, alongside

associated properties and values. The unique aspect of Terraform is how it manages an

infrastructure lifecycle through state files. Once an infrastructure is provisioned,

Terraform downloads the state file and periodically compares the defined state with the

current cloud state represented in the state file. Not only does this aspect allow the

automatic generation of an on-demand blueprint of an infrastructure, but it also allows

seamless automation and management of its lifecycle. This includes the ability to destroy

the complete infrastructure with a single command or command sequence.

66

5.4.2. Ansible

Ansible is an automation tool which can run anywhere and provide provisioning of

resources in any environment. Because of its agentless architecture, it enables

automation of multiple resources in different environments including locally, or

remotely on the cloud, especially orchestration, configuration management, application

deployment, and continuous delivery tasks. Although Ansible's primary focus is

configuration management and application deployment, it can also provision cloud

resources. Though it is not as efficient in provisioning as Terraform, it can also

accomplish the same task. Ansible uses the YAML format along with playbook files for

writing the automation code. It allows Infrastructure as Code (IaC) and codes for moving

the needed part to a defined or to be defined state. The modules of Ansible allow cloud

infrastructure resources to be defined, created, or manipulated. The playbooks can be

validated by linters or the command is available to check these.

The modules provided by Ansible for cloud support most of the services provided by

cloud providers. The API is imperfect and peculiar in its approach to the cloud, but it is

manageable. Ansible provides good support for managing specific resources. In

summary, Ansible is an excellent choice for managing and configuring an existing in-

place or minimal multi-cloud infrastructure as it is easier and involves simple workflows

compared to Terraform. It can also provision temporary resources, such as those for

CI/CD, as code, which can be called from Terraform.

5.4.3. CloudFormation

Amazon Web Services CloudFormation takes a similar approach as Terraform. It

enables you to implement infrastructure as code for your AWS resources. But

CloudFormation is not designed for multi-cloud usage, unlike Terraform. You can use it

for AWS provisioning only. CloudFormation does not only allow you to deploy existing

resources. It supports updating and deleting existing resources as well. It can take an

existing AWS configuration, snapshot it, and re-deploy it anywhere you want. You can

express the infrastructure you want using instantiation templates written in JSON or

YAML. It is recommended to use YAML instead of JSON. JSON is very verbose,

making it hard to read and understand for complex scenarios.

YAML is more readable and concise. However because of the poor error feedback in

CloudFormation, this is less of an issue if you validate your templates with the

command-line interface. You can model your infrastructure using either standard, user-

defined macros or modules in YAML. Macros allow you to customize your templates at

a high detail level. Modules help you share complex configurations across your

organization using a single line of code. CloudFormation also integrates with AWS

67

Service Catalog, enabling you to control IT costs and the cloud provisioning process.

Common users deploy pre-approved services via a service catalog. There are also IAM

policies that enable you to restrict who can use the CloudFormation service for resource

provisioning in what way. Different access policies apply to stack sets and stack

instances.

5.5. Integrating IaC with CI/CD Pipelines

Infrastructure as Code (IaC) outlines each available machine's specific configuration

within the provider's API. Therefore, it only makes sense that IaC should be integrated

with Continuous Integration of the application and Continuous Deployment to the

production environment of the work that is provisioned. However, this is relatively rare.

Fig : Infrastructure as Code and Automation Tools for Efficient Multi-Cloud Resource

Provisioning

Often, Continuous Deployment just means deploying to a pre-staged environment with

an automated upload. Typically, the IaC tooling is deployed more manually, and the

investment put into continuous automation actually stands for a few commands that

happen to be run by automated pipeline servers rather than the IaC tooling itself. Modern

IaC tools make automation as simple as possible, enabling a truly continuous

deployment process. In this section, we will provide a methodical process of successful

integration of IaC with Continuous Integration/Continuous Deployment (CI/CD).

68

Continuous Integration (CI) and Continuous Delivery (CD) are significant practices that

describe a software release process in which dynamic visual notices indicate the status

of the deployed application concerning code runs. Continuous Integration (CI) and

Continuous Deployment (CD) have become tenets of successful application

development, allowing complex applications to be updated on a regular basis without

downtime. Job queues are used to link microservices together that include the various

steps of the pipeline, with services processing CI/CD pipelines into distinct steps.

Triggering commits to the repository results in compilation and testing of the

application, which then proceeds through different environments until being tested in

Production.

5.5.1. Overview of CI/CD

CI/CD are parts of the agile development system that enhance the software deployment

process by allowing developers to ship and receive updates to applications and services

more frequently. Continuous integration provides for a software ecosystem in which

code changes are automatically built and shipped, along with verification via tests.

Continuous delivery, an extent of continuous deployment, extends on CI by having

automated deployment processes. This allows for packaged applications to be pushed to

production or other environments with a click or automated through a job. The CI/CD

process relies heavily on automation to build, test, and deploy code.

CI/CD sandboxes allow for hardened or production-like environments to be updated out-

of-band and auto-configured by the CI/CD pipelines. This can speed up the traditional

waterfall method by enhancing the instant gratification theme, as an organization is able

to release features, fixes, or updates in days and weeks instead of months and years. It

also limits integration hell; with CI/CD, an organization does not postpone system

updates that integrate with existing processes related to business needs. CI/CD pipelines

allow ever-changing demands of business to be implemented efficiently and with low

friction.

5.5.2. Best Practices for Integration

When designing CI/CD pipelines that will involve direct execution of IaC scripts, some

best practices should be observed to reduce the associated risks and avoid movement

down the DevOps maturity ladder during side effects or brute errors. A first easy and

effective best practice is to include unit testing of the IaC scripts as part of the CI

processes for those tools that include a dry-run, unit test libraries, or other code checkers.

These tests can quickly expose syntax problems, user errors or semantic problems with

69

few penalties and in many script languages and tools, these integrated tests tools are

consistently available.

Once we have validated the IaC scripts inputs for successful execution when merging to

the repository, we now can execute the IaC scripts from the CD pipelines. In this case, a

second best practice is using modules to abstract entire IaaS resources that use external

logical dependencies so that every IaC execution where we affect those modules can be

treated as destructive. Then, when executing the steps defined in those modules, the

execution tasks are independent of each other, minimizing unintended side effects. With

this approach, the worst possible impact of the execution will be the entire environment

error, even if the IaC execution is defined as non-destructive and the change is only in

one of the module tasks.

5.5.3. Case Studies of Successful Integrations

Infrastructure code and automation services have become critical components of multi-

cloud resource provisioning. Integrating IaC into a CI/CD pipeline is an effective

methodology for practicing complete and efficient automation. Its successful application

is a powerful reference for others. Research on the practice and integration of IaC within

DAOs, such as agile software development, proposed a refined version coordinate

structured or cyber phase model that highlights three interrelated assets: economic

resources, human capabilities, and tooling support. The research was designed to answer

two questions: how do you design and implement DevOps pipelines using IaC best

practices, and what are the tools available to help you refine or iterate this design and

implementation.

Real-world experience designing and implementing IaC for a variety of clients and use

cases: container orchestration with Kubernetes, application microservices development

and deployment, systems provisioning, and hybrid application hosting was leveraged.

Each project initially used different toolchains: AWS CloudFormation, Ansible,

Terraform, Packer, and Jenkins. After repeated successes using a mixture of Packer,

Terraform, and Jenkins for multiple clients and use cases, the research revealed a

minimal DevOps IaC blueprint toolchain that leveraged Jenkins, Packer, and Terraform.

5.6. Conclusion

Cloud computing has become a disruptive technology for all organizations, offering

cost-effective, scalable, and reliable solutions to host and manage existing and new

workloads. Resource provisioning in the cloud is facilitated by several automation tools

and practices, such as Infrastructure as Code or DevOps. However, the automation of

70

processes also imposes new challenges, especially in the case of large-scale, multi-cloud,

and hybrid-cloud deployments. Based on the systematic analysis of selected papers, we

present in this chapter the landscape of existing research on IAC and automation tools

for efficient multi-cloud resource provisioning, highlighting the most important results.

The proposed classification is composed of 16 classes described in this chapter,

providing a guideline for researchers and professionals in the area of multi-cloud

resource provisioning and offering insight into future opportunities for research in the

IAC and automation tools' area.

Due to the large number and diversity of existing automation tools and technologies, we

divide the options into horizontal or vertical solutions. The first category refers to ideas,

concepts, and technologies that are generic and can be applied to several clouds or

workloads, such as IAC concepts, tools, and technologies. The second category includes

optimizations or solutions that are specific to vertical providers or cloud workloads. Such

a classification is not absolute or exclusionary, and we expect our landscape to evolve in

the future as new research topics and questions arise.

5.6.1. Emerging Trends

The work's focus has been on demonstrating that there are, at present, no essential

difficulties in moving multi-cloud operations to an efficient script-based paradigm. The

case of a project has been used as a template example, describing how the ideas and

principles of decoupling cloud infrastructures from their code have been successfully

applied and made widely available to the research community. Here, some emerging

trends in the area are given for consideration, which will be addressed in future steps

undertaken in both the work described and herein.

The first trend towards true cloud is to operate, develop, and expose code ecosystem

convergence. Traditional infrastructure development and exposure and operation

environments and ecosystems are today still largely disjoint from true cloud provider

space and tooling ecosystems. Although the proportion of code in what amount to true

cloud offerings as services is today very small indeed compared to the amount of code

contained in the services directly offered by providers, it remains true that exposure not

only is the last step of most providers, and certainly that of the smallest, but also is that

where they have the most potential control and power. A concerted effort to make both

worlds better integrated would lead to a tremendous increase in the variety of enabled

services available in any given cloud environment if the traditional access-ID/keys

already in use were to be extended into true cloud tool supporting cloud access through

native environment protocols and service-centric APIs such as candidate Operating

Frameworks and their derived templates that offer an easy, script-centric exposure path

for local services of current offering.

71

References

Lakshman, A., & Malik, P. (2010). Cassandra: A decentralized structured storage system. ACM

SIGOPS Operating Systems Review, 44(2), 35–40.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster

computing with working sets. HotCloud, 10(10-10), 95.

Tsai, C. W., Bai, Y., Huang, M. C., & Tsai, Y. C. (2019). Edge computing and AI in cloud

ecosystems. Future Generation Computer Systems, 96, 417–428.

Sharma, T., & Lamba, H. (2020). AI-driven cloud orchestration using Kubernetes and

TensorFlow. Journal of Cloud Computing, 9(1), 1–14.

Liu, Y., & Shao, Z. (2021). End-to-End MLOps systems: A review. IEEE Access, 9, 102347–

102362.

	Chapter 5: Infrastructure as code and automation tools for efficient multi-cloud resource provisioning
	5.1. Introduction
	5.2. Understanding Infrastructure as Code (IaC)
	5.3. Overview of Multi-Cloud Environments
	5.4. Automation Tools for Multi-Cloud Provisioning
	5.5. Integrating IaC with CI/CD Pipelines
	5.6. Conclusion
	References

