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Preface 

This book comprehending matrix operations is presented in Chapter 1. The 

chapter examines matrix addition, scalar multiplication, matrix multiplication, 

early genetic decomposition, and modified genetic decomposition. The initial 

genetic breakdown served as an analytical instrument. The study described in 

Chapter 2 was based on a paper that used Action Process Object Schema 

(APOS) theory to examine participants' beliefs of determinants and their 

attributes. Determinants of a matrix, determinants of transposition of a matrix, 

determinants of product of matrices, and determinants of inverse of matrix are 

shown in the early genetic decomposition. In order to determine the necessary 

determinants of matrices, certain questions call for the use of determinant 

properties. We examined the conceptual understanding of a solution of systems 

of equations served as the basis for the preliminary genetic decomposition 

presented in Chapter 3. The current study set out to ascertain the in-service 

math teachers' conceptual comprehension of the idea of solving systems of 

equations. The questions asked about the solution to equation systems and the 

geometric depiction of equation systems with consistent and inconsistent 

solutions using lines and planes.  

The mental knowledge of students and recurring misconceptions regarding 

quadratic functions and equations are examined in Chapters 4 and 5. Chapter 4 t 

investigate how undergraduate students assimilate the idea of a quadratic 

function. With an emphasis on generalization, operational confusion, and 

interference, Chapter 5 examines typical mistakes and misunderstandings 

students make while attempting to solve quadratic equations. Both chapters 

draw attention to the cognitive difficulties that students encounter and stress the 

need of constructivist, student-centered methods in resolving these difficulties. 

When taken as a whole, these chapters provide important insights for enhancing 

secondary and tertiary mathematics education. Pedagogical models and 

framweworks were developed in this book. 

Kazunga C, Sunzuma G, Chiromo L, Zezekwa N  
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Chapter 1: The conceptual 

understanding and instructional 

approaches to matrix operations among 

in-service teachers in Zimbabwe  

1 Introduction 

Matrix operations are critical in the study of linear algebra because it requires few 

prerequisites. Linear algebra is one of the pioneer mathematics courses that several 

university mathematics undergraduate students undertake, and students frequently find 

the course challenging. The shift from elementary to advanced mathematics itself, 

however, could be just as challenging as the subject matter. The definitions are critical 

mathematical processes of mental change; this change signifies a shift from describing 

to defining, from persuading to proving logically, and from the coherence of 

fundamental mathematics to the implications of advanced mathematics (Chaudhary, 

2024 &Tall, 1991). "The teaching and learning of linear algebra at the university level 

is almost universally regarded as a frustrating experience," observe Sierpinska, 

Dreyfus, and Hillel (1999, p. 7). Studies in undergraduate linear algebra have 

consistently indicated that while students manage the procedural elements of the 

course, they struggle with grasping the conceptual foundations of linear algebra (Ozdag 

& Aygor, 2012; Plaxco & Wawro, 2015; Ndlovu & Brijlall, 2015). Although research 

highlighting these challenges has been conducted in various countries, there is a 

notable lack of studies specifically addressing students within the African context. 

This study examines various matrix operations, including “addition, scalar 

multiplication, linear combinations, matrix multiplication, and transposition” 

(Kazunga & Bansilal, 2017 p, 81). These operations are fundamental in linear 

algebra and have numerous applications in mathematics, science, and 

Deep Science Publishing  
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engineering. By understanding these operations, the study aims to contribute to 

a deeper understanding of matrices and their applications.  
 

The study investigates the mental models of matrix operations held by 116 in-service 

mathematics teachers. The Action Process Object Schema (APOS) theoretical 

framework explains the development in comprehending mathematics concepts through 

the hierarchical growth of mental constructions called action, process, objects and 

schema. 

1.1 Theoretical Framework 

APOS theory was the main theory which underpinned this study. APOS theory is a 

constructivist theory focusing on the individual’s mental constructions of mathematical 

knowledge. 

APOS theory 

APOS theory is a framework for learning complex mathematical concepts (Dubinsky 

1996; Weyer, 2010). APOS builds on Piaget’s “reflective abstraction and extends it to 

mathematics education” (Arnon,et al,2014 p.5). The “APOS theory involves concept 

formation from existing mental (or physical) actions” (Arnon, et al, 2014 p.17). It 

involves general descriptions of the mental structures and mental mechanisms (Arnon 

et al., 2014). Dubinsky (1991 p.19) pointed out five types of  “mental mechanisms as 

interiorisation, coordination, reversal, encapsulation and generalisation” . These will 

lead to the construction of” hierarchal mental structures such as Actions, Processes, 

Objects and Schemas” (Ed et al., 2005 p.335). 

Description of mental mechanisms 

Arnon et al. (2014) described an action as an externally directed transformations of a 

previously conceived concept(s). The mental mechanisms as actions which are 

repeated and reflected on as the student moves from relying on external cues to having 

internal control over them (Arnon et al., 2014).  The ability to mentally rehearse 

actions, scenarios, or processes. This involves creating an internal model of 

what would happen if certain actions were taken. “Interiorisation is the 

mechanism that makes this mental shift possible” (Engeness,2021 p.47). The ability 

to use symbols, language, and mental images to create internal processes 

(Wijayanti,et al., 2019 p.280) is indeed called interiorization. This process 

allows individuals to understand and make sense of perceived phenomena by 

constructing mental representations. For example, learning a mathematical 
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concept involves initially acting on physical objects, then internalizing those 

actions into mental processes, and eventually encapsulating those processes into 

mental objects. The term encapsulation describes a “cognitive process where an 

individual perceives a dynamic process (like a system or software) as a static 

entity to which actions can be applied” (Arnon et al., 2014 p.21). This means 

the process is viewed as a container or object with predefined properties and 

behaviors, rather than a constantly evolving or interactive system.  

Encapsulation occurs “when the individual applies an action to a process; that 

is, the individual student sees a process as a static structure to which actions can 

be applied. When a process has been encapsulated into a mental object, it can 

be de-encapsulated back to its underlying process when the need arises”  

(Chagwiza et al.,2020 p.3).This process is crucial for understanding and solving 

complex problems in mathematics education. The application of the mechanism of 

de-encapsulation, an individual can revert to the original process that gave rise to the 

mathematical entity. The mechanism of coordination is key  in the development of 

some objects. Two objects can be de-encapsulated to form a new object.  

1.2 Description of mental Structures 

Action 

An action is characterized as a physical or mental operation that transforms existing 

objects into new ones (Dubinsky, 1997; Weyer, 2010). Within the framework of 

Piaget’s theory, as adapted by the APOS (Action–Process–Object–Schema) model, the 

initial understanding of a concept is formed through actions—that is, through 

externally directed operations applied to previously understood objects (Arnon et al., 

2014). These actions are regarded as external because each step in the transformation 

must be carried out explicitly, often under guided instruction. The steps proceed in a 

linear, sequential manner, with each one prompting the next. At this stage of 

understanding, the process cannot yet be internalized or mentally simulated; the 

individual must perform each step in full to comprehend the concept (Arnon et al., 

2014). 

Process  

A process is understood as a transformation applied to one or more objects, which the 

individual can control internally, without relying on external prompts. The individual is 

capable of mentally tracing or reflecting on the steps involved in the transformation 

without having to physically carry them out. Once constructed, a process can be 
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manipulated in various ways—for instance, it can be reversed or coordinated with 

other processes (Dubinsky, 1991; Weyer, 2010). 

Object 

In many cases, a process functions under specific conditions. For example, when two 

objects are de-encapsulated, their corresponding processes can be coordinated and 

subsequently encapsulated to form a new object (Arnon et al., 2014). Consider the 

example of evaluating (ABT)T to perform this operation correctly, the individual must 

de-encapsulate the matrices A and BT to recall the process that defines them, then 

apply the necessary transformations, and finally encapsulate the result into a new 

cognitive object. 

A condition refers to a particular value assigned to a property within a knowledge 

object. When this property takes on the appropriate value, the condition is satisfied, 

and the process can proceed. Conversely, if the property does not meet the condition, 

the process fails. For instance, the process is invalid if the individual mistakenly 

multiplies matrices A and B instead of the correct order or components (e.g. B×B). 

 

Schema 

A schema is a cognitive structure that encompasses the descriptions, 
organization, and exemplifications of mental constructs a student has developed 

regarding a mathematical concept (Arnon et al., 2014). For example, a schema related 

to systems of equations may include matrices as objects and integer operations as 

processes. This study will utilize these mental structures and the associated cognitive 

mechanisms to investigate students' understanding of matrix algebra concepts. 

2 Literature review 

The magnitude of students' challenges with the college linear algebra course has 

concerned numerous math education scholars worldwide (Dorier & Sierpinska, 2001). 

According to these authors, there are issues with the curriculum design of linear 

algebra, which makes the subject challenging both conceptually and cognitively. 

According to several experts, students' views of the challenges stem from the various 

ways in which they comprehend the topics. Similarly, Ndlovu and Brijlall (2015) 

observe that although students manage the course's procedural components, such 

working with matrices and solving linear equations, they have trouble grasping the 

fundamental conceptual concepts that underlie them. Since most mathematical 

problems need knowledge of specific techniques rather than a conceptual 

comprehension of the idea, many students occasionally perform fairly well on their 



5 
 

final exams at the end of the linear algebra course (Siyepu, 2013). Nonetheless, Hiebert 

(2013) warns that it's critical to understand that the connections between procedural 

and conceptual knowledge evolve over time and are impacted by a variety of internal 

and external factors that affect the learner. According to Hiebert (2013), the 

connections between procedural and conceptual knowledge allow for the 

deconstruction of some mathematical paths that occasionally provide serious 

challenges, such as linear algebra. According to Star (2005), more research on deep 

procedural knowledge in mathematics education is necessary. He contends that the 

approaches used to evaluate students' procedural knowledge are insufficient because 

they just concentrate on their aptitude for solving mathematical problems. Since many 

concepts in linear algebra are given as procedures first, procedural knowledge should 

serve as the cornerstone of mathematical learning at all levels. Students are able to 

identify characteristics and connections between items that are included into the 

procedures as their comprehension of these processes grows. It is evident that more 

research is required to fully understand how students acquire their comprehension of 

fundamental ideas like matrix operations in linear algebra (Kazunga & Bansilal, 2016). 

Maharaj (2015) used Action Process Object Schema theory in conjunction with 

instrumental and relational understanding to assess student teachers’ comprehension of 

addition of matrices in linear algebra. He conducted interviews with two pupils to find 

out how they answered two tasks that included adding matrices made up of algebraic 

words. The findings showed that, although being able to subtract the matching 

elements, one of the students was unable to understand the equality of two matrices 

represented in the symbolic form. Additionally, the same student could not understand 

the property that multiplication of matrices is not commutative and was unable to 

expand matrices in algebraic form (𝐶 + 𝐷)2. The student showed special difficulty 

communicating the equality link between two matrices using the symbolic 

language.Instead of utilizing the zero matrix, the student used the zero-number sign to 

represent the outcome of subtracting two equal matrices (Maharaj, 2015). The author 

emphasizes the symbolic notation's communicative role in mathematics and claims that 

students' comprehension of a concept is demonstrated by how well they use symbolic 

notation to convey pertinent mathematical ideas and relationships (Maharaj, 2015).   

The results of a study conducted by Ndlovu and Brijlall (2015) with undergraduate 

students on mental constructions in matrix algebra support those of Siyepu (2013), who 

found that while most participants were comfortable using algorithms, they struggled 

to respond to questions that asked them to justify specific observations. According to 

other research, students complete procedures with ease; nevertheless, their low prior 

understanding of fundamental algebra hinders their ability to form the essential mental 

structures for matrix algebra (Ndlovu & Brijlall, 2015; Maharaj, 2015; Kazunga & 

Bansilal, 2015). By coining the term "met-befores" to refer to the prior experience, De 
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Lima and Tall (2008) emphasized the importance of understanding previously 

encountered concepts when learning new ones.They contend that when learning new 

concepts, prior experiences can lead to significant disagreements. According to Tall, 

De Lima, and Healy (2014), as helpful and challenging "met-befores" impact 

subsequent learning in increasingly complex mathematical situations, the gap between 

success and failure may widen. Additionally, Tall et al. (2014) recommend that current 

math teachers create a method that considers the ideas that every student has 

previously encountered. 

3 Methods and materials 

In this chapter we adopted an interpretive research paradigm, which recognizes that 

individuals' lived experiences and social contexts influence how they construct 

meaning (Guba & Lincoln, 2005; Henning, Van Rensburg, & Smit, 2005; Wahyuni, 

2012). The interpretive approach prioritizes participants’ subjective perspectives, 

making it particularly appropriate for exploring how in-service mathematics teachers 

understand matrix operations. 

Aligned with interpretivist paradigm, the study utilized a qualitative case study design, 

which allows for an in-depth, contextually rich exploration of a bounded phenomenon 

(Gomm, Hammersley, & Foster, 2011; Nieuwenhuis, 2012). The "case" in this research 

was defined as a group of first-year in-service mathematics teachers at a Zimbabwean 

university. The bounded nature of the case allowed for a focused examination of 

participants’ mental constructions related to matrix operations, including matrix 

addition, scalar multiplication, linear combinations, transposition, and multiplication. 

The primary aim was to capture and analyze the nuanced ways in which these teachers 

conceptualize fundamental matrix concepts insights that are crucial for improving 

instructional design in tertiary mathematics education. 

Participants 

The participants in this study were considered unqualified mathematics teachers, as 

their previous training no longer met the required standards. Despite being experienced 

educators, they were regarded as atypical students due to their lack of formal 

qualifications. To upgrade their credentials, they enrolled in in-service training 

programs offered by local institutions. These programs were part of a broader 

initiative, supported by international aid organizations in partnership with the 

Zimbabwean government, aimed at enhancing the qualifications of practicing teachers. 
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The structure of the program involved two intensive block teaching sessions per 

semester, allowing participants to complete the course over a three-year period. These 

sessions were scheduled during school and university holidays and ran daily from 8:00 

AM to 6:00 PM. A total of 116 in-service teachers enrolled in a linear algebra course 

that covered matrix operations agreed to take part in this study. 

Tasks 

Five activities that focused on different facets of matrix operation made up the research 

tool. These challenges were designed utilizing the original genetic decomposition. The 

first question focused on linear combinations, which included scalar multiplication and 

matrix addition. Matrix multiplication was the basis for Questions 3, 4, and 5, whereas 

the transpose of a matrix was the topic of Question 2. During the two weeks of the 

December block session, the 116 participants learned matrix algebraic topics that 

involved matrix operations. During the second block session, which took place over 

the April holidays, the participants completed additional exercises and tests on matrix 

operations and other linear algebraic concepts in addition to reviewing the material that 

had been presented in December. During the April block session, the participants were 

given the five matrix algebra tasks. 

Data collection 

The 116 participants' written answers to the tasks and the 13 chosen participants' one-

on-one interviews were used to create the data. To maintain anonymity, the participants 

were coded with tags such as "S1," "S2," and so on, with no bearing on the sequence. 

This allowed the data to be organized but prevented the responses from being 

associated with the original participants in publications. 

Participants were chosen through the use of purposive sampling for semi-structured 

interviews that were both audio and video recorded. 15 people were first chosen to take 

part in the interviews; they included five individuals who scored highly, five who 

scored averagely, and five who scored below average on the written tasks. Two chose 

not to participate because it was voluntary, therefore 13 people (P1, P3, P18, P39, P43, 

P46, P60, P62, P86, P96, P97, P103, P111) answered the interview invitation. The 

interview questions were created as an extension of the written assignments. 

Additionally, participants were questioned further to learn more about some of the 

ideas that guided their written answers. 

Data analysis 

Coding as "C" for right answers, "0" for wrong responses, and "D" for no response was 

the initial step in the data processing process. After that, we conducted a thorough 

content analysis that allowed us to move beyond the binary coding (correct, incorrect). 

In order to respond to research question 1, participant errors were now discovered. This 
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article uses pictures of six interviewees' written work to highlight some of the mistakes 

found and misunderstandings inferred. In order to supplement the findings, the 

interview transcripts were also examined. The preliminary genetic decomposition, 

which is included in the theoretical framework in the next section, served as the 

framework for the study  Preliminary genetic decomposition for matrix operations 

The formal definitions and constructions of  scalar matrix multiplication, matrix 

addition , matrix transposition  and matrix multiplications are provided in detail  

below, along with a discussion of their applications in various mathematical and real –

world contexts. We drew upon the discussion by Arnon et al. (2014, p. 51) on 

examples of ‘what a genetic decomposition is not, to refine our genetic decomposition. 

This was done to avoid the common errors which can confound a sound description of 

a genetic decomposition with description of teaching sequence or mathematical 

description of a concept’. It should be noted that the genetic decomposition does not 

explicitly encompasses linear combinations of matrices, which constitute the primary 

focus of the first question in the research instrument. While a linear combination 

constitutes a conceptual schema involving the coordination of matrix addition and 

scalar multiplication, it is important to note that the genetic decomposition does not 

explicitly address linear combinations of matrices. Rather, the decomposition 

concentrates on the underlying operations –scalar multiplication and matrix addition- 

which form the basis for constructing the concept of a linear combination. 

Consequently, although these foundational operations are articulated within 

decomposition, the integrated concept of a linear combination is not directly 

represented, despite being the principal focus of the first item in the research 

instrument.  

Matrices Addition 

Action: At the action level, the learner performs isolated addition steps to compute 

individual entries of the resulting matrix –row by row or column by column without 

coordinating these steps into a coherent process or engaging with the underlying 

structure of matrix addition. 

 Process: The individual is able to anticipate the results of summing corresponding 

elements without relying on step-by-step computational procedures.Furhermore, at a 

more advanced conceptual level , the student can treat the addition of scalar multiples 

of matrices as a unified process foregoing the intermediate step of calculating the 

scalar multiple individually.  

Object: The individual will understand and interpret the overall effect of matrix 

addition on any given n×m  matrix. They will be able to explain when and why 

matrix addition is possible or not, based on the dimensions involved. 
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Additionally, the individual will be capable of applying further operations or 

transformations to the resulting matrix sums. 

 

Scalar Matrix Multiplication 

Action: The individual multiplies each element at a time by k, limited to an action 

conception. An individual cannot think beyond the single multiplication being carried 

out. 

Process: An individual reflects on the rule and thinks about the effect of the scalar k on 

all the elements of the row or column or matrix A to form kA, by imagining that each 

element has been multiplied by the scalar k. The individual has interiorized the scalar 

multiplication and can carry out operations without doing step-by-step procedures. He 

or she is able to express the result of the scalar multiple symbolically using algebraic 

notation. 

Object: The individual can see the effect of the scalar multiplication as a totality. The 

individual will be able to apply processes or further transformations on a scalar 

multiple of a matrix or scalar multiple of a row or column. 

 

Understanding the Transpose of a Matrix 

Action: The individual performs a single transformation of a row to a column, by 

systematically considering each row and transforming it into a column in a step-by-

step manner without thinking beyond the rearrangement of each row. 

Process: The individual is able to mentally visualize how converting each row of a 

matrix into a column changes its structure. They also understand that by reversing this 

process—turning columns back into rows—they can reconstruct the original matrix.  

Object: The individual perceives the transpose operation as a complete transformation 

affecting the entire matrix. They can treat the transposed matrix (Aᵀ) as a distinct 

mathematical object, apply additional operations such as matrix addition to it, and 

understand that performing the transpose operation twice returns the matrix to its 

original form. 

Matrix Multiplication  

While some students may have reached the object level of understanding, the analysis 

is limited to exploring only the action and process conceptions, which are outlined 

below. 
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Action: When computing the matrix product AB=C, the individual can perform the 

multiplication one step at a time by focusing on a single row from matrix A and a 

single column from matrix B. They multiply corresponding elements from the row and 

column, sum the results similar to computing a dot product—and place the result in the 

appropriate position. Specifically, they recognize that the ith row of A and the jth 

column of BBB together determine the cijentry in the resulting matrix C. 

Process: The individual is able to imagine the effect of finding the dot product of the 

ith row of the first matrix with the jth column of the second matrix to generate a new 

specific elementcij. He or she does not necessarily have to go through the pair-wise 

multiplication of each element of the row with each element of the corresponding 

column but is able to recognize the corresponding elements of the rows and columns 

that are paired.  

 

APOS insights emerging in this study 

With respect to the concepts of scalar multiplication and addition of matrices, 

the content analysis and interview responses reveal that most participants had at 

least reached an action-level understanding. They could visually assess whether 

two matrices could be added and successfully carry out linear combinations 

when appropriate. Moreover, some interviewees were able to explain the 

operations of addition and scalar multiplication verbally without needing to 

perform each step explicitly, indicating a process-level comprehension. The 

preliminary genetic decomposition provided valuable guidance for the APOS 

analysis. 

4 Results and discussions 

The majority of participants demonstrated action-level engagement with transpose's 

operation, and interviews revealed that many had not progressed past this action 

conception. Because they had resorted to memorizing the rules by heart, data from 

interviews with some participants indicate that the majority of participants were still 

using action conceptions to reason.  

 

We were able to predict the participants' levels of engagement with the matrix 

multiplication concept based on their answers to Questions 3, 4, and 5 as well as their 

interview responses. In Item 3.3, 90% of participants recognized that a (2 × 3) matrix 

could not be multiplied by a (2 × 2) matrix, suggesting that they might be acting at 
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process level.However, only 78% of respondents were able to perform the matrix 

multiplication in Question 3, suggesting that some may have learned the rule by rote. 

Only 48% of participants were able to multiply a column matrix by a row matrix, 

according to the first section of question 3. This item, which involved multiplying a 

matrix with one column by one with one row, appears to have presented difficulties 

because the participants were not familiar with these matrix types. As a result, it's 

probable that some participants' process conceptions of matrix multiplication were 

incomplete.This is supported by their difficulties in Question 4, where they were asked 

to determine the order of AB and BA, if defined, after being given the order of 

matrices A and B using numbers (for instance, 2×3). As a process-level skill, this 

question asked participants to visualize performing the multiplication without 

explicitly going through each step. The fact that nearly half of the participants couldn't 

correctly answer all four questions suggests that they didn't have process conceptions 

of matrix multiplication.Their difficulties in answering Question 4, which asked for the 

order of AB and BA, if defined, after providing the order of matrices A and B using 

numbers (for instance, 2×3), support this. A process-level skill, this question asked 

participants to visualize performing the multiplication without explicitly going through 

each step. Nearly 50% of the participants failed to correctly answer all four questions, 

indicating that they lacked process conceptions of matrix multiplication. 

The study also demonstrates that conclusions regarding APOS reasoning levels could 

not be drawn based only on whether or not participants provided accurate responses. 

Although one student's interpretation of the matrices with order 2×3 and 3×5 was 

incorrect, her answers to the order of AB in Question 4 first part and the order of BA in 

Question 4 third part were correct, suggesting that some members of the group may 

have given correct answers based on flawed reasoning.When given the order, S61 

attempted to generate matrices, demonstrating that she needed to examine concrete 

matrices in order to determine whether the procedure could be completed. Similarly, it 

is not advisable to draw conclusions about participants' conceptions based solely on 

whether or not they answered an item correctly because it is possible that some 

participants may have had a process view but may have made a mistake. 

Given that S96's work demonstrated that her arguments were backed up by the 

examples of matrices she generated, it appears that some participants required the 

convenience of a physical matrix in order to determine the order of the product matrix. 

To assist her in determining the matching row and column elements of the two 

matrices, S96 generated two general matrices of order 3×4 and 4×3. She may have 

been working on a process-level conception of matrix multiplication, but she still 

wanted to verify the alignment of the row and column elements, as evidenced by her 

use of general matrices, which allowed her to predict the order of the product matrix 

without having to perform every step of the multiplication.According to Tall (2004), 
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mathematical thinking can progress from the embodied world through the world of 

symbols and finally to the formal world. The participants' varying success rates on the 

various questions imply that there is a difference in how the matrix is displayed. 

Regarding the answers to Questions 3, 4, and 5, the participants found that, when 

provided with concrete matrices (Q3), it was simple to determine the product's order. 

The success rate decreased when the order was provided in numerical form (Q4), and 

even fewer people succeeded when the order was provided in algebraic form (Q5). As 

a result, a large number of participants appeared to favor the embodied world (Tall, 

2004). 

 

According to a large number of participant responses, even at the action level, they 

were unable to interact with the matrix multiplication concept. This calls into question 

their methods in the classroom. Participants who have trouble understanding these 

ideas will not be able to identify the demands of questions or develop interventions that 

will meet the needs of their students. Because of their narrow perspectives, they are 

unable to identify their students' misconceptions, which may be misconceptions they 

themselves hold. Therefore, the pedagogic content strategies they will be able to use in 

the classroom are hindered by their limited understanding. Next, we offer revised 

genetic decomposition that takes into account some of the problems that this study 

brought to light. 

We next present a revised genetic decomposition based on some of the issues that 

emerged in this study.  

Revised genetic decomposition 

Alright, here’s the deal: we went back to the drawing board and reworked the whole 

genetic decomposition thing using the latest analysis we did. This time, we tossed in a 

rundown of the must-know concepts for making sense of matrix operations—because, 

let’s be real, not everyone remembers that stuff. Also, we took the schema for linear 

combination and made the connection way clearer, tying it right to matrix addition and 

scalar multiplication. Oh, and we tweaked the way we talk about action, process, and 

object for each operation—so, if you check out Table 1, all those actions are actually 

spelled out clearly as in Table 1. 

.Model of modified genetic decompositions 

Matrix transformations 

Prerequisite 



13 
 

Basically, the person looks at a matrix like it’s a thing you can actually mess around 

with—add stuff, flip it, whatever. They can talk about what makes matrices tick, and 

they know how to actually do these matrix moves, not just in theory but, you know, 

really move things around. 

Linear Combination of Matrices 

Okay, here’s the deal: when people talk about a “linear combination” of matrices, 

they’re just mixing a bunch of matrices together using regular old addition and 

multiplying each one by whatever numbers they feel like (well, usually we call ‘em 

scalars, because, you know, math people love fancy vocabulary). Nothing mystical. 

You take some matrices, slap a few numbers in front, add them up bam, that’s your 

linear combo. Way less intimidating than it sounds, honestly. 

Matrix addition 

Action conception 

You just eyeball the matrices and see if they’re the same size—otherwise, forget 

adding them. If they match up, then hey, just add up each little spot with its partner. 

Easy. If not? No dice. 

Process conception 

So, imagine this—what starts off as just, you know, doing something, kinda turns into 

a full-blown process in your head. Like, instead of just slapping numbers together, you 

start seeing the whole "adding matrices" thing as its own step-by-step thing. At some 

point, you just know—almost instinctively—whether you can actually add those 

matrices or if the whole thing's gonna fall apart. It's like mental math morphs into a 

little routine you run without even thinking too hard about it. 

Object conception 

So, basically, the whole idea clicks into place when someone can look at any matrix, 

slap that transpose on it, and actually see the big picture—like, not just what happened, 

but why. If you can ramble off the quirks of a matrix transpose and mess around with 

it—flip it, tweak it, whatever—you’re not just going through the motions. You actually 

get what’s going on. That’s when you actually own the concept, you know? 

Matrix transpose 

Action conception 

The individual demonstrates the ability to transpose an m×n matrix, systematically 

interchanging its rows and columns to produce an n×m matrix. Furthermore, they can 

compare the transposed matrix to the original to determine whether the two are 
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equivalent—recognizing, for example, that a matrix is equal to its transpose only if it is 

symmetric. This reflects an understanding of both the procedural and structural aspects 

of transposition. 

Process conception 

The action of transposing a matrix becomes interiorized into a process when the 

individual can mentally determine the result of a transpose operation without explicitly 

performing each step. At this stage, the individual recognizes the structural changes 

involved and understands that applying the transpose operation a second time reverses 

the effect, thereby returning the matrix to its original form. This indicates a conceptual 

grasp of transposition as a reversible process, rather than a sequence of isolated steps. 

Object conception 

The process of transposition becomes encapsulated into an object when the individual 

perceives the transpose not merely as a procedure, but as a complete and manipulable 

entity. At this stage, the individual can consider the transpose of a matrix as a whole, 

reflect on its structural properties, and articulate key characteristics—such as the fact 

that (AT)T=A,(A+B)T=AT+BTand (AB)T=BTAT. Additionally, they can apply further 

actions or transformations to the transpose itself, treating it as an object that can be 

analyzed, transformed, or embedded within more complex operations. 

Multiplication of matrices by a scalar 

Action conception 

At the action conception of understanding matrix multiplication, the individual is able 

to compute each element of the product matrix by explicitly performing the necessary 

calculations. This involves identifying the corresponding row of the first matrix and the 

column of the second matrix, multiplying each pair of elements, and summing the 

results to obtain each individual entry in the product.. 

Process conception 

The action of scalar multiplication becomes interiorized into a process when the 

individual can mentally anticipate the outcome without explicitly performing each 

individual step. At this stage, the learner can quickly determine the result of 

multiplying a matrix by a scalar by visualizing the effect—such as scaling each entry—

without having to compute each multiplication separately. This demonstrates an 

internalized and conceptual understanding of scalar multiplication. 

Object conception 
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The process of scalar multiplication is encapsulated into an object when the individual 

is able to represent and manipulate it symbolically using algebraic notation, such as 

αC, where αis a scalar and C is a matrix. At this stage, the learner can reflect on scalar 

multiplication as a mathematical entity and coordinate it with other processes—such as 

matrix addition or matrix multiplication—to explain and justify properties, including: 

 α(C+D)=αC+αDA+ (distributive property over matrix addition), 

 (α+β)C= αC+βC(distributive property over scalar addition), 

 α(β)C=(αβ)C (associativity of scalar multiplication). 

This level of understanding allows the individual to reason flexibly about scalar 

multiplication and its interactions with other operations in matrix algebra. 

Multiplication of matrices 

Action conception 

The individual demonstrates the ability to perform matrix multiplication involving at 

least two matrices. Specifically, they can identify the ith row of matrix A and the jth 

column of matrix BBB that must be multiplied to obtain the ijthentry, 𝐶𝑖𝑗of the 

resulting matrix C. Additionally, when presented with two matrices, the individual can 

determine whether multiplication is defined by checking the compatibility of their 

dimensions. 

Object conception 

At the process stage, the action becomes interiorized. The individual is able to mentally 

envision the outcome of the dot product between the ith row of the first matrix and the 

jth{column of the second matrix, resulting in the specific element Cij of the product 

matrix C without needing to explicitly perform each step of the multiplication. This 

indicates an internalized understanding of the operation. Furthermore, the individual 

can determine and articulate whether the multiplication of two given matrices is 

defined, without engaging in the actual computation. This shift reflects a more 

conceptual grasp of matrix multiplication and demonstrates the development of a 

coherent mental process.  

Conclusions 

This chapter is based on research where we examined the answers to given questions 

on matrix operations and interviews were done as follow up with 13 mathematics in-

service instructors about the fundamentals of matrix operations. In this chapter 

discovered numerous common misconceptions, including the following: the use of 
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equal sign as a do something;  matrices and their transposes are taken as one single 

entity; the multiplication and subtraction are interchanged and it is impossible to 

discern between definition of a matrix and that for the determinant of a matrix. Given 

that student teachers are educators who instruct their students in these ideas, there is 

worry that the students would be exposed to these misunderstandings while learning 

the material.The study also investigated the teachers' conceptual frameworks for matrix 

multiplication utilizing APOS theory, transposing a matrix, and linear combinations of 

matrices. According to the results, many participants found it difficult to answer 

interview questions and things that called for higher degrees of engagement with the 

matrix processes, but they were able to handle those that required action-level 

participation. It is clear that the participants required additional chances to interact with 

the ideas, which might have been restricted by the program's delivery schedule. Since 

they teach these subjects to their schoolchildren, it is anticipated thatin future, 

programs will attempt to include additional possibilities for participants to acquire the 

necessary information. 
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Chapter 2: Unpacking In-services 

Mathematics Teachers’ Understanding 

of Determinant of Matrices  

1 Introduction 

The determinant of matrices is a scalar quantity which is used in many topics in 

Zimbabwean mathematics high school curricula. Usually taught in first-year university 

linear algebra courses for mathematics undergraduates. While determinants are 

commonly interpreted as scalar values for square matrices, they serve multiple 

important functions in linear algebra.. This may account for the inclusion of 

determinants in high school curricula in many countries, where students are introduced 

to foundational linear algebra concepts early on.. In the Zimbabwean ordinary level 

curriculum, for example, ‘students learn determinants of 2 by 2 matrices, using inverse 

methods to solve simultaneous equations (systems of equations with two unknowns) 

and solving problems involving unknown for a singular matrix’ (Zimbabwe General 

Certificate of Education Mathematics, 2012-2017, p.12). The Zimbabwean advanced 

level curriculum involves ‘finding the determinant of n by n matrices, using inverse 

methods to solve simultaneous equations (systems of equations with n unknowns) and 

solving for the unknown for a singular matrix’ (Zimbabwe Advanced Certificate of 

Education Mathematics, 2013-2017, p.20).  

As educators with Mathematics teaching experience in Zimbabwe and South Africa, 

we observed that most high school students performed poorly on questions involving 

the determinant of matrices. Similarly, while teaching undergraduate mathematics at 

state universities, we have noticed comparable difficulties among students with this 

topic determinant of matrices.. The performance was poor with pass rate we have 

noticed that students’ performance on this topic is usually far below the university’s 

minimum expected pass rate of 75% each semester.On top of that, university lecturers 

Deep Science Publishing  

https://doi.org/10.70593/978-93-49910-85-0 



19 
 

agreed that students generally perform poorly on determinants and their properties.. 

Moreover, mathematics education researchers around the world have expressed 

concern about the challenges students face in undergraduate linear algebra 

courses.(Kaznga &Bansilal. 2017, Dorier & Sierpinska, 2001).  

The agreement is that teaching matrix algebra and even linear algebra is a frustrating 

experience for both instructors and students. Despite ongoing efforts to improve the 

curriculum, learning linear algebra continues to be challenging for most students 

(Dorier, 2000; Sierpinska, 2000; Dorier & Sierpinska, 2001). These concerns led us to 

investigate the possible causes and the extent of students’ struggles with problems 

involving the determinant of matrices. For teachers, developing a solid conceptual 

grasp of the determinant of a square matrix and its associated properties is crucial, as 

this knowledge underpins their ability to teach the topic effectively and respond to 

student misconceptions. 

This study investigated the conceptual understanding of determinants among 116 

student teachers enrolled in an undergraduate degree program in mathematics 

education. These teachers, who currently instruct at the ordinary level equivalent to 

grade 11, are undergoing professional upgrading to qualify for teaching at the 

advanced level – slightly above grade 12 of high school mathematics. The focus of the 

study is on their mental conceptions of determinant of a matrix, as interpreted through 

the lens of APOS theory—Action, Process, Object, and Schema. According to this 

framework, concept development is hierarchical: learners first form an action-level 

understanding, which may evolve into a process conception, then into an object 

conception, and finally into a coherent schema. However, this progression is not 

always linear, as individuals may fluctuate between levels or skip stages entirely. 

This research addresses the question: How does the APOS framework illuminate in-

service teachers’ understanding and conceptualisation of the determinant of a matrix? 

2 Literature review 

The concept of the determinant is foundational in linear algebra and is approached 

from multiple perspectives within mathematics education. Traditionally, it is 

introduced to students as a numerical value computed from an n by n matrix. Beyond 

this, the determinant is also understood in geometric terms—representing the area of a 

parallelogram in two dimensions or the volume of a parallelepiped in three dimensions 

(Todorova, 2012; Donevska-Todorova, 2014). While these interpretations are valuable, 

they often overshadow a more abstract and formal view of the determinant of a matrix: 

as a function that maps an n by n matrix to a scalar while satisfying specific algebraic 

properties. 



20 
 

The determinant of a matrix should be introduced and understood as a function 

possessing key properties such as multilinearity, alternation, and 

normalization(Donevska-Todorova, 2016). These functional properties provide a 

deeper conceptual grounding and support a structural understanding of linear 

transformations. However, this functional perspective is rarely emphasized in school or 

even undergraduate curricula. Interpreting the determinant solely as a computational 

tool or geometric measure may result in a fragmented or superficial understanding of 

the concept (Todorova, 2014). 

The concept of the determinant plays a fundamental role in linear algebra and has a 

wide range of applications. It is commonly used to solve systems of nnn linear 

equations with nnn unknowns and is central to the Invertible Matrix Theorem, which 

characterizes conditions under which a matrix is invertible. Additionally, determinants 

are useful in vector spaces, where they help determine whether a set of vectors is 

linearly independent. Beyond these foundational uses, the determinant is also 

instrumental in the computation of eigenvalues and eigenvectors—concepts that are 

essential in multivariate statistics, quantum mechanics, and the analysis of non-linear 

differential equations. Larson, Zandieh, and Rasmussen (2008), as well as Rasmussen 

and Blumenfeld (2007), refer to this method of introducing ‘eigenvalues and 

eigenvectors’ through the determinant as the eigenvector-first approach, which 

emphasizes the conceptual structure of eigentheory early in instruction. 

The concept of the determinant extends beyond pure mathematics and plays a 

significant role in various scientific disciplines, including physics and computer 

science (Todorova, 2012). Determinants form a foundational component of scientific 

curricula at both secondary and tertiary levels and are often considered central to the 

study of quantitative sciences. Historically, the determinant emerged in the context of 

solving systems of linear equations. In 1750, the Swiss mathematician Gabriel Cramer 

developed a general method for solving systems of nnn linear equations with nnn 

unknowns. His approach involved the combinatorial manipulation of coefficients, 

which he notated using superscripts—though the variables themselves remained 

unspecified. This method, now known as Cramer's Rule, provided conditions under 

which a system of equations has a unique solution or none at all (Andrews-Larson, 

2015). 

Cramer’s notational system and structural approach to organizing coefficients 

significantly influenced the formal specification of the determinant. His work laid the 

groundwork for later developments in linear algebra. In the mid-19th century, English 

mathematician James Joseph Sylvester expanded on these ideas. In 1850, Sylvester 

introduced the term matrix and further advanced the use of determinants within matrix 

theory. As such, determinants not only serve as computational tools but also function 



21 
 

as diagnostic instruments for analyzing the solvability and consistency of linear 

systems. 

Matrix algebra, encompassing the determinants of square matrices, constitutes a 

fundamental topic within linear algebra that requires thorough comprehension 

(Bolgomony, 2007).A comprehensive understanding of matrix algebra involves not 

only the execution of calculations but also a deep grasp of the underlying theoretical 

concepts.It involves understanding how procedures work, anticipating results 

intuitively, adapting algorithms, and recognizing connections within experiences 

(Bolgomony, 2007). 

Globally, undergraduate students face significant challenges in mastering linear 

algebra, particularly in developing a robust conceptual understanding. Studies by 

Stewart and Thomas (2009), Possani, et.al (2010), Wawro (2011), and Ozdag and 

Aygor (2012) have documented these difficulties, attributing them primarily to the 

abstract nature of the subject. Students’ previous mathematical knowledge, especially 

in structures and set theory, often falls short in providing a strong foundation for 

constructing new knowledge in linear algebra (Dogan, 2011). Similarly, students 

struggle not only to understand but also to explain and interrelate the theoretical 

concepts they learn(Carrizales 2011). This body of research underscores the idea that 

many linear algebra concepts are inherently complex and intangible, posing significant 

obstacles to student comprehension. 

 

Ndlovu and Brijlall (2016) argued that mathematics educators should shift their focus 

from procedural fluency to fostering students’ conceptual understanding of the 

relationships between mathematical ideas. They highlight that students tend to 

assimilate procedures—such as those involved in calculating determinants—as a series 

of disconnected actions, which limits deeper comprehension. In light of this, the 

present study explores how Zimbabwean student teachers understand the concept of 

determinants and their associated properties. Ndlovu and Brijlall (2016) further 

stressed that insights into students’ mental constructions and their interconnections are 

vital for developing instructional strategies that support meaningful learning. Todorova 

(2016) reinforced this viewpoint by demonstrating that many students struggle with the 

concept of multilinearity, frequently failing to apply its formal definitions correctly 

when working with determinants of square matrices. 
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3 Methods and materials 

This chapter draws from a broader study examining how student teachers understand 

linear algebra concepts (Kazunga & Bansilal, 2017a; Kazunga & Bansilal, 2017b). The 

study followed an interpretative approach, recognizing that individuals construct 

knowledge based on their diverse experiences (Guba & Lincoln, 2005; Wahyuni, 

2012). It involved qualitative analysis of written answers from 116 Zimbabwean 

teachers responding to six questions about determinants of matrices and their 

properties. These teachers were enrolled in an introductory linear algebra module 

within a three-year in-service programme, covering matrix algebra, determinants, and 

solving linear systems. The determinant was approached as a numerical attribute of 

square matrices. The programme was structured so that the content of a typical three-

year undergraduate degree was delivered over three years through intensive block-

release sessions held twice each semester during holidays, with classes running daily 

from 8 a.m. to 6 p.m. 

Data were gathered from individual activity sheets, which were marked by the first 

author. Five questions assessed the teachers’ competence in calculating determinants 

and understanding their properties. After analyzing the responses, 15 teachers were 

chosen for individual interviews to better understand their thought processes. The 

group included five high performers, five average performers, and five below-average 

performers. Two participants did not attend, so 13 semi-structured interviews were 

conducted to explore their experiences and perspectives (Guba & Lincoln, 2005). A 

flexible interview guide focused on determinants was used, and interviews were audio- 

and video-recorded. Ethical considerations were upheld, ensuring anonymity through 

pseudonyms. Preliminary genetic decomposition was employed as an analytical 

framework to interpret data from both written work and interviews. 

Theoretical Framework 

In research on students’ conceptual understanding of mathematics, APOS theory—

standing for action, process, object, and schema—has proven to be a valuable 

framework. This constructivist theory describes the cognitive pathways individuals 

follow as they develop mathematical concepts, emphasizing the mental constructions 

involved in learning (Dubinsky, 1997; Weyer, 2010; Arnon et al., 2014). 

 

According to APOS theory, the mental constructions of action, process, object, and 

schema are hierarchical. First, a learner develops an action conception, which then can 

grow into a process conception, and eventually into an object conception. An action 

involves any physical or mental transformation of objects to obtain new objects 

(Dubinsky, 1997; Weyer, 2010). A process is an internal mental operation on objects 
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that the learner controls independently. This process can be manipulated—reversed or 

combined with others. When a learner recognizes this process as a whole and can 

explicitly work with transformations on it, the process becomes an object in their 

cognition. Many studies (e.g., Tall, 1991; Parker, 2010; Dubinsky, 1997; Dorier, 1990; 

Carlson, 1993; Cowen, 1997; Sabella & Reddish, 1995; Cooley et al., 2007; Possani et 

al., 2010; Carrizales, 2011; Matthews, 2012) have used APOS theory to explore how 

students understand linear algebra. Dubinsky (1997) called for more research to 

identify the mental constructions students form when learning linear algebra concepts 

and to develop teaching methods that support these constructions. Matthews (2012) 

pointed out that solving one linear equation is easier than solving multiple equations, 

which is important for designing effective teaching strategies. 

This framework is particularly relevant for studying the learning of determinants, a 

concept that often challenges students due to its abstractness and the procedural 

emphasis found in many instructional approaches (Todorova, 2012; Donevska-

Todorova, 2014). By using APOS theory, this chapter investigated how student 

teachers mentally construct the concept of the determinant, including the extent to 

which their understanding aligns with different APOS levels. 

In doing so, the chapter responds to calls by Dubinsky (1997) for research into the 

specific cognitive structures students form when learning linear algebra, and how 

pedagogical strategies can support the development of appropriate mental 

constructions. APOS theory thus serves as both an analytical tool and a pedagogical 

guide for exploring conceptual understanding in linear algebra among participants. The 

following is a a model for the preliminary genetic decomposition of determinant of a 

matrix: 

Prerequisite 

A foundational expectation is that the learner can identify the size and order of a 

matrix, and has developed a conceptual (object-conception) understanding of key 

operations such as transposition and inversion of matrices. 

Action conception 

At this stage of understanding, the individual can identify whether the determinant of a 

given matrix is computable and apply a specific rule to calculate it, performing each 

step sequentially. 
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Process conception 

At the process conception, the student is able to internalize the steps involved in 

evaluating the determinant, carrying out the procedure mentally without the 

need to explicitly articulate each action. 

At this stage, the individual demonstrates the ability to: 

• determine the computability of a matrix’s determinant based on its 

dimensions; 

• utilize determinant properties to evaluate matrices efficiently; and 

• handle matrices containing algebraic expressions in the computation of 

determinants. 

  

Object conception 

At this level of understanding—aligned with the object conception in APOS theory—

the individual is able to treat the determinant as a mathematical object that can be 

manipulated, compared, and related to other determinants through various operations. 

Specifically, the individual: 

• can distinguish between determinants of related matrices and articulate the 

relationships between them; 

• can apply operations to ∣A∣|A|∣A∣ in order to determine values such as 

∣AT∣|A^T|∣AT∣ and ∣A−1∣|A^{-1}|∣A−1∣, and explain the relationships among 

these determinants; 

• is capable of applying actions informed by the ‘multilinearity property’ of 

determinants to solve problems. 

For example, given if 𝐴 = (

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

3𝑐1 3𝑐2 3𝑐3

), then find |𝐴|, 

 given that |𝐵| = |

𝑎1 𝑎2 𝑎3

𝑏1 𝑏2 𝑏3

𝑐1 𝑐2 𝑐3

| = 𝑛, ,  

the individual can deduce that ∣A∣=3∣B∣=3n, using the scalar multiplication 

property of determinants; 

• understands and can explain the equivalence of computing the determinant via 

cofactor expansion along different rows or columns. 
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4 Results and discussions 

Evidence of action conception 

The APOS analysis in this study was guided by a preliminary genetic decomposition of 

the determinant concept, developed to explore the in-service teachers’ mental 

constructions. In relation to the research question—What insight can an APOS analysis 

reveal about in-service teachers’ conceptualisation of the determinant concept?—the 

findings offer important implications. Specifically, for square matrices of order 2, 3, 

and 4, the results from the written responses and interviews suggest that a majority of 

participants had developed at least an action conception of the determinant. This is 

evidenced by their ability to identify, often by inspection, whether a matrix was 

suitable for determinant computation, and by their step-by-step application of known 

algorithms for matrices of lower order. 

However, some participants exhibited confusion when attempting to extend the 2 by 2 

determinant rule to 3 by 3 or 4 by 4 matrices. These incorrect generalisations suggest 

that such participants had not yet fully constructed an action conception for higher-

order matrices and were instead operating at a pre-action level, relying on memorised 

procedures without conceptual understanding. 

The evidence further shows that over 50% of the participants were comfortable 

performing determinant calculations up to order 3, which reflects the internalisation of 

actions into routine procedures—hallmarks of the action level in the APOS framework. 

These findings resonate with those of Kazunga and Bansilal (2015), whose study 

similarly reported that full-time pre-service teachers were generally able to carry out 

determinant computations at the action level. However, the limited progression beyond 

this level, especially in applying determinant properties or reasoning structurally about 

higher-order matrices, suggests a need for pedagogical interventions that promote 

advancement toward process and object conceptions. 

Thus, this analysis not only reveals the participants' predominant positioning at the 

action level of understanding but also points to the cognitive gaps that hinder their 

progression within the APOS framework. Addressing these gaps is essential for 

helping in-service teachers develop the deeper conceptual understanding necessary for 

teaching advanced school mathematics. 

Evidence of process level reasoning 

An analysis of the responses to Questions 2, 3, and 4 used for this chapter revealed that 

approximately 25% of the student teachers consistently provided correct answers, 
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suggesting that these participants had likely interiorized actions into processes—as 

described in the APOS framework. These individuals demonstrated the ability to 

evaluate the determinants of square matrices with algebraic entries, and were able to 

predict whether the determinant of a matrix could be computed, indicating a more 

flexible and generalized understanding of the concept. Furthermore, some participants 

were able to describe the procedure for finding the determinant of a 3 by 3 matrix 

without explicitly performing the computations, further supporting the claim that they 

had reached the process level of understanding. 

However, the responses to one of the questions exposed conceptual weaknesses in a 

significant portion of the cohort. Several participants were unable to determine the 

determinant of the inverse of a matrix, the transpose, or the product of two matrices 

when provided with only the determinants of the individual matrices (without 

numerical entries). These cases highlight a failure to internalize the properties of 

determinants, particularly the multiplicative and inverse properties. A number of 

participants made reasoning errors, such as incorrectly applying rules from logarithmic 

operations (e.g., treating ∣A2∣ as 2∣A∣, analogous to log(mn)=nlog(m). Such errors 

indicate that these participants had not yet developed the appropriate mental 

constructions needed to understand the formal properties of determinants. 

In APOS terms, these participants appear to be functioning at the action level or even 

at a pre-process level with respect to determinant properties. They could apply 

memorised procedures in straightforward numeric cases but struggled to transfer these 

actions to abstract or symbolic contexts, suggesting a lack of schema integration. This 

finding highlights the importance of pedagogical strategies that support the transition 

from action to process, and ultimately to object-level understanding, where learners 

can view determinant-related operations as coherent, manipulable entities. 

These results address the research question by illustrating the extent to which APOS 

theory can uncover variability in conceptualisation among in-service teachers, and by 

identifying specific cognitive hurdles that hinder the development of a deeper 

understanding of determinant properties. 

Evidence of object–level reasoning 

With regard to the application of determinant properties, most participants did not 

demonstrate evidence of object-level engagement as defined by the APOS framework. 

Both the written responses and interview data suggest that the majority of student 

teachers remained at the action level, where they were primarily able to recall and state 

determinant properties without deeper conceptual insight. Only a small number of 
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participants were able to articulate the relationships between ∣A∣, ∣AT∣, and ∣A−1∣ given 

the value of ∣A∣, or to apply the multilinearity property to solve abstract problems, such 

as those presented in Question 3. Similarly, few participants were able to explain the 

equivalence of different determinant evaluation methods, such as expansion across 

various rows or columns. 

Those participants who successfully solved items in both Questions 3 and 4 

demonstrated greater flexibility in their reasoning. These individuals appeared to be 

approaching an object conception of determinants, as they could operate on the process 

of computing determinants and apply properties like multilinearity in a meaningful 

way. However, their responses to Question 5, which required the construction of a 

counterexample to disprove a general statement, revealed limitations in their reasoning. 

Many of these participants struggled to formulate original examples without relying on 

classroom-taught procedures, indicating that full encapsulation of the process into an 

object had not yet occurred. 

Notably, only eight participants were able to construct valid counterexamples and 

justify why the given statement did not hold in all cases. These individuals 

demonstrated object-level understanding, as they could manipulate determinant 

concepts as mental objects and reason about their properties abstractly. This conclusion 

was corroborated by interview data, particularly in the case of one participant 

(pseudonym "John"), who provided clear evidence of object-level reasoning during 

follow-up discussions. 

In this study, Question 5 served as a key diagnostic item that distinguished between 

participants who had reached the process level and those who had progressed to the 

object level. Approximately 25% of the participants exhibited process-level reasoning, 

yet lacked the structural understanding necessary for object-level conceptualisation. 

This finding suggests a need for targeted pedagogical interventions that can support the 

transition from process to object. For example, incorporating tasks that require learners 

to construct logical arguments or refute generalisations—such as those in Question 5—

may provide the cognitive conflict needed to prompt re-evaluation of existing process 

conceptions. In doing so, participants may begin to encapsulate these processes into 

coherent mental objects, thereby deepening their conceptual understanding. 

Conclusions 

From this chapter, we conclude that most student teachers enrolled in the programme, 

who are currently teaching Ordinary Level mathematics in schools, demonstrate 
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predominantly action-level reasoning regarding the concept of determinants, with some 

even operating at a pre-action level. This finding highlights a critical gap in conceptual 

understanding. It is imperative that mathematics educators seek innovative and 

effective pedagogical strategies that promote deep conceptual understanding rather 

than merely procedural fluency in determinants and their properties. 

Future professional development courses for student teachers should provide ample 

opportunities for meaningful engagement with the concept of determinants to facilitate 

cognitive growth beyond the action stage. The application of APOS theory in this 

study proved valuable in identifying the specific cognitive levels at which the 

participants are functioning. The evidence suggests that while the majority operate at 

the action level, a minority are at the pre-action level, and only a very few have 

attained the object conception. 

This situation is concerning, given that these teachers are responsible for teaching these 

mathematical concepts to learners. To be effective educators, teachers must possess a 

robust and well-developed schema of the mathematical content they deliver. 

Strengthening the conceptual understanding of in-service teachers is therefore essential 

for improving the quality of mathematics education at the secondary school level. 

This chapter again revealed that most student teachers did not develop a deep 

conceptual understanding of determinants when the concept was presented solely as a 

numerical value. Therefore, mathematics lecturers and educators are encouraged to 

incorporate the historical development of determinants into their teaching, as this 

contextualization can enhance students’ conceptual grasp (Larson-Andrews, 2015). 

Additionally, some scholars advocate for the use of dynamic visualization tools, such 

as the dimensional GeoGebra system, to aid students in exploring determinant 

properties. Visualizing how determinants change as the coordinates are scaled or 

transformed may facilitate discovery and internalization of key properties. 

However, visualization and historical context alone may be insufficient for developing 

a robust understanding of determinants. Dorier (2000) argues that a ‘practical’ 

approach, which emphasizes real-world applications, is more suitable than a purely 

theoretical perspective, particularly since many university students tend to be 

practically oriented. Furthermore, a ‘structural’ approach that focuses on the 

underlying relationships and frameworks within linear algebra is especially advisable. 

By engaging with practical problems and applications, students are more likely to 

develop an object-level conception of determinants. 

Mathematics lecturers could therefore enrich their instruction by integrating the history 

of determinants to spark interest and motivation, while also employing visualization 
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technologies and emphasizing practical applications. Such a multifaceted approach 

may better support the cognitive transition from procedural fluency to deeper 

conceptual understanding, aligning with the goals of fostering object-level mental 

constructions of determinants. 
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Chapter 3: Conceptual Understanding of 

Application of determinants in finding 

solutions to systems of linear equations 

1 Introduction  

The application of the concept of determinants is apivotal subject in the study of linear 

algebra, other branches of mathematics and other science subjectsIt forms the basis for 

many critical concepts in linear algebra. The chapter concentrated on participants who 

teaching the topic concepts to their students which they were studying at a particular 

university. The chapter’s purpose was to investigate the conceptual 

understanding of application of determinant of a square matrix infinding 

solutions to systems of linear equationsfor 116 student teachers. 

Determinant though taught as a numeric value in most universities in developing 

countries play a vital part in solving system of equations. Todorova (2012) looked at 

conceptual difficulties that high school students have during the time when student 

learnt and are taught linear algebra and geometry. The author identified students’ 

difficulties in understanding the concept definitions and various concept images of a 

determinant. Todorova (2012) asserts that through teaching experience the students 

sometimes do not build effective concept images in Linear Algebra and Analytical 

Geometry. The author recommends using GeoGebra to help students better understand 

what a determinant means. With this tool, students can actually see how the 

determinant is linked to the area of shapes on a plane. The author also explains that a 

3×3 matrix’s determinant isn’t just about area—it can also be used to find the volume 

of 3D objects. 

Students are generally able to understand the concept of a determinant as the value 

associated with a two- or three-dimensional matrix, or as representing the area of 
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geometric figures such as squares, rectangles, and parallelograms, as well as the 

volume of three-dimensional shapes like cubes, boxes, and parallelepipeds (Todorova, 

2012). However, their difficulties often arise when they need to apply the definition of 

a determinant to solve problems involving non-standard or abstract geometric figures. 

Todorova also notes that most textbooks introduce the concept clearly, and students 

typically have little or no trouble grasping that a determinant is a numerical value and 

learning the procedure for calculating it. 

Students are capable of solving simple problems, even following the introduction of 

the formal definition.The students start to face difficulties when they are asked to solve 

problems that involve non-regular polygons such trapezoids, triangles, pentagon or a 

convex (or even concave). The study will explore the conceptual understanding of 

application of determinant in solving systems of equations.  The research questions 

guiding this study are: 1) How do the student teachers perform on selected assessment 

items involving application of determinants in solving systems of equations?  2) What 

do written and interview responses of the student teachers reveal about the engagement 

conceptual understanding levels (using APOS theory) of student teachers with the 

concepts? It is anticipated that recognizing these trends will help guide the design and 

implementation of courses in similar contexts. 

2 Literature review 

The ‘theory of determinant in linear algebra’ emerged as result of finding solution to a 

systems of linear equations (Andrews-Larson, 2015, p10). ‘Efforts to comprehensively 

characterise linear systems of equations and their solutions grow into the theory of 

determinants’ (Andrews-Larson, 2015, p10). Andrews-Larson (2015) examined use of 

history to enlightenteachingsystems of linear equations. The author examined how 

instruction and instructional design in linear algebra can be enhanced by considering 

the subject’s historical origins. 

The theory of determinants emerged independently in both Japan and Europe between 

the 1600s and 1700s, following earlier methods developed in ancient China for solving 

systems of equations (Andrews-Larson, 2015). In 1693, Japanese mathematician Seki 

Kowa developed a version of the determinant as part of a method for solving nonlinear 

systems of equations (Kazunga & Bansilal, 2015, 2018). 

In 1750, Swiss mathematician Gabriel Cramer independently developed a method for 

expressing the solution to a system of linear equations as a closed-form system. He 

generalized a technique for computing these solutions by utilizing combinatorial 

principles and cleverly arranged, though unspecified, superscripted coefficients. 

Cramer did not explain how his method was derived; instead, he presented a general 
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rule for solving systems, framed in terms of the combinatorics of superscripted 

coefficients. To solve an n×n system, his method involves forming n fractions, each 

containing n! terms in both the numerator and the denominator.Cramer’s comments 

identify what the value of his denominator (i.e. the determinant) reveals about 

uniqueness of the solution set as to a square system of equations. The term "matrix" 

was coined in 1850 by the English mathematician James Joseph Sylvester, who worked 

extensively with determinants. Determinants, in this context, serve as a tool to 

determine whether a system of equations has a unique solution. 

Determinants are numerical values derived from square matrices and are fundamentally 

linked to the calculation of area in two-dimensional spaces and volume in three-

dimensional contexts (Todorova, 2012; Donevska-Todorova, 2014). They are essential 

in linear algebra, particularly for solving systems of equations, assessing matrix 

invertibility, and determining the linear independence of vectors. 

Dorier and Sierpinska (2001) wrote on the obstacles of formalism in linear algebra. 

Students experience difficulties in linear algebra which they term formalism obstacles. 

Commonplace difficulties are due to formal manipulations, also insufficient 

background in logic and elementary set theory can lead to errors in the understanding 

and application of linear algebra concepts.  Students condemn linear algebra at tertiary 

level because of many new terms, notions and absent of connections with what they 

know in linear mathematics. Many students feel like they have landed on unfamiliar 

environment and fail to get their way in this new sphere.Students’ difficulties in linear 

algebra represent a persistent and widespread challenge that has endured across 

successive generations and various teaching methods. They call it formal obstacle.  

Commonplace difficulties are due to formal manipulations absent prior knowledge on 

concepts of set theory contribute to the production of errors in linear algebra. All 

mathematics is characterised by a certain degree of formalism.  The teacher’s task is to 

facilitate the students’ passage from one level of conceptualisation to the following 

one, as set out in official syllabus. When solving system of equations many calculation 

errors were often associated with methodological errors. 

Many researchers have investigated the difficulties undergraduate students face when 

learning linear algebra. These challenges often stem from factors such as the abstract 

nature of the subject and the structure of the curriculum (Dorier, 2000; Sierpinska, 

2000).The students’ challenges are called ‘formalism obstacle’ (Dorier & Sierpinska, 

2001).  The formalism of language, new notation, and elementary logic students 

experience as they learn determinant of a matrix concept are the obstacles they should 

conquer.   The students’ deficiency in practice and competence in linear algebra 

concepts are the other cause of obstacles experience (Dorier et al., 2000).  
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Mathematics educators and teachers should prioritize helping students understand the 

interrelationships between concepts, rather than focusing solely on procedural tasks 

(Ndlovu & Brijlall, 2016). In many schools, students tend to construct mathematical 

knowledge as isolated facts, often internalizing rules as a series of disconnected 

actions. The study aims at mental construction that in-service teachers are able to make 

when learning determinants.Determinants of matrices are an essential component of 

matrix algebra and play a key role in solving systems of equations. They are also 

included in the mathematics curriculum at high schools in developing countries.  

Ndlovu and Brijlall (2016) emphasize the importance of understanding the nature of 

students’ mental constructions and how these contribute to the development of 

conceptual understanding in mathematics. This understanding is crucial for designing 

and implementing effective instructional strategies. They argue that pedagogy should 

focus on helping students build meaningful and relevant mental structures.The 

finding of the study will highlight challenges faced and also potentialapproaches that 

can be used to upgradedeterminants understanding. This may lead to more current 

teaching of determinants as mathematics educators know the mental conception 

students have of the topic and therefore, construct the teaching in a way that will help 

assist students develop the necessary skills and knowledge. 

As one solves system of equations involving the methods which use determinant of a 

matrix, notation plays a vital role. MacGregor and Stacey (1997) observed that 

students are often unaware of the inherent consistency of mathematical notation and 

the power it offers in understanding mathematical concepts. Such misinterpretations 

can hinder students’ ability to make sense of algebra and may persist for years if not 

identified and addressed. 

 

Ndlovu and Brijlall (2016) analysed written work of 31 teachers on training and then 

selected 5 of them for interviews. They observed that few teachers on training were 

operating on process conception. These teacherson training understand the procedure 

of evaluating determinants to a point that they could explain the connection made 

between general statement of evaluating determinant and its applicability to other 

contexts. While Ndlovu and Brijlall (2016) focused on the use of Cramer’s Rule for 

solving systems of equations among full-time pre-service teachers in South Africa, the 

present study explores both Cramer’s Rule and the inverse matrix method as applied by 

part-time student teachers in Zimbabwe. 

As noted by Dikovic (2007), the use of technology in teaching systems of equations 

helps foster deeper student understanding. It empowers students to tailor their learning 

journey, offering flexibility in choosing problems, generating examples, and engaging 

with topics at their own pace and interest level. 
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3 Methods and materials 

This research forms a subset of a broader study that examined student teachers’ 

understanding of linear algebra concepts (Kazunga & Bansilal, 2017a; Kazunga & 

Bansilal, 2017b).To carry out the study, a range of materials and tools were employed, 

which are described below. 

Research Design 

This study was guided by the interpretive research paradigm, which recognizes that 

individuals bring unique backgrounds and experiences that continuously shape the 

reality within their contexts (Guba & Lincoln, 2005; Henning, Van Rensburg & Smit, 

2005; Wahyuni, 2012). The paradigm emphasizes the importance of understanding 

phenomena through the participants’ own perspectives and definitions, particularly 

regarding matrix operations concepts (Henning et al., 2005). Our research focused on 

gaining a comprehensive understanding of how student teachers apply determinants in 

solving systems of equations. We adopted a case study approach—a systematic inquiry 

aimed at detailed description and analysis of a bounded system—to explain the student 

teachers’ conceptual understanding of matrix operations (Gomm, Hammersley, & 

Foster, 2011; Nieuwenhuis, 2012). Identifying the specific unit of study and clearly 

delineating its boundaries is fundamental in case study research; here, the unit 

consisted of first-year student teachers at a particular university. 

Participants 

The study involved non-traditional participants—mature teachers categorized as 

unqualified mathematics teachers, given that their initial training was no longer 

considered sufficient. These teachers participated in a large-scale Teacher Capacity 

Program funded by international aid organizations in collaboration with the 

Zimbabwean government. The program aimed to upgrade their qualifications through 

in-service courses offered at local universities. It was designed to be completed over 

three years, with lectures delivered in two intensive block sessions each semester. 

These sessions occurred during school and university holidays and consisted of full-

day classes from 08:00 to 18:00. A total of 116 teachers, enrolled in a linear algebra 

course focusing on matrix operations concepts, consented to participate in the research. 

 

 Data collection 

The study generated data through the written responses of 116 student teachers and 

individual interviews with 13 selected student teachers. To maintain anonymity, 

participants were assigned codes (e.g., ‘S1’, ‘S2’) that were randomly ordered and held 

no significance. This method ensured that responses could not be linked to specific 

individuals in any published work, while aiding in the systematic arrangement of data. 
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Using purposive sampling, 15 participants were selected for semi-structured 

interviews, which were recorded both audio-visually. These participants were chosen 

to represent a range of performance: five scoring high, five average, and five below 

average on the written tasks. Since participation was voluntary, two opted out, 

resulting in 13 interviewees. The interview questions were crafted as follow-ups to the 

written activities, with additional prompts used to gain insight into the reasoning 

behind their written responses. 

Data Analysis  

Initially, data were coded using ‘C’ for correct responses, ‘0’ for incorrect, and ‘B’ for 

blank answers. An in-depth content analysis then extended the coding beyond this 

simple classification. This deeper analysis allowed for the identification of errors made 

by participants, aimed at answering research question 1. The article includes images of 

written work from six interview participants to highlight some of the observed errors 

and misconceptions. Furthermore, interview transcripts were analyzed to provide 

additional context and support for the findings. The analysis was framed according to 

the preliminary genetic decomposition, detailed in the following section’s theoretical 

framework. 

Theoretical framework 

The APOS framework explains how understanding of mathematical concepts develops 

through a hierarchy of mental constructions: action, process, object, and schema. 

Rooted in Piaget’s work and constructivist theory, APOS theory focuses on modeling 

the mental activities students engage in when learning concepts such as applying 

determinants to solve systems of equations (Arnon et al., 2014)..  

 

Genetic decomposition is one of the primary tools used in APOS research. It is a 

theoretical model outlining the mental constructions students are expected to form to 

grasp a mathematical concept (Arnon et al., 2014). Because it is initially a hypothesis, 

it is termed preliminary until it is supported by empirical evidence (Arnon et al., 2014). 

 

APOS theory stresses the importance of learners’ existing schemas in mathematics for 

building new knowledge. If earlier mathematical concepts are not fully encapsulated—

meaning they cannot be applied flexibly to new problems—they may impede the 

learning of new ideas by remaining isolated from new concepts. Dubinsky (1997) 

pointed out that students’ difficulties in linear algebra often arise from a lack of 

understanding of prerequisite mathematical concepts, which are not part of linear 

algebra per se but are essential to grasp it. This gap often results from students not 
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having the chance to construct their own understanding of these concepts during earlier 

instruction. Supporting this view, Ndlovu and Brijlall (2015) highlight the significance 

of prior knowledge in acquiring linear algebra concepts, asserting that strong 

foundations in functions, equations, and algebraic reasoning contribute to developing 

schemas for systems of equations. Conversely, an absence of these mental structures 

hinders students’ ability to understand solutions to systems of equations. 

 

Preliminary Genetic decomposition on application of determinants in solving 

systems of equations 

Drawing from the researcher’s teaching and learning experience with matrix operations 

at secondary and tertiary education levels, the preliminary genetic decomposition was 

formulated. Moreover, the researcher’s understanding of APOS theory significantly 

contributed to its development. Below, the specific constructions involving Cramer’s 

rule and the inverse matrix method, which utilize determinants and matrix inverses 

respectively to solve systems of equations, are elaborated. 

A model for the preliminary genetic decomposition of application of determinants 

in solving systems of equations 

 

Prerequisite 

The individual is expected to demonstrate action, process, and object conceptions of 

determinants and solutions to systems of equations, while exhibiting action and process 

conceptions of matrix inverses. 

 

 Cramer’s rule Inverse matrix method 

Action The individual performs 

actions in a step-by-step 

manner, where each step 

serves as a prompt for the 

following one within the 

procedure. 

 

The individual is able to 

evaluate the determinant of 

an augmented matrix say A 

and the determinant of each 

matrix  𝐴𝑗 the which is 

obtained from matrix A by 

replacing left column of A 

Actions are executed by 

the individual in a 

stepwise fashion, with 

each step prompting the 

next throughout the 

procedure. 

 

The individual is able to 

calculate the determinant 

of matrix A for the 

equation Ax = b, followed 

by finding the cofactor 

matrix of A.,evaluate the 

adjoint matrix of A and 
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by column vector 𝑏̅.  

 

 

An individual can calculate 

the solution any systems of 

equations using Cramer’s 

rule 

 

 

An individual can decide if 

Cramer’s rule is possible 

by carrying out the steps. 

then evaluate𝐴−1, using 

the formula: 

𝐴−1 =
1

det 𝐴
𝑎𝑑𝑗 𝐴. 

 

The individual can 

calculate the solution of a 

any system of linear 

equation using inverse 

matrix method  

 

The individual can decide 

by inspection whether 

determinants and adjoint 

matrix can be found to 

decide whether the 

procedure is possible  

Process Actions of calculating 

solution of systems of 

equations using Cramer’s 

rule are interiorised into 

processes. 

 

Can predict whether 

Cramer’s rule is possible 

without having to do each 

step 

 

Explain how to use 

Cramer’s rule 

Actions of calculating 

solution of systems of 

equations using inverse 

matrix method are 

interiorised into processes 

 

 

The individual is able to 

determine in advance if the 

inverse matrix method can 

be used, without needing 

to complete all the steps. 

 

Explain how to use inverse 

matrix method 

Object Can explain conditions 

necessary for Cramer’s rule 

to be applicable. 

The individual can 

recognize that the solutions 

obtained through different 

methods are equivalent. 

Can tell whether a system 

is consistent or inconsistent 

Can explain conditions 

necessary for inverse 

matrix method to be 

applicable. 

Can see that the solution 

obtained by different 

methods are equivalent. 

Can tell whether a system 

is consistent or 
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solution 

Individual can distinguish 

between Cramer’s rule and 

inverse matrix method. 

inconsistent solution 

Individual can distinguish 

between Cramer’s rule and 

inverse matrix method 

 

4 Results and discussions 

Layer 1 Calculation of determinant 

A concept is first seen as an action which requires an external prompt in order to carry 

out the action. When a student has worked with the concept, and can apply the 

transformation directly without going through all the steps, the concept is said to have 

been ‘interiorised into a process conception’ (Kazunga &Bansilal, 2018). A higher 

level of conception is the object level at which a person can carry out further actions or 

processes on the object which is now seen as a totality. Findings from the chapter 

indicated that some student teachers were limited to an action-level understanding of 

determinant calculation for square matrices, focusing on procedural steps. As in-

service teachers advance, they move beyond this level, developing a conceptual 

understanding characterized by an interiorized process conception. 

From content analysis and interviews of Question 1 some of student teachers seems to 

lack object conception of a singular matrix. Eight interviewed student teachers seem to 

be operating on action conception the inverse of a matrix because they fail to realise 

the a 2 × 2 matrix give during interview session was a singular matrix.  Some 

participants like Mashie thought that any square matrix has determinant hence the 

inverse can be calculated. Though the participants taught determinant and inverse of a 

square matrix of order 2, some of them fail to get correct response to Q1.1 and 1.3.   

While some mistakes are what Siyepu (2013) terms slips, others reflect deeper 

misconceptions developed during high school mathematics. Some of the high school 

level mathematics is that a square matrix has determinant. When calculating the 

inverse of a 3 × 3 matrix some participants failed to calculate the adjoint matrix they 

simply transpose the give matrix. 

 

Layer 2 Applying Matrix Determinants for Solutions to Systems of Equations 

Cramer’s rule  

Action conception 
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Findings from layer two content analysis and interviews reveal that certain student 

teachers remain at the action conception in solving systems of equations. Some did not 

even know how apply Cramer’s rule correctly, they interchange the quotient and the 

divisor. Some prefer using other methods like Gaussian elimination method. The non-

encapsulation of previously taught concepts for example determinants of matrices, 

adjoint matrix and integers was a barrier in acquiring extended mathematics concepts. 

Ndlovu and Brijlall (2015) observed comparable outcomes in their research, noting that 

mathematics undergraduate students’ use of Cramer’s rule to solve systems of 

equations was hindered by inadequate numeracy and algebra skills. 

Process conception 

From content analysis only 19 % student teachers manage to get correct responses on 

all question involving Cramer’s rule. These participants seem to be reasoning at 

process conception.  Further evidence from the interview where four out of 13 

participants who were interviewed seem to be operating at process conception. These 

manage to explain when do you use Cramer’s rule and inverse matrix method in 

solving system of equations correctly. 

 

Inverse matrix method 

Action conception 

The data also revealed that most of the student teachers are at action conception. They 

had problems with the calculation of the adjoint matrix when solving systems of 

equations using the inverse matrix methods. Some of these participants simply 

transpose the given matrix or the augmented matrix and use it as the adjoint matrix. 

They then multiply the so called adjoint times reciprocal of determinant of the matrix 

multiplied by the original matrix was equal to identity matrix. The results might 

suggest that student teachers did not encourage their learners to check that product of 

so called adjoint times reciprocal of matrix determinant multiplied by original matrix 

result in the identity matrix. This might be the reason why the participants did the same 

thing.  

Process conception 

With application of determinants, there was evidence of some student teacherswhile a 

process understanding was achieved by some, the majority were still confined to an 

action conception. The participants at process conception manage to answer Q4 and 

Q6.1 correctly. Considering the notion of the inverse and the tasks completed, there 

are possibly 21 student teachers who are working at the process level or above. These 

participants manage to answer Q2, Q3, Q5 and Q 6.2 correctly.  
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It was quite exciting to note that some mathematics student teachers failed to write the 

formula connecting inverse of A, determinant of A and adjoint of A correct but manage 

to find the inverse of matrices in Question 1. It is possible to know the procedure of 

doing certain mathematical problems but on the other hand fail to write the correct 

formula. 

Summary (Cramer’s rule and inverse matrix method) 

With respect to understanding use of Cramer’s rule and inverse matrix method to find 

solutions for systems of linear equations, fifteen student teachers showed evidence of 

possibly having progressed toward an object conception, while most of the remaining 

student teachers demonstrated inconsistent performance across the questions, 

suggesting they were predominantly operating at the action conception.From content 

analysis nine student teachers manage to find correct solutions for all the questions 

requiring application of determinant. These student teachers seem to be at process 

conception. They were among the 25 % which were at process conception of 

determinants. Two out of eight participants who seemed to be at object conception in 

calculating determinant of square matrix manage to get correct response for all the 

questions requiring application of determinant.  

Conclusions 

Thechapter analysed the written responses and interviews from 116 

mathematicsstudent teachers to assessment items based on the use of determinant of a 

matrix to solve systems of equations. It was discovered that participant carry out step 

by step calculating the determinant and applying it in solving systems of linear 

equations. The participants are struggling with concepts requiring deeper 

understanding of the core concepts. It is worth worrying about some participants who 

lack fluency in algebraic manipulation skillsand certain numeric operations. They lack 

in application on matrix algebraic concepts and application of determinant to solve 

systems of linear equations. The participants were taught during a short period of time 

and did not develop appropriate mental structures. They should be given more time 

through on line teaching 

 

It was also found that students were generally able to complete items requiring 

procedural approaches, but encountered significant difficulty with tasks that demanded 

a deeper conceptual understanding. A notable concern is that some students 

demonstrated a lack of fluency in algebraic manipulation and certain numerical 

operations, which hindered their ability to meaningfully engage with matrix algebra 
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concepts and their application to systems of equations.An additional issue lies in the 

limited time allocated within the curriculum for student teachers to develop the 

necessary mental structures. These structures are essential for understanding the 

underlying principles and relationships—particularly in the application of the 

determinant of a matrix. Structured opportunities that promote conceptual discovery 

are crucial. 

Therefore, it is important for university administrators to design curriculum delivery 

plans that take into account these developmental needs. Such plans should provide 

student teachers with adequate time and support to engage deeply with mathematical 

concepts and develop the appropriate levels of understanding. 
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Chapter 4: A conceptual understanding 

of the quadratic function concept at 

undergraduate Level 

1 Introduction 

Mathematics is essential for the economic and social development of any country 

including Zimbabwe (Chauraya, 2023). Functions are one of the most crucial topics in 

mathematics as they are one of the first families of non-linear functions that students 

encounter. It is crucial for students to understand one of the components of functions 

which are quadratic functions. Despite being an important topic, students continue to 

struggle with conceptual understanding of functions (Simon et al, 2016).According to 

Simon et al. (2016), conceptual understanding reflects an integrated and functional 

grasp of mathematical ideas. Conceptual understanding enables the students to explain 

concepts in their own words, justify methods, and apply the knowledge different 

situations. This was supported by Jojo (2011) who was of the view that students with 

conceptual understanding are able to evaluate and correct their own thinking, and 

organize knowledge in a coherent way that supports further learning.  According to 

Jojo (2011) if students have a conceptual understanding of a concept, they are more 

knowledgeable of the facts and methods. Their knowledge will be 

knowledgeorganisedinto a coherent manner making it possible for them to learn widely 

through connecting ideas to the knowledge they already have.  

According to Bayazıt (2011) and Eraslan (2008), students have difficulty in 

understanding quadratic functions. The comprehension of as well as seeing graphs as 

tools for expressing the relationship between two variables is difficulty for students. 

Karim (2009) reported that students have difficulties while interpreting several 

quantities related to the quadratic functions such as extreme points, the leading 

coefficient and vertex and drawing the graphs. Many students struggle not only with 

solving quadratic problems but also with articulating and discussing their ideas, 
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particularly in graphing and interpreting quadratic functions.Bayazıt (2011) highlighted 

students' difficulty in understanding the conceptual structure of quadratic functions, 

especially in graph interpretation. Students struggle with components such as the 

vertex, axis of symmetry, leading coefficient, and graph behaviour (Eraslan, 2008; 

Karim, 2009).Duarte (2010) observed that many students fail to grasp the abstract 

nature of quadratic functions, leading to persistent difficulties in advanced 

mathematics. Despite its foundational role in higher-level mathematics, the quadratic 

function remains one of the most challenging topics for undergraduate students. This 

chapter therefore, seeks to investigate the conceptual difficulties experienced by 

students when learning quadratic functions, particularly in relation to graphing and 

interpreting their features and propose a model for teaching quadratic functions. 

1.1 Objectives of the Study 

The objectives are to: 

Determine the level of understanding demonstrated by students when drawing graphs 

of quadratic functions using the APOS (Action-Process-Object-Schema) theory. 

Identify the challenges that students face in learning quadratic functions. 

Propose a model for teaching quadratic functions. 

1.2 Research Questions 

The research questions guides this chapter; 

What level of understanding do undergraduate students demonstrate when drawing 

graphs of quadratic functions, based on APOS theory? 

What challenges do students face in learning the concept of quadratic functions? 

What model of teaching quadratic functions can be developed?  

2 Theoretical Framework: APOS Theory 

Mathematics is viewed as an abstract subject, where many students struggle to develop 

procedural eloquence, whilst they lack comprehending the mathematical concepts 

needed to solve problems at hand or make connections between mathematical concepts 

(Makgakga, 2023). Various theories have been developed and used in order to find 

solutions to the challenges of teaching and learning mathematics One such theory is the 
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APOS (Action, Process, Object, and Schema) that has been used to understand the 

mental mechanisms that are related to mental development in mathematics. The theory 

was developed by Dubinsky (1991) with the aim of examining how learners develop an 

understanding of mathematics concepts. According to Dubinsky and McDonald (2001) 

APOS theory can be used in providing explanations of students’ conceptual challenges  

as well as predicting failure or success in understanding mathematics concepts such 

functions, sequences and limits. 

APOS Theory is used as a theoretical framework to analyze and explain students’ 

cognitive development when learning quadratic functions, particularly in the context of 

graph interpretation and construction. The theory is used to in the identification of 

students’ misconceptions and tailor teaching strategies accordingly. APOS Theory has 

been used in mathematics education because of its effectiveness in studying how 

students internalize and construct mathematical concepts (López et al., 2016). It 

provides insight into the progression of students’ mental models and has been validated 

through various classroom studies. According to Bansilal et al. (2017) the theory is 

grounded in the idea that an individual develop mathematical understanding through 

mental and physical transformations. Although students may encounter the same 

mathematical tasks, the mental structures they construct can differ significantly, 

leading to varied approaches and problem-solving strategies. 

APOS is an acronym for Action, Process, Object, and Schema (Arnon et al., 2014). 

These components represent different stages in the cognitive development of 

mathematical concepts. An action refers to the initial stage where learners respond to 

external stimuli by performing procedures step-by-step, often following specific rules 

or recalling facts from memory. At this level, learners are highly dependent on explicit 

instructions. Tziritas (2011) identifies the following as indicators of learners operating 

at the action level: 

• Viewing a function as a relationship between two sets. 

• Substituting values into a function and calculating outputs. 

• Approaching problems sequentially, one step at a time. 

• Recalling definitions or procedures verbatim without deeper understanding. 

Process is when a learner begins to reflect on and internalize actions, these actions 

evolve into mental processes. At this level, learners can perform operations mentally 

and perceive procedures as whole entities. Chimhande (2017) describes learners at the 

process level as those who: 

• See a function as an operation or transformation that processes inputs into 

outputs. 
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• Understand the overall purpose of a function without relying on step-by-step 

computation. 

• Provide definitions that reflect an integrated view of input–process–output 

systems. 

• Visualize problem-solving holistically rather than focusing on isolated steps. 

Object is when a learner encapsulates a process into a mental construct that can be 

manipulated as a whole, it becomes a cognitive object. This stage allows for 

abstraction and the ability to reflect on functions as complete entities. According to 

Dubinsky and McDonald (2002), learners at the object level: 

• Recognize a function as a mathematical object or noun. 

• Perform operations that act upon functions themselves, such as transforming or 

combining them. 

• Demonstrate flexibility in reasoning about functions as manipulable entities. 

Schema is the highest level in the APOS model that refers to the integration of multiple 

actions, processes, and objects into a coherent mental structure. Schemas are dynamic, 

evolving as learners connect new knowledge with existing conceptual frameworks. 

Brijlall and Maharaj (2008) defines a schema as a structured network of related ideas 

that learners use to understand and solve mathematical problems. Kazunga and 

Bansilal (2020) emphasize that schema formation is crucial for long-term retention and 

the transfer of learning across different mathematical contexts. Students with well-

developed schemas: 

• Use formal definitions of functions to generate or analyze examples and non-

examples. 

• Transition smoothly between different representations, such as equations and 

graphs. 

• Understand the relationships between key features of functions (e.g., critical 

points) and their graphical representations. 

• Integrate new concepts with prior knowledge, enabling them to apply known 

strategies in unfamiliar situations. 

An important tool used in APOS-based research is genetic decomposition, which 

involves hypothesizing the mental structures a student must build to understand a 

specific mathematical concept. This tool helps educators anticipate learning difficulties 

and design instructional sequences that support conceptual growth. APOS theory offers 

a robust lens through which to examine the conceptual development of students 

learning quadratic functions. It enables the identification of learners’ cognitive levels 

and informs targeted interventions to facilitate meaningful understanding.  

Quadratic functions 
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In engineering and science, quadratic functions are utilized to obtain parameters of 

different kinds. This is a polynomial function that is defined in all numbers. According 

to Parent (2015), a quadratic function can be expressed as an equation off(x) = ax2 + bx 

+ c., where a ≠ 0.Two is the highest power of a given variable in vertical (quadratic) 

functions. A parabola is a graph of quadratic functions; these objects may open upward 

or downward, and their width or height may vary, but they all have the same basic "U" 

shape. The direction of the curve is dependent on which degree corresponds to the 

coefficient of highest degree.  

Those functions that can be described qualitatively and have variable rates of change 

are classified as quadratic functions (Strickland, 2011). Students can use quadratic 

functions with output values that are representative of both x and they axes, making it 

easy to understand the rate of change as its gradient of the tangent at point without 

worrying about scaling. Learning about the significance of adjusting the y-axis' scaling 

when reasoning graphically about change/gradients is achievable through quadratic 

functions by examining the differences in graph visual appearance caused by changing 

scaling.  

Whether the translation was horizontal or vertical is visually unclear when translating 

linear functions.  .Students may wonder why focus on the y intercept in the y = mx+ c 

representation, especially as the ax + by = c representation gives both intercepts equal 

importance. The explanation of quadratic functions, as proposed by Good and Lavigne 

(2018), involves understanding the direction of translation and presenting a new crucial 

interpretation of intercepts on the x-axis. This helps to clarify the problem. It is 

important for students to consider both qualitative traits and also rates of change, 

constants by y intercepts and zeros. Only in quadratics can students use algebraic and 

arithmetical manipulation to demonstrate the connections between input/output values, 

different algebra representations, and various graphical representation(s) (Berger und 

al. 2020). The quantitative characteristics of phenomena can be posed using quadratics 

as a foundation for various inquiries. Including inquiries about growth and decline, 

change rates (uplifts and decreases), or attaining specific values like zero and the 

location of maxima and sub-maximates. Students in higher mathematics can use 

imaginary numbers to solve problems and question quadratics by utilizing the 

necessary expression i - the square root of -1.  

Student understanding of quadratic function. 

For students to understand quadratic equations they must possess the ability to graph 

and predict the effects of each coefficient in order to comprehend quadratic functions. 

They are second-degree polynomial functions of the type ax2 + bx + cin which a, b and 

c are constants and a≠0. Quadratic function can be represented by a graph or through  

algebraic expression of quadratic function is called a parabola. F denotes a quadratic 



51 
 

function, with x being the independent variable, f(x) = ax2 + bx + c. Makgakga (2023) 

noted that there are the three forms a quadratic equation which are Standard form 

which can be written in the form y= ax2 + bx + c., Factored form which can be written 

in the form y = (ax + c)(bx + d) and Vertex form which can be written in the form  y = 

a(x + b)2+ c where a, b, c are constants or coefficients of variables. 

How to draw graphs of a parabola 

The graph will open downwards if a is negative and upwards when it is positive. If the 

quadratic coefficient is negative, then both ends of the parabola point downwards.  

The effects of varying a 

There is a further transformation that results in stretching arms of parabolas producing 

a new parabola that is not congruent to the original one. If the value of a becomes 

bigger, the graph become thinner and if value of a becomes smaller, the graph becomes 

wider. This was supported byMakgakga (2023) reported that the coefficient of the 

quadratic term a determines how wide or narrow the graph is.  If a is negative the 

graph face down ward. 

Effects of varying b 

Consider x2- or + bx then the shape does not change because it’s a quadratic function. 

The graph shift down to the left when the graph is positive and down to the right when 

the graph is negative.According to Makgakga (2023), changing the value of b when 

positive it shifted down to the left and when it is negative it shifted down to the left. 

Effect of varying c 

Makgakga (2023) noted that  a change in the value of “c” will move the vertex of the 

parabola down or up and “c” is all the time the value of the y-intercept (down if c is 

negative and up if c is positive). 

Determining vertex on the graph 

When plotting parabolas, special points in the graph are included. The y-intercept is a 

point where the graph intersects the y-axis and x-intercepts is the points where the 

graph intersects the x-axis. A vertex is the point that defines maximum or the minimum 

of the graph. The vertical line through the vertex is the line of symmetry (also known 

as the axis of symmetry). 
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3. Challenges faced by students when learning quadratic functions 

The learning difficulty faced by students in quadratic equations is as a result of poor 

teaching methods (Eraslan,2008). According to Makonye (2011), errors and 

misconceptions may also result from gaps in algebra such as removing brackets and 

factorisation pose a challenge in the solving of quadratic functions. This was supported 

by Díaz and Poblete (2018) who said one area of persistent difficulty is algebra, which 

is correlated to functions, in that they model a dependent relationship between one 

quantity and another. Eraslan (2008) remarked that students do not have the capability 

to make and investigate mathematical connections between algebraic and graphical 

aspects of the quadratic functions. If learners fail to correctly factorise a given 

quadratic functions they would end up having wrong critical values that would in turn 

result in a wrong solution.  

Mathematics teachers’ comprehending of quadratic functions is crucial for the success 

of students as it seems to be an agreement that, for most students, solving and 

understanding quadratic functions is difficult because of the need to make associations 

between various representations of the function, and the connections between the a 

variety of ways in which the quadratic equation can be articulated (Didis et al., 2011). 

Makgakga (2023) stated that the most challenging task for students is to grasp the 

function's definition and its relationship to geometry. According to different studies, 

the understanding of images and pre-images in both algebraic and graphical forms is 

only partially established (Brijlall & Maharaj, 2008). Makgakga (2023) reiterates that 

students find it challenging and perplexing to draw graphs of quadratic functions, even 

though graphing functions is an essential aspect of learning quadripoly. In (2008), 

Eraslan emphasized the need for students to be familiar with interrelated concepts such 

as turning points, intercepts, and the impact of quadratic function parameters. This was 

outlined in his work.  

The comprehension of quadratic functions is often hindered by various obstacles 

encountered by learners. There are both conceptual and procedural issues. The majority 

of erroneous ideas are created by students who have procedural knowledge (Siyepu, 

2013). Misconceptions are erroneous and frequently employed ideas (Parent, 2015). 

Makgakga's (2023) suggested that students bring different understanding of the 

coefficients, a, and b, in the quadratic function when teaching in classrooms. It is 

uncertain for some students if the coefficients will affect the vertex. In his work, 

Makgakga (2023) observed that a student who is academically proficient may seem to 

comprehend quadratic functions, but their understanding of the concept itself is not 

always straightforward. The development of misconceptions can be attributed to either 

over-generalizing an essential, correct idea or interference from everyday knowledge 

(Parent, 2015). Learning to differentiate between functions and non-functions is 



53 
 

challenging for students, who may also be unable to use appropriate notation in the 

graph of a function.  

Brijlall and Maharaj (2008) assert that graphing quadratic functions is a crucial aspect 

of the subject, but students find it challenging and perplexing to depict them visually. 

Problems are a result of students having to remember effects of a, b and c (negative 

and positive) when given the variables a and b. Students must possess a thorough 

understanding of the effects of a, b and c, as well as the ability to draw Graphs (Brijlall 

and Maharaj, 2008). Teaching quadratic functions requires the ability to grasp related 

concepts like turning points, intercepts, and effects of quadratic functions, as per 

Eraslan (2008).  

4. Learning and teaching strategies of mathematics  

According to Djamarah (2010), the teaching approach is a method used to teach and 

achieve the desired outcomes. Teachers employ teaching methods that correspond with 

the characteristics of students they encounter to teach subjects to them, including 

demonstrations, discussions, laboratories, projects, contests using tangible objects and 

supervised experience. A teacher needs to possess conceptual comprehension and 

procedural comprehension of a given concept in order to create teaching methods that 

promote understanding (Makgakga, 2023). Therefore, a teacher should be capable of 

adapting the learning process to suit the needs of students. Mathematics can only be 

learnt through doing things, making things, noticing things, arranging things and then 

reason about things. There should be a culture that should be developed among 

children for them to create interest in the subject as most students would be interested 

in subjects like music and art. Makgakga (2023) reported that discussing, refining, 

sharing and questioning are acts taken by human beings either individually or together 

in exchange of ideas. This clearly shows that through questions misconceptions and 

grey area are cleared and students will have a clear understanding of the concept under 

discussion. This method should also be made use of to ensure the complete 

understanding of students of all concepts in quadratic functions. This was supported by 

Makgakga (2023) reported that students understand and retain knowledge longer if 

they discover it for themselves. Learning by discovery involves active participation by 

learners.  

Teachers' use of specific teaching methods is believed to be more effective in 

achieving the learning objective, as stated by Qudsyi et al. (2011). Learning style is 

influenced by learners, objectives, situational contexts, facilities, and teachers. The 

teacher will aim to teach with precision by using an accurate method. Thus, instructors 

should utilize techniques that can support teaching and learning activities to make it an 
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efficient means of achieving the objective of teaching. Hence, teachers utilize learning 

methods to attain the objectives in teaching and learning.  

A positive classroom environment is crucial to the learning process. A comfortable, 

peaceful, and enjoyable environment conducive to learning is desirable. Students' brain 

function is influenced by their interests or mood, so if they are comfortable and happy 

while teaching and learning, the brain will readily accept identified material. Students 

who experience discomfort and unproductive behavior in class may seek an immediate 

end to the learning process. This can lead to boredom and laziness while listening to 

teachers. They are not concentrating on the lessons taught by their teacher, leading to 

distraction. Why? Through a variety of activities, the student works hard to achieve 

learning achievement in the process of teaching and learning. According to Zuldafrial 

(2011), a good achievement is one that can be attained by students through serious and 

hard work, which leads to satisfactory achievement. The learning atmosphere plays a 

crucial role in enhancing student performance. A crowded or noisy learning 

environment can cause disturbance to other students who are engaged in learning 

activities. In addition to the raucous behavior of classmates, the learning environment 

in class is influenced by teacher-student interaction, building ventilation, room 

lighting, wall hangings and wall state.  

Having a positive attitude towards the subject and teachers is crucial for students to 

comprehend their lower level education in secondary schools. According to Akinsola 

& Olowojaiye (2008), the attitudes of students are likely to either stimulate or 

discourage further mathematics education. According to Anthony & Walshaw (2007), 

the learning process is heavily influenced by attitudes. It is the responsibility of 

educators and all those involved in education to aid students in developing a positive 

outlook on mathematics.  

Students' learning is influenced by the attitude of teachers who teach them in the 

classroom. Mathematicians have a significant influence on their learning approach, 

with teachers having varying attitudes and beliefs towards mathematics (Makgakga, 

2023). To achieve this change, it is necessary to shift from an analytical-based teaching 

approach to focusing on problem-solving, which takes into account the teacher's 

attitudes. Beliefs, emotions, social context and content knowledge are the main 

influences on attitudes and practices in mathematics teaching.  

5 Methods and materials 

A qualitative research design that includes any information that can be captured that is 

not numerical in nature was used in this study. Qualitative research methodology 

enables one to use diverse research strategies to collect data. It enables for the voice of 
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the participants to be heard. The study intends to gain concrete, contextual, in-depth 

knowledge about conceptual understanding of quadratic functions, so a case study 

design was used to inestigate students’ understanding of the quadratic function 

concepts. A case study is characterized by gathering data for a long period. Interviews, 

questionnaires and document analysis were used to collect data. 

The group consisted of 20 trainee teachers who were studying for a mathematics 

education diploma at s Zimbabwean universities. ". 10 trainee teachers were chosen 

through a random selection process. When a sample is founded on the knowledge of 

sex and the purpose of research, it is called essentially purposive or judgmental. 

Through the use of judgmental sampling, the researcher chose a sample of interviewees 

to determine the aspects of the population that make this study valuable and easy to 

handle. Participants were chosen for the purposive sampling method based on their 

knowledge or interactions related to the research question.  

An interview was conducted in an interactive environment where two or more 

individuals participate in a conversation that is initiated and coordinated by the 

interviewer to gather information specific to whichever area of interest they are 

interested in. Written answers were analyzed by trainee teachers to ensure clarity and 

explanations. Semi-structured interviews were utilized in this study to obtain additional 

information on the students' written work. The effectiveness of qualitative research is 

largely due to the use of interviews, which aid in comprehending and understanding 

the opinions, feelings, behavior, and experiences of research subjects.  

The conceptual comprehension of quadratic functions was assessed using a test. The 

test was used to determine whether the students had fully grasped the concepts of 

quadratic functions during teaching and learning was one of the objectives of this test. 

The instruments were tested by a math teacher to guarantee their validity. To verify the 

instruments' reliability and validity, a pilot test was conducted.  

6 Results and discussions 

Pseudo names (A to J) were used for the trainee teachers. The questions and answers 

provided by the trainee teachers are provided in this section.  
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Table 4.1 Question1 (What do you understand by the word quadratic functions) 

Category Action Process Object  Schema 

Indicator Equation whose 

highest power of 

the unknown is 

2 

A relationship 

between range 

and 

domainwhose 

highest power of 

the unknown is 2 

A function 

whose highest 

power of the 

unknown is 2 

Is an algebraic 

expression 

whose highest 

power of the 

unknown is 2 

and its graph is 

parabolic. 

 2 4 3 1 

Analysing these results in table 1 shows that trainee teachers lacked a clear 

understanding of the meaning of the word quadratic functions. Most of the trainee 

teachers define the word quadratic equation instead of quadratic functions meaning 

trainee teachers where confusing the two words. These findings described a big gap 

between proposed definition and the trainee teachers responds. Some of the trainee 

teachers just concentrated on the quadratic aspect only and ignored the term functions. 

However, all the trainee teachers remember that the highest power of quadratic 

function is 2.Some of the written work extracts and some for selected trainee teachers 

are shown below; 

 

Fig 4.1: trainee teacher E’s understanding on question 1 

From this question of defining, it clearly shows that trainee teachers were only able to 

define the word function, from fig 4.1, it is clearly showing that trainee teacher E just 

assumed that equation with two as the highest power of the unknown is quadratic 

function. This was supported by Didis et al (2011), who said understanding quadratic 

functions can be conceptually challenging because of the need to make connections 

between various representations of the function, as well as the connections between the 
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various ways in which the quadratic equation can be expressed. This shows that the 

trainee teacher is at action stage in APOS stage where trainee teachers uses the term 

without a clear conceptual understanding of the word. Below is the correct definition of 

quadratic function; 

 

Fig 4.2: Trainee teacher H correct answer 

On fig 4.2 above, it clearly shows that the trainee teacher has master the concept of 

quadratic function. This shows that the trainee teacher is at schema level, where the 

trainee teacher was able to use logical definition to determine whether a given relation 

is a function or a non-function. 

Trainee teacher E’s interview response on question 1 

Researcher:    Is quadratic function and quadratic equation the same? 

Trainee teacher E:  Yes  

Researcher: Why did you say so? 

Trainee teacher E: According to what I have observed, both have highest power of the 

unknown is 2 so they are same. 

Researcher: So how do you write the expression of the quadratic function 

Trainee teacher E: 𝑎𝑥2+𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0 

Researcher: Ok, so why did you not put 𝑓(𝑥) 

Trainee teacher E: As I mention before they are same, so you can use both. 
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From the above interview, it clearly shows that the trainee teacher confuses the 

quadratic equation and quadratic function. The trainee teacher was unable to 

differentiate between these words as long as they contain two as highest power of the 

unknown. This interview shows that the trainee teacher is at action level where the 

trainee teachers is unable to differentiate the difference between quadratic function and 

quadratic equations because both have the highest power of the unknown 2. 

Table 4.2 Question 2 (Describe how your draw the graph of 𝑓(𝑥) = 𝑥2-2 

Category Action Process Object Schema 

Indicator Shapes of the 

graph 

Knows how to 

draw but not 

explaining 

Mentioning of 

points  

Action, process 

and object 

Number of 

responses 

2 1 5 2 

Analysing these results in table 2, it is evident that the trainee teachers lacked a clear 

understanding of the explanation on how to draw the graph of quadratic function and 

their level of cognitive development. Some trainee teachers fail to explain the 

terminology used when drawing the graph, it implies that they were not in a position to 

draw the graph correctly. One of the trainee teachers fails to explain whether the graph 

is in which shape (open upward and open downward) and this means the trainee 

teachers did not understand the concept at all. These results were supported by 

Makgakga (2023) who reported that trainee teachers leave the part of explaining 

whether it open downward or open upward when drawing quadratic function graph. 

Some of the written work extracts and some for selected trainee teachers are shown 

below. 
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Figure 4.3: trainee teacher D’s understanding on question 2 

Out of 10 trainee teachers who were selected, only 4 trainee teachers answer the 

question correctly. Some trainee teachers did not use correct terminology and some did 

not indicate whether the graph open upward or downward. The trainee teachers  leaves 

important like the shape of the graph and also the vertex of the point.The other trainee 

teacher did not understand the effects -2 instead of move two steps downward along 

the y axis, the trainee teacher moves two steps to the left. Meel (2003)’s work shows 

that the use of diagrams facilitates the explanations of the transformation of the graph. 

From figure 4.3 above, it shows the trainee teacher D’s work. The trainee teacher has 

an idea on how to draw the graph of 𝑓(𝑥) = 𝑥2.  The trainee teacher shift the graph two 

steps to the right along the x-axis. This shows that the trainee teacher confuses the two 

quadratic function which are 𝑓(𝑥) = 𝑥2-2 and 𝑓(𝑥) = (𝑥 − 2)2. Below is the answer 

on what the trainee teacher was supposed the do; 

 

Figure 4.4: trainee teacher G’ correct answer 

The above fig 4.4 shows the correct answer of trainee teacher G and the answer  

contains all important information to draw the graph. It shows that the trainee teacher 

had understood the concept of quadratic functions and how to draw it. The trainee 

teachers write all the vertex points and this show that the trainee teacher was at schema 

level in cognitive development. This was supported by Ibeawuchi (2010) who argued 

that changing the value of “c” will move the vertex of the parabola up or down and “c” 

is always the value of the y-intercept (up if c is positive and down if c is negative). 

Trainee teacher D’s interview response on question2 

Researcher: What the sharp of the graph you explained? 
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Trainee teacher D: The graph is U sharped since the coefficient of x2 is positive. 

Researcher: So why did you not mention it in your exercise. 

Trainee teachers D: I did not think it was necessary since we know the graphs of a 

parabola. 

Researcher: Ok!  What about the effects of -2 on your graph. 

Trainee teacher D: The graph moves to the right by two units. 

Researcher: Is that not the graph of (𝑥 − 2)2. 

Trainee teacher D:Ummmm, no that graph you mention will move along y-axis by 2 

units going upwards. 

From the above interview it shows that trainee teacher D leaves an important 

information and it was marked wrong. The trainee teachers have forgot to mention the 

new points in which the graph had moved to and also fail to explain why they have 

described the way they did.  Thistrainee teacher’s answer lacks some explanation and 

seemsto operate on action and object level on APOS theory as the teacher was able to 

draw the graph of quadratic functions but did not clearly explain the process.  

The researcher went on interview the trainee teachers to get the clarity on why the 

trainee teachers fail to interpret the effect of −2 in the function which says 𝑥2−2. It 

looks like the trainee teachers have fail to interpret correctly the effects of -2 and this 

led to more than half of trainee teachers who fails the question. The trainee teacher was 

explaining the graph of 𝑓(𝑥) = (𝑥 − 2)2 instead of  𝑓(𝑥) = 𝑥2-2. 

Table 4.3 Question 3(Draw a graph of  𝑓(𝑥) = −𝑥2−3 

Category Action Process Object Schema 

Indicator Graphing 

using table of 

values 

Graphing 

without table of 

values but fail 

the effects of c 

Transformation of 

varying a, b, and 

c. 

Action, object 

and object  

Number of 1 3 2 4 
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responses 

The question requires the responded to draw a graph of −𝑥2 which face downwards 

and moves by 3 downwards. One trainee teacher was an action level where the 

traineeteachers did not put effect of negative a, 3 trainee teachers were in a process 

sincethey forget the effects 3, 2 trainee teachers at object since they draw graph 

without points and 4 trainee teachers are in schema level where trainee teachers have 

done all stages correctly. The written work of some of the trainee teachers are shown 

below; 

 

Figure 4.5 trainee teacher C’s understanding on question 3 

From the above, fig 4.5 the trainee teacher draws the graph of -x2 and did not draw the 

graph of −𝑥2−3. The trainee teachers lack the concept of drawing the quadratic 

function graph. This shows the trainee teacher is at action level were where the trainee 

teacher fails to memorise what she was taught. Below is the correct answer of the 

graph; 
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Fig 4.6 trainee teacher F correct answer 

The above figure 4.6 shows the correct parabola and all the effect of a>0 which the 

parabola graph will face downwards and effect of b where the graph moves by 3 to 

downwards. This shows that the trainee teachers have master the concept and all the 

procedure are known. 

Trainee teacher C’s response on interview 

Researcher: Why didn’t you draw the effect of -3 

Trainee teacher C: I had forgotten how to shift the graph 

Researcher: So now you know 

Trainee teacher C: I’m not sure of what is in my heard 

Researcher: Ok, can you explain how you would draw  

Trainee teacher C: I move or shift the graph 3 steps downwards 

 

From the above interview it shows that the trainee teacher did not have confidence and 

end up not drawing the graph. This trainee teacher is on action level where the trainee 

teachers is not sure on what to draw and unable to construct but have the procedure in 

the heard. According to Tziritas in chapter 2 action is when the trainee teacher can 

recall a fact from memory and fail to construct it on the ground. 
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Table 4.4 Question 4, Draw the graph of 𝑓(𝑥) = (𝑥 + 5)2 

Category Action Process Object Schema 

Indicator Graphing 

using table of 

values 

Graphing 

without table of 

values but fail 

the effects of c 

Transformation of 

varying a, b, and c. 

Action, object 

and object  

Number of 

responses 

1 3 2 4 

The question requires the trainee teachers to draw a parabola in the form a(x+b)2 where 

a and b are constant. Most of the trainee teachers where familiar with the effects of a 

only. The trainee teachers focused on changes which occur when the value of a takes 

positive or negative. For b, most of the trainee teachers have forget the procedural 

knowledge. Below is trainee teachers’ F written work, 

 

Figure 4.7 trainee teacher F understanding on question 5 

From above it shows that the trainee teacher was familiar with the graph of x2. The 

trainee teacher had no idea on the effects of b. The trainee teacher instead of shifting 

the left, the trainee teachers shift to the right. This show that the trainee teacher did not 

understand concept of shifting the graph thus conceptual understanding was lacked and 

this shows that trainee teacher was in process level. Below is the correct graph; 
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Figure 4.8 trainee teacher A’s correct answer 

The above shows the correct graph with effect of a and b. The graph shifts 5 units to 

the left since b>0. This shows that the trainee teacher had understood both the 

procedural and conceptual knowledge followed when drawing a graph. 

Trainee teacher interview response question 4 

Researcher: How did you come up with your graph 

Trainee teacher: I first draw the graph of x2 which is a parabola which faces upwards 

and shift the graph by 5 steps to right maintaining its shape. 

Researcher: Ok, so why did you move to right not left 

Trainee teacher: Because 5 is positive so it moves to the right if it was negative it was 

going to move to the left. 

The trainee teachers a graph of (x+b)2 and of (x-b)2 and the trainee teachers was 

confidence. This show the trainee teacher operate on the process stage where the 

trainee teacher has the knowledge have the knowledge but fails to comprehend it. 

Table 4.5 Question 5 (Stretch the graph of 𝑓(𝑥) = 𝑥2−2𝑥 + 1, showing clearly the 

effects of each coefficient) 

Category Action Process Object Schema 

Indicator Shape of the graph Points to fulfil the 

graph 

Effects of a and 

c 

Correct answers 

Number 

of 

responses 

0 3 5 2 
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The question required the learner to draw the graph in the form 𝑎𝑥2+𝑏𝑥 + 𝑐, where 

𝑎 ≠ 0.  Some of the trainee teachers were familiar with the effects of varying a and b 

only and most of the trainee teachers were confused on how to draw that kind of 

function. These findings were similar to Makgakga (2023) who indicated that the value 

𝑏 was always a problem to the trainee teachers as it tends to ignore the sign of value of 

𝑏 and also that the value of 𝑏 changes the vertex of the parabola. Some of the written 

work extracts and some for selected trainee teachers are shown below; 

 

Figure 4.9: trainee teachers A’s understanding on question 5 

From this question, it shows that the trainee teachers have not understand the concept 

of drawing graphs especially on how 𝑏 shift if it negative or positive. Out of ten trainee 

teachers who right the test only 2 trainee teachers know how to draw the graph and 5 of 

them did not know how −2 of the function 𝑥2−2𝑥 + 1. Most of the trainee teachers 

shifts the graph to the left because they thought it goes to the negative side and some of 

the actually knows that the graph moves to the right but leaves the concept of shifting 

the graph downward. Trainee teacher I’s work shown in the diagram above indicate 

that the trainee teacher has an idea of drawing this graph but leaves out the concept of 

shifting it down. This was supported by Makgakga (2023) who said that the trainee 

teachers forget the concept of shifting the graph downwards to the right or left. Few 

trainee teachers did not even draw the effects of, which is, if 𝑐 is positive it shifts 

upwards and vice versa. The correct is shown below; 
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Figure 4.10: trainee teacher J correct answer 

The above figure 4.10 shows the correct graph of𝑓(𝑥) = 𝑥2−2𝑥 + 1. This graph shows 

the both the shifting of 𝑏 and of 𝑐. Although the trainee teacher fails to draw the 

smooth curve but it shows that, the trainee teacher had understood the concept of 

drawing the graph. The trainee teacher had the conceptual understanding of the effects 

of a, b and c andhow to shift the graph. 

Trainee teacher A’s response on question 5 

Researcher: How did you draw the graph of f(x)= x2 -2x+1 

Trainee teachers A: I first draw the graph of x2 which is a parabola facing upwards 

because it is positive then shift the graph to the left by one unit and finally shift the 

graph upward to the y-axis by one unit. 

Researcher: Why did you move b by one unit to the left 

Trainee teacher A: Because I learnt that the effect of b will shift by half and I move to 

the left because it is negative. 

Researcher: Ok what about the concept of shifting downward to the left or downwards 

to the right. 

Trainee teacher A: Ummmm, I don’t remember where it can be used. 

From the above interview, the researcher note that trainee teachers face problems in 

trying to draw a graph on quadratic function. Trainee teacher A said that it was not an 

easy question because it requires high order thinking. According to the interview the 

trainee teacher faces the problem of shifting 𝑏.  This interview shows that the trainee 
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teachers did not understand the concept of shifting the graphs. According to the APOS 

theory the learner is at process stage when an individual examines and reflects on an 

action or series of actions, that action can be internalized into a mental process.When 

working with standard form, interpreting the c parameter (the y-intercept) appears to be 

more straightforward for most trainee teachers. Trainee teachers seem to have a partial 

understanding of the a parameter, though the differing roles of the a parameter in the 

standard and the vertex forms may be a point of confusion. When working with the 

vertex form, most trainee teachers can readily identify the vertex, but many still have 

difficulty with transforming the graph, even when using this form. 

Table 4.6 Question 6 (Draw the graph of 𝑓(𝑥) = (𝑥 − 4)2−5 and state whether it is a 

minimum or a maximum and at which point) 

Category Action Process Object Schema 

Indicator Shape of the 

graph 

Points to fulfil 

the graph 

State whether it 

is minimum or 

maximum 

Correct answer 

Number of 

responses 

2 4 4 0 

The question required the learners to draw the graph from y = a(x + b)2+ c where a, b, c 

are constants or coefficients of variables and (b,c) is the vertex. Most of the trainee 

teachers were not familiar with this form which is the vertex form. The trainee teachers 

did not know how to draw that kind of the graph and how to state whether it is a 

minimum or maximum. Some of the trainee teachers only identify the point and fails to 

identify whether it is minimum or maximum. These trainee teachers thought that the 

graph that faces upwards if is minimum and those that faces the downward is 

maximum. Some of the written work extracts and some for selected trainee teachers are 

shown below; 
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Figure 4.11: trainee teacher G’s understanding on question 6 

Out of 10 trainee teachers who wrote the test only no trainee teacher has done it well 

both drawing and able to see that if it is a minimum or maximum. Trainee teacher G 

marked wrongly because, she or he fails to draw a smooth curve which will pass 

through x-axis at (0, 2) and (0 ,6). Makgakga (2023) reported that many trainee 

teachers fail to draw a smooth curve and this may actually lead to wrong coordinates 

on x-axis and y axis. Trainee teacher B have failed to draw the graph of 𝑓(𝑥) = (𝑥 −

4)2, instead of shifting the graph to the right, the trainee teacher shifts the graph 4 steps 

to the left. The trainee teachers thought that the negative sign on the function means 

that it moves to the left. According to Makgakga (2023) said that trainee teachers face 

challenges graph with (𝑥 + 𝑏)2, they interpret wrongly. On fig 4.1 above, it shows the 

work of a trainee teachers treated −5 how she or he treated -4. The trainee teacher ends 

up shifting five steps downward, she or he end up shifting five steps upwards. Trainee 

teacher B also did not know whether it was a minimum or a maximum point and at 

what point. The correct answer is shown below; 
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Figure 4.12: correct answer 

The above fig 4.12 shows the correct answer also that it is a minimum point at vertex 

at (4, -5). The above graph shows how was trainee teachers supposed to draw and label 

the vertex. In order for trainee teachers to draw the correct graph they were supposed to 

first draw the graph of x2 then it was supposed to be followed by moving 4 steps to the 

right since it was negative and then move 5 steps downwards because of a negative 

value. The trainee teacher would have been move 5 steps downwards before moving 4 

steps to the right it was also correct. Also, the important thing was the graph pass 

through 2 and 6 at x-axis. 

 

Trainee teacher B’s response on question 6 

Researcher: How did you come up with your graph 

Trainee teacher B: I first draw the graph of x2 which is a parabola which faces 

upwards and shift the graph by 4 steps to the left maintaining its shape. 

Researcher: Ok, so why did you move to left not right  

Trainee teacher B: Because 4 is negative so it moves to the left if it was positive it was 

going to move to the right. 
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Researcher: Ok what about the effect of -5 

Trainee teacher B: I move the graph down ward maintaining its shape 

The trainee teacher had an idea on the knowledge but fail to identify them.  The trainee 

teacher has no idea on shifting the negative sign of value h but on the shifting of k the 

trainee teacher B had no problem. This mathematics requires high order thinking and 

most of the trainee teachers did not understand what the question requires. The 

research conclude that most trainee teachers do not enjoy graph work, which a 

weakness for most Mathematics trainee teachers. This was supported by Vaiyavutjamai 

and Clements (2005) noted that when working with the vertex form y = a(x − h)2 + k, a 

trainee teacher attended to the sign of the a parameter but not to its value. 

Proposed Model for teaching quadratic functions 

A research-informed model for teaching quadratic functions, the Q.U.A.D. Model, 

aims to address conceptual misunderstandings, support diverse learners, incorporate 

student-centered strategies, and foster positive attitudes toward math. Q.U.A.D. stands 

for: Question and Elicit Prior Knowledge, Use Multiple Representations, Apply 

Collaborative & Discovery-Based Learning, and Diagnose & Differentiate Instruction. 

Figure 4.13 shows the Q.U.A.D. Model.  

 

Figure 4.13 Q.U.A.D. Model 

https://onlinelibrary.wiley.com/doi/full/10.1002/ets2.12234#ets212234-bib-0037
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The Q.U.A.D. Model is a cyclical, learner-centric framework aimed at improving 

students’ comprehension of quadratic functions by integrating constructivist and direct 

instructional strategies. It starts with the “Question” phase, where educators draw out 

students' prior knowledge and identify common misconceptions about quadratic 

expressions, equations, and functions. This initial assessment is crucial for recognizing 

students’ basic understanding and sets the stage for more in-depth involvement. The 

subsequent phase, “Use,” focuses on various representations by connecting algebraic 

forms (like standard, factored, and vertex forms) to their graphical representations and 

real-world contexts. Teachers facilitate learners' exploration of how parameters such as 

a, b, and c influence the shape, orientation, and location of the parabola, thereby 

reinforcing conceptual understanding through both visual and symbolic reasoning. 

The "Apply" phase promotes collaborative, inquiry-driven learning, where students 

collaborate in pairs or groups to create graphs, evaluate transformations, and share their 

reasoning with each other. This stage fosters discovery learning, which has been 

proven to enhance long-term retention and deeper comprehension. Lastly, the 

"Diagnose" phase entails ongoing formative assessment and tailored instruction. 

Educators utilize students’ responses and graphing activities to modify teaching 

approaches, provide extra support for learners who need it, and challenge advanced 

students. By moving through these stages, the Q.U.A.D. Model addresses a variety of 

learning needs, fosters active engagement, and establishes a more robust conceptual 

framework for understanding quadratic functions. 

The model emphasizes understanding prior knowledge, employing various 

representations, and utilizing tools like Desmos for visualizing transformations, 

ultimately enhancing learners' grasp of quadratic functions and their applications. 

Students often find it challenging to interpret parameters like b and differentiating 

shifts, so visual tools and comparisons enhance understanding. The Q.U.A.D. model 

promotes collaborative learning, allowing students to engage in group tasks, match 

through content can lead to misconceptions. The model fosters an inclusive 

environment, blending teacher guidance with student discovery for effective quadratic 

instruction. 
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Conclusion 

This chapter has examined the obstacles that learners encounter when trying to 

comprehend and graph quadratic functions, along with the teaching strategies that 

mathematics educators use to overcome these challenges. The findings indicated that 

numerous students find it difficult to understand the impact of parameters in various 

forms of quadratic equations. The dependence on a singular teaching demonstration 

strategy has led to diminished learner engagement and performance. In light of this, the 

proposed Q.U.A.D. Model introduces a flexible and inclusive framework that 

incorporates diagnostic teaching, multiple representations, inquiry-based learning, and 

continuous assessment. By focusing on conceptual understanding and cooperative 

learning, the model aligns with research-supported educational practices and caters to 

the varied needs of learners. Successfully teaching quadratic functions necessitates a 

transition from a teacher-centered approach to a more interactive, student-centered 

pedagogy that enables all learners to understand and apply essential mathematical 

concepts with confidence. 
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Chapter 5: Students’ Errors and 

Misconceptions in Quadratic Equations  

1 Introduction  

Quadratic equations are one of the crucial topics, not only in secondary mathematics 

curriculum around the world but also in the historical development of algebra. The 

teaching and learning of quadratic equations are presented through factorization, the 

quadratic formula and completing the square by using representative procedures. 

Factorization method is the most chosen one by most learners. With this method, 

learners can solve the quadratic equations rapidly without paying attention to their 

structure and abstract meaning (Tendere & Mutambara, 2020; Makgakga, 2013). For 

many secondary school learners, solving quadratic equations is one of the most 

difficult topics in the curriculum (Tendere & Mutambara, 2020; Makgakga, 2013). It is 

significant to study the errors, misconceptions and challenges learners have so as to 

improve their performance in mathematics.  

According to Brodie (2014) it is important to identify mathematical problems and 

determine the areas of weaknesses students make as well as making an effort to explain 

why those errors are being made. In most cases teachers identify students’ errors but 

hardly analyse them (Luneta & Makonye, 2012). This will enable the teachers to 

identify the root cause of those errors and how best they can be modified in order to 

benefit both learners and teachers.  

Errors are not simply the result of lack of knowledge or lack of attention but are a 

result of weaknesses in understanding (Parent, 2015).Learners’ misconceptions about 

quadratic functions have also worried. Parent (2015) who observed that learners tend to 

think about isolated parts of the problem when solving quadratic problems and relied 

much on procedural strategies. Students prefer to work with the standard form rather 

than the vertex form when solving problems on quadratics and also preferred to 

algebraically solve a problem versus tabular or graphical strategies. According to 

Deep Science Publishing  
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Parent (2015) learners may not have a profound understanding of graphs. Learners’ 

errors and misconceptions and choice of strategies in solving quadratic equations will 

be examined and teaching strategies that will help them deal with the errors and the 

misconceptions can be developed by engaging on a study of learners’ misconceptions. 

Justification of which points to emphasize in teaching will be sought and this helps in 

future curriculum planning as suggested in similar studies by Parent (2015). Makonye 

& Nhlahla (2014) observed that errors and misconceptions in quadratic equations are 

due to inappropriate schema to solve problems as learners held on to simple equations 

schema. Their plan should be assimilated to solve quadratic equation. This chapter 

intends to answer the following questions: 

a) What are students’ errors and misconceptions in solving quadratic equations? 

b) What are the causes of students’ errors and misconceptions in solving quadratic 

equations? 

c) What framework can be developed to minimise errors and misconceptionsin solving 

quadratic equations? 

2 Theoretical framework 

The cultural environment and the state of society in which learners live all influence 

how knowledge is created. The idea of a plan was first proposed by Piaget, who said 

that it aids people in appreciating their surroundings. Assimilation is the process of 

absorbing new knowledge and incorporating it into the pre-existing strategy.  By 

nature, knowledge construction is more abstract and comes from solutions to issues 

that people generate sensibly rather than ones that are imposed upon them (Makonye 

2010). Learners' difficulties or misconceptions result from the learning process 

(Makonye, 2010). Peterson (2009) proposed the core concepts of constructivist 

education;  (a) The student actively creates knowledge rather than passively absorbing 

it from others. It is something that the student does, not something that is forced upon 

them. (b) Students have preconceived notions about sensations when they enter the 

learning environment. While some of these concepts are well-developed and firmly 

established, others are ad hoc and out of balance.  (c) Knowledge can be described in 

some depth and is characterized by the abstract creations of the brain. d) If students' 

preexisting ideas are to be altered or questioned, teaching must take them very 

seriously. (e) Although knowledge in one sense is individualized and personal, learners 

conceptualize their knowledge through their interactions with the physical world, as 

well as through working together in social settings and in a verbal and cultural context.  
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Vygotsky provided a psychological perspective on the connection between learning 

and development.He proposed what he called the Zone of Proximal Development 

(ZPD), which he described as the gap between what a person can accomplish on their 

own and what they are unable to accomplish even in the absence of a facilitator.In 

order to explain learning, the theory also incorporates the ideas of tools, indicators, 

mediators, and scaffolding.Vygotsky (1978) asserts that mediators might take the 

shape of a parent, teacher, or learner's experienced person.Mediators employ resources 

like teaching and learning languages or scaffolding symbols.In order to introduce 

successful learning, scaffolding is the process of supporting and releasing the social 

aspect of participatory teaching and learning that occurs inside the Zone of Proximal 

Development (ZPD).A facilitator must take a student from the exterior ring in the 

diagram above to the outermost ring in order for them to develop knowledge(Lea & 

Nicoll, 2013).A degree of uncertainty may be represented by the ring that sits between 

the innermost and outermost rings (Brodie, 2010).A student in this stage is caught in a 

misunderstanding, yet in order to advance to the next stage of development while 

remaining in the Zone of Proximal Development (ZPD), they require a facilitator or 

someone with greater expertise.The interaction between students and mathematical 

activities is where learning initially takes place, and then proceed to higher learning 

levels. 

3 Mathematical Errors and Misconceptions  

The presence of misconceptions and errorsin learners’ early learning makes it difficult 

for them to manage future demands of mathematics, hence affect their performance in 

tests or assessment tasks(Tendere & Mutambara, 2020). It is therefore important for 

teachers need to be ‘made’ aware of how suchmisconceptions and errors come about 

and therefore device pedagogical ways of dealing with them. There is a need to 

develop problem-solving skills so as to be able to deal with misconceptions and errors 

from learners’ daily class activities Berger (2010). Misconceptions and errors are 

methods for constructing knowledge that must not be eliminated, but rather be 

capitalised on and used as ‘facilitators for inquiry’ (Makonye, 2011). From the 

constructivism view students are not passive receivers of forced facts and 

information/opinions, but are active participants in the construction of their own 

knowledge (Clark, 2012). As students participate actively they acquire new knowledge 

and hence, misconceptions are likely to come from such processes as by-products and 

errors which are determined and strong to change.  

It becomes difficult for teachers to unlearn what the wrong mathematical conceptions 

(Brodie & Berger, 2010). The thinking abilities of learners’ can be recognised from the 

mathematical conversations they are involved in. From such conversations teachers can 
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pick up misconceptions and errorsand use them to facilitate the learners’ process of 

constructing knowledge (Brodie, 2012). Hearing and listening are also crucial in 

mathematics teaching and learning process as part of the teacher’s role.  

According to Makonye (2016) the accuracy of changed knowledge is negotiated by 

possible uncertainty and different interpretations by diverse people. This happens when 

information is received by active humans, it gets inferred and enhanced, or rather 

supplemented, which result with a newly constructed knowledge (Makonye, 2016). 

The process of enrichment leads to reorganizing and reconstruction of knowledge. 

When a human being increases more insight in a specific concept this process of 

enrichment leads to reorganization and reconstruction of knowledge.However, it is 

unfortunate that to a certain level, what is received does not always remain the same. 

Such processes of knowledge construction and restructuring are likely to result in 

misconceptions which lead to making errors. Errors are defined as the systemic wrong 

answers which come from underlying theoretical structures (Zakaria& Maat, 2010)  

According to Makonye and Matuku (2016) a schema is knowledge planned into 

structures which are large units of reliable concepts. Makonye (2013) defined a 

perception image as a cognitive portion of ideas that learners form in their minds 

regardingall aspects of precise concepts which are similar to schema (Makonye, 2013). 

Whilst the APOS theory suggest that misconceptions and errorsare as a result of  failed 

attempt to adjust or accommodate new ideas, this theory of concept imaging and 

definition suggest that misconceptions and errorsare as a result of concept images 

developed by a learners being in conflict with what is believed in and recognized by a 

wider mathematical community. Likewise, a concept definition which is prone to be in 

conflict cognitively with a different concept definition is a potential conflict factor and 

might result in misconceptions.  

4 Categories of errors and misconceptions  

There are various categories of misconceptions and errors in mathematics education 

(Luneta & Makonye, 2010).  

Random errors 

Luneta & Makonye (2010) refer to random errors as lapses or unplanned mistakes. 

Such misconceptions and errorsdo not have any noticeable or cognitive mathematical 

reference.  

Generalisation 
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Mathematics learning involves some form of generalisation (Luneta & Makonye 

2010), it so happens that learners over-generalise. Over-generalisation happens in at 

least two ways and these would be over numbers and over operations. Generalisation 

over number (and number properties) is viewed as the deep level technique from the 

two levels which guide cognitive operative (Makonye, 2012). An example of this form 

of over-generalisation could come from a situation whereby learners are asked to find a 

solution to an equation of the form x× y= 0. Definitely with this form of an equation it 

does allow for one to continue by saying x = 0 or y = 0, due to a property of a zero as 

different to that of any other number. The facts that a quadratic equation which 

factories to (y− 3) (y+ 5) = 0 would produce two linear equations y − 3 = 0 and y + 5 = 

0 may be generalised over to a state whereby the right hand side of the equation is not a 

zero. Learners may assume that because the above is true and mathematically 

reasonable, another equation which may look as (y − 1) (y + 4) = 6 for example should 

equally work out to y − 1 = 6 or y +4 = 6 inaccurately resulting with y= 7 or y = 2. This 

is an example of generalisation which disrespects the difference in properties of 

numbers. 

Generalisation over operations 

It may be seen at a step when a negative number is presented. For example with a 

correct statement (+5) + (+3) = (+8), which tolerates no changed answer to (+3) + (+5) 

due to addition taking a commutative property, a learner may incorrectly consider that 

(+8) − (+5) = (+5) (+8). This would be captivating the commutative property of the 

adding operation and over-generalising it to the subtraction operation which may also 

apply by considering the subtraction operation before the 5 as removed from the 

number. The error is as a result of the comfort learners derive when writing a positive 

number with no plus sign in front of it. Learners have a habit of allocating the same 

resolution to the process of working with negative numbers, in which it put on a little 

different, therefore (+8 − (+5) is erroneously taken as calculating (+ 5) − (+8). 

Interference  

According to Luneta and Makonye (2013) errors and misconceptions are difficult to 

remove due to the existence of knowledge learnt at an earlier stage. When new 

knowledge is introduced, it has to be attuned into the present plan. For example, 

learners may take 3² which is equal to 3 × 3 which is equal to 9, and rewrite it as 3 × 2 

= 6 due to the frustration which may come from interference.  

Ignorance of rule restriction 

Taking rules which were appropriate in one domain and force them into another 

domain result in ignorance of the restriction. An example of this may be found from 

ordering of decimals (Brodie, 2011). The knowledge that the more the digits in a 



80 
 

number, the bigger the number is a conception in the whole number domain, but a 

misconception in a fractional domain, and produces an error that: 0,245 > 0,5.  

Incomplete application of rule 

This would be seen from where a learner applies a rule correctly, and then not be able 

to proceed to the next stage of the solution.   

5.Results 

The details of the errors made by the learners classified according to their type are 

shown in the table 5.1.   

Table 5.1 Test results for 20 participants. 

Question number Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

Number of learners passed 15 12 7 10 10 13 11 9 14 12 

Percentage % pass rate  75 60 35 50 50 65 55 45 70 60 

Generalisation over 

operations 

2 5 2 10 5 3 1 0 0 4 

Generalisation over 

numbers  

9 3 9 3 6 8 4 7 5 10 

Random errors 0 0 6 0 9 2 0 1 3 2 

Ignorance of rule 

restriction 

0 0 8 4 0 5 6 0 7 0 

Interference  0 0 0 0 0 0 3 9 5 0 

 

Question 1 was based on factorised equations and was equated to zero. Table 5.1 

indicates that they are a total of 2 generalisations over operations and 9 generalisation 

over numbers that were made by the learners made. The common type of errors made 

by learners was generalisation over numbers and followed by generalisation over 

operations. The example of the learner’s respond above is that the learner failed to 

realise that the equation is given in factors form, instead the learner multiplied out the 

brackets correctly which was unnecessary and even crosses x² the equal sign and then 

divide both side by x. 15% of the learners failed to answer the question and 85% of the 

learners have master the concept, a few learners failed to come up with the values of 

the unknown. There was very high performance of learners on this question and it 

shows that the learners master the concept of this question very well.  

Question 2 was also based on factorised equations and was equated to zero. Table 1 

above indicates that they are a total of 3 generalisation over numbers followed by 5 

generalisation over operations which was made by the learners. The learners have 40% 
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of the errors whereby few of them failed to find the values of the unknown and 60% of 

the learners were able to solve the equation. The learners’ performance in question 2 

indicates that they have mastered the concept of this question very well and the 

performance was high. 

Question 3 was based on factorised equations and was equated to 6. Table 1 indicates 

that they are a total of 2 generalisation over operations, 9 generalisation over numbers, 

6 random errors and 8 ignorance of rule restrictions made by learners. 65 % of the 

learners have made errors and only 35% passed the test, this question consequently 

revealed that learners experience problems in solving quadratic equation. There was 

low performance of learners on this question and it shows a lack of concept mastering.  

Question 4 above was based on the equation which was not factorised and 50% of the 

learners failed the question and have made errors when dealing with operations on 

directed numbers and 50% passed this question. Table 5.1 shows that there are total of 

10 generalisation over operations, 3 generalisation over numbers and 4 ignorance of 

rule restrictions. The most common type of error made by learners were generalisation 

over operations, ignorance of rule restrictions and the least were generalisation over 

numbers.   

Question 5 was based on the equation which was not factorised and 50% of learners 

made errors. There are a total of 5 generalisation over operations, 6 generalisation over 

numbers and lastly 9 random errors (see table 5.1). the common type of errors made by 

learners were random errors followed by generalisation over numbers and lastly 

generalisation over operations. Random errors were also made in solving quadratic 

equations (see table 5.1). 

Question 6 was based on the equation which was factorised with a power of 2 and 

equated to zero. The table 5.1 shows that there are a total of 3 generalisation over 

operations, 8 generalisation over numbers, 2 random errors and 5 ignorance of rule 

restrictions. The most common type of errors made by learners were random errors 

followed by generalisation over numbers, ignorance of rule restrictions, generalisation 

over operations and lastly random errors. 60% of learners failed to solve the quadratic 

equations which are equated to any number which is not zero 40% passed. The learners 

have low performance in this question. Learners did not master the concept of this 

question very well. Solving this question was based on the reasoning that if 𝑎 and 𝑏 =

 0 then either 𝑎 or 𝑏 is0, or both 𝑎and𝑏 are equal to zero. 

Question 7 was based on the equation which was not factorised and equated to 16.  

There are a total of 1 generalisation over operations, 4 generalisation over numbers, 6 

ignorance of rule restrictions and lastly 3 interference (see table 5.1). Most type of 

errors made by learners was ignorance of rule restrictions followed by generalisation 
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over numbers, interference, and lastly generalisation over operations. 45% of learners 

failed to solve the equation. The learners performed low in this question.  

Question 8 was based on the equation which was not factorised and equated to zero.  

The table 5.1 shows that there are a total of 9 interference, 7 generalisation over 

numbers and 1 random error.  Most type of errors made by learners were interference 

followed by generalisation over numbers and lastly random errors. 65% of them were 

failing to find the difference of two squares and 35 % of the learners passed the 

question 8. The learners have low performance in this question. Learners did not 

master the concept of this question very well. Solving this question was based on the 

reasoning that if 𝑎and𝑏 =  0 then either 𝑎 or 𝑏is 0, or both 𝑎and𝑏 are equal to zero. 

This indicates to the fact that the students may not have used the algebraic methods or 

they may have difficulties in applying algebraic methods to solve equation. 

Question 9 was based on the equation which was not factorised and equated to 16. The 

table 5.1 shows that there are a total of 7 ignorance of rule restrictions, 5 generalisation 

over numbers, 5 interference and 3 random error.  Most type of errors made by 

learner’s ignorance of rule restrictions followed by generalisation over numbers, 

interference and lastly random errors. 65% of learners have errors in solving this 

quadratic equation and 35% passed question.  The learners have low performance in 

this question. Learners did not master the concept of this question very well. Solving 

this question was based on the reasoning that if 𝑎 and 𝑏 =  0 then either 𝑎 or 𝑏 is0, or 

both𝑎and𝑏 are equal to zero. 

Question 10 was based on the concept of word problems. The table 5.1 shows that 

there are a total of 4 generalisation over operations, 10 generalisation over numbers, 2 

random errors. Most type of errors made by learners were generalisation over numbers 

followed by generalisation over operations and lastly random errors. The learners were  

 

required to solve and understand the word problems applying the skills they had learnt 

in class. 60% of the learners failed to solve word problems and 35% of them were able 

to solve question 8. There was a very low performance in learners in this question.  

Generalisation over numbers 

Twelve learners made generalisation over numbers error in question 1 and 9. Learners 

also made the same error in question 3. The researcher interviewed the learners 

according to their answers. Figure 5.1 and figure 5.2 are a case of Generalisation over 

numbers for Loo and Fifi respectively. 
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Fig 5.1: Fifi’ answer                              Fig 5. 2: Loo’s answer 

 

Figure 5.1 Fifi's case  

Interviewer: why did you remove the brackets? 

Fifi: because we learnt that if we have a bracket, we should remove bracket by 

multiplying it with the algebraic term outside the bracket. 

Interviewer: Oooh, Okay so why did you divide with𝑥 both sides? 

Fifi:  So that it should be left with the subject of the formula 𝑥 and a value which says 

𝑥 =  3. 

Interviewer: okay. 

In the analysis of the interview above Fifi did not understand the difference between 𝑥² 

and 𝑥 the learner also did not master the concept of zero product. The rule applies in 

the case whereby the one side of the equation is equated to 0, for example (3 + 𝑥)  = 0 

and𝑥 = 0. Then the rule would apply. This was supported by constructivism view of 

learning and knowledge formation, which must viewed as a normal process of learning 

as it enables the construction of new knowledge (Makonye, 2013).  

 

Another error I picked up on Loo’s solution in figure 5. 2 above. In his response the 

learner justified the solution as follows: 

Loo’s case  

Interviewer: Why do you equate to zero?   

Loo’s respond: Because the quadratic formula is equated to zero. 

In the analysis of the interview above the learners knows that the quadratic formula is 

equated to zero and it clearly indicates that the learners were in a position to know how 

to find the area of the rectangle by multiplying (𝑥 − 1)and(𝑥 + 4). The product of 
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(𝑥 − 1) and (𝑥 + 4) was then equated to zero instead of the given area 6cm². The 

interview data showed that formulating a quadratic equation was quite challenging. 

The misunderstanding of the teacher's instruction on equalization of zero and given 

area appears to be the cause of this error. The constructivist perspective was that the 

mistakes made by students are characterized by their inability to translate word 

problems into equations, lack of comprehension, and basic skills that should have been 

learned in lower grades. Brodie & Berger (2010) reported that teachers struggle to 

convince students that their knowledge is not accurate mathematical concepts. The 

cognitive abilities of learners can be identified through their participation in 

mathematical discussions.  

 

Generalisation over operations  

Ten learners made this error and the researcher interviewed the learners according to  

their answers. Figure 5.3 and 5.4 are a case of generalisation over operations for Bongi 

and Tawa respectively.  

     

Figure 5.3: Bongi                                                   Fig   5.4: Tawa 

The researcher obtained the following responses from the carried interviews. 

Bongi’s case in Figure 5. 3   

Interviewer: why did you put a+18𝑥? 

Bongi: when we were given like signs we just add the numbers such as +9𝑥 + 9𝑥. 

 Interviewer: okay so you mean when we add  +9𝑥 + 9𝑥 and−9𝑥 − 9𝑥, do we get the 

same answer? 

Bongi: Oh sorry ma’am, when we have sum of algebraic terms which have like signs 

we add the algebraic terms and take the common sign so it becomes−18𝑥. 

 

Another error I picked up on Tawa’s solution in figure 5.4 above. In his response the 

learner justified the solution as follows: 

 

Case of Tawa 

Interviewer:  Tawa, look at the last stage of your solution. 

Tawa:  Okay ma'am. 
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Interviewer:  As you can see, other stages are correct. What happened to the last stage? 

Tawa: I subtract x² - 2x² and i got x² 

Interviewer:  can we subtract 2 items from 1 item. 

Tawa: No ma'am. 

Interviewer: okay so how come you subtract x² from 2x² and got x². 

Tawa: I don’t know the solution ma’am. 

During the interview analysis, Bongi proposed simplifying problems by using like 

signs on directed numbers and failed to follow the correct rule. Due to the existence of 

similar signs, Bongi must add numerals and choose from the ones outlined. The 

incorrect answer by Tawa, indicates his lack of knowledge about operations. He should 

have chosen to subtract the largest number from its smaller one and then signify the 

larger number. Makonye (2012) posited that the absence of abstract knowledge and the 

inability to link new information with old information are the reasons for such errors. 

This is supported by this theory. During the combination of numbers, students do not 

manipulate the plus or minus signs in front of them. It was observed by the researcher 

that learners should slow down when writing and increase their practice to prevent 

panicking during exams. Random errors  

Nine learners made this error and the researcher interviewed the learners according to 

their figures. For example, figure 5.5 and 5.6 are a case of random errors for Talia and 

Fay respectively. 

 
 

  Fig5. 5: Talia                                                             Fig 5. 6: Fay      

Case of Talia fig 5.5 

Interviewer: Please can you read question in your answer sheet. 

Talia: I am done ma’am 

Interviewer: okay. Why did you choose +2 and +1 as your factors? 
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Talia:  Because their product gives +2 

In the analysis from the above interview, Talia has an idea that the product of the first 

and last term is +2 and however, an incorrect method was used to solve the quadratic 

equation. Hence, the researcher advised the learner to take note of the sum of two 

factors so as to match the middle term of the quadratic equation.  The constructivist 

theory of learning suggest that learners come to a new grade not as empty vessels but 

they come with some pre-knowledge developed in the previous grades and this 

knowledge was used to adjust and get used to incoming mathematical concepts 

(Zakaria & Maat, 2010  ).   

Talia’s view 

Talia said that ‘i did not understand this topic very well so I will talk to my friends so 

that we form a group and help each other’.  

Another error I picked up on Fay’s solution in figure 6 above. In her response the 

learner justified the solution as follows: 

Case of Fay fig 5.6 

 

Interviewer: Read the question in your answer sheet and tell me how you solve it. 

Fay: I dont know how to work this question so I was just trying. 

Interviwer: Okay. 

In the analysis of the interview above Fay has no idea on solving quadratic equations. 

As per the constructivist viewpoint, knowledge cannot be transferred from one person 

to another, but rather is constructed by an individual who actively participates in the 

process (Brodie 2010). Learning can be directly involved in the process of constructing 

knowledge, by making learners aware of their own mistakes. In order to effectively 

teach and learn these concepts, it is essential to adopt a student-centered approach.  

 

Ignorance of rule restrictions 

Seven learners made this error and the researcher interviewed one of the learners. For 

example, figure 5.7 and 5.8 are a case of ignorance of rule restrictions for Thandie and 

Manex respectively. 



87 
 

   

Fig 5.7:Thandie                                        Fig 5. 8: Manex 

 

The researcher obtained the following responses from the carried interview. 

Case of Manex figure 5.7 

Interviewer: Manex, please let’s have a look at line four. 

Manex:  Okay ma’am 

Interviewer: How did you get 3𝑥2? 

Manex:I added 2𝑥2 + 𝑥 

Interviewer:Okay. Is it possible to mix cows and hyenas in one place? 

Manex: No ma’am, it’s impossible. 

Interviewer: Okay good boy, so we cannot add 2𝑥² and𝑥 also. 

Manex: why ma’am? 

Interviewer: because they are unlike terms. 

In the analysis of the interview above Manex has no idea of unlike terms, he expands 

the equation correctly and then failed to simplify algebraic terms with unlike terms. 

Peterson (2010) noted that even though knowledge in one sense is personal and 

individual, the learners’ understand concepts through their associations with the 

physical world, collaboratively in societal situations and in cultural and oral 

environment. This needs to be improved by attaining knowledge of quadratic rules. 

 

Another error I picked up on Thandie’s solution in figure 5.8 above. In her response 

the learner justified the solution as follows: 

Case of Thandie figure 5. 8 

Interviewer: Please read the question. 

Thandie:  I am done. 

Interviewer: look at line three. Where did you get 𝑥 +  𝑥from? 

Thandiwe: because we have x² so my teacher said if we have a letter with a power 

squared on top it means we have two letters, so that’s why I add𝑥 and 𝑥. 

Interviewer: Okay. So if you add 𝑥 + 𝑥 you get 2𝑥 
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Thandie: Yes ma’am. 

Interviewer: look at the last line. Where did you get  𝑥 − 3𝑥 𝑜𝑟 𝑥 + 3𝑥 from? 

Thandiwe: I don’t know ma’am. 

In the analysis of the interview above Thandie had no idea of solving the quadratic 

equations using the zero product so the learner tried to ignore 𝑥²and going down with 

the solution, the learner indeed continued working out the sum  and  just put 𝑥 − 3𝑥 

and 𝑥 + 3𝑥. The new knowledge is occasionally in conflict with what already present 

in an individual’s mind (Brodie, 2012). More practice is needed by Thandie so that she 

grasp the concepts of quadratic equations and also remedial is needed. 

Interference 

Fourteen learners made this error and the researcher interviewed one of the learners. 

For example, figure 5.9 and figure 5.10 are case of Interference for Betty and Leo 

respectively. 

      

Figure 5.9: betty     Figure 5.10: leo 

 

 

Betty’s case figure 5. 9 

Interviewer: Can you please go to question 8 .Read the question and the solution that 

you provided for that question. 

Betty: I am through.  

Interviewer: Explain to me how you came up with the answer 2. 

Betty:  I add  4 both sides and divide with 2 to get +2 

Interviewer: are you saying m² is the same as 2m.  

Betty: Yes ma’am. 

In the examination of this response from the learner, it is evident that the squaring 

concept was not well-defined. The answer she provided was a result of chance rather 

than the usual mathematical procedures. One of the mistakes made according to by 
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Leslie & Nicoll (2013) was that learners often pursue an incorrect idea and present it as 

though it were correct out of desperation.  

In the figure 10 above, I discovered a mistake in Leo's solution. In his response the 

learner justified the solution.  

Leo’s case figure 5.10 

Interviewer:  Leo, let’s talk about your solution to figure 10.  Please have a look at it.  

 Leo: Okay ma’am. 

Interviewer: Okay, what happened to the equal sign? 

 Leo: Where ma’am?  

Interviewer: On line two. Oh, and line three. The equal sign seems to have disappeared 

there.  

Leo:Uhm…It was a mistake ma’am.  

Interviewer: Okay. Can you tell me what mistake it was? 

Leo: I expand (𝑥 + 2)² and forgot to write the equal sign. 

Interviewer: okay.  

In the analysis of the interview above the learner just forgot to put an equal sign. 

Makonye (2013) supported that learners mistakes might be because of environment or 

personal issues. 

Causes Of Errors In Solving Quadratic Equation 

Teachers were asked by the researcher on factors causing errors in solving quadratic 

equations. T1 stated that “the use of English language in the learning of mathematics is 

a major cause of errors and this was proved by the majority of learners understanding 

Shona language than foreign language”.  According to Brodie (2012), students' lack of 

proficiency in the English language, which is primarily used during teaching, 

constitutes a significant error. This view is supported by other studies. Consequently, 

the epistemic access of quadratic equation knowledge was compromised for learners 

who had to convert their language of teaching and learning to English in order to 

obtain mathematic epistemic access. Mathematics is a language in its own right 

(Zakaria& Maat, 2010). Learning mathematics required overcoming both English and 

mathematical barriers. Both languages were problematic for learners. The importance 

of language in the process of learning was highlighted by Zakaria and Maat (2010).  

T 2 stated that “learners usually make errors in learning quadratic equations because 

it is inside them, most learners usually make mistakes and as such they cannot fully 

complete a test without making a mistake”. As a result, it is evident from the statement 

above that some students have adapted to making mistakes.  
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The statement made by Makgakga (2013) is that errors are habitual and require a 

profound solution. The interviews that were conducted with learners after they 

completed a quadratic equations test demonstrated this.' According to Makgakga 

(2013), learners' errors occur frequently and with great frequency. According to 

Makgakga (2013), it is important for teachers and learners to discuss errors during 

teaching and learning so that they can identify areas where they may be eliminated. T3 

suggests that “signs especially when the brackets come one differently after 

factorisation”.Some researchers suggest that errors arise from prior knowledge as 

learners attempt to construct mathematical knowledge meanings (Luneta & Makonye, 

2012). Learning difficulties arise when attempting to make mathematical sense. The 

excessive intervention of the learners, other learners and their teachers, as well as the 

surrounding environment, leads to confusion. 

On the other hand, learner’s errors were attributed to lack of arithmetic skills. Learners 

seemed to lack good arithmetic skills.  Learners committed errors because of poor 

arithmetic background. This is supported by Makonye (2011), who also specified that 

poor arithmetic skills contribute to errors. They are other factors which include 

unavailability of teaching resources such as textbooks, teaching method used, the 

school environment and attitude towards mathematics. One of the teacher remarked,” 

Learners are failing to cope the concept of quadratic equations because they lack 

practice” (T4). Lack of practice was discovered also as a factor of errors especially at 

home which are not also mounted on the boy child. A lack of understanding of the 

concepts such as directed numbers, operation of numbers was also noted.. 

T3 claimed that” the learners should be of mixed abilities that are also the factor of 

errors made by learners”.  Students are better classified into different classes when it 

comes to the incidence of errors. Assessing students in accordance with their teachers' 

perceptions of competence is the most significant labelling, which impacts both 

performance and errors. Students in a substandard class tend to perform worse than 

those who are identified as gifted. Classes must have mixed ability, so that weaker 

learners can interact with fast learners and gain support from other classmates. 

T4 said that “learners are just reading questions without understanding them”. 

According to the researcher, learners must read questions slowly and practice more 

frequently to prevent panic during tests. Those who were converting equations into 

quadratic expressions were particularly affected by this, as they were only able to 

factorize and not derive their roots. It was suggested by Mbewe (2011) that students 

who exclusively used factorization and relied on the quadratic formula may have 

developed a negative bias towards the factorizing method, leading them to study it 

instead. Other factors may contribute to the wrong method's use, as they are not 

identified as appropriate. The lack of comprehension of directed numbers among 

students may be the cause of the switchover between indicators.L2 said that “quadratic 
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expressions and factorisation are my problems; I did not master these topics because 

our teacher did not explain clearly about these topics. The learners did not master 

these topics because their teachers are not explaining very well to them. T5 suggested 

that ‘I think teachers are not sequencing and selecting topics very well’ 

 Strategies of minimising errors 

The respondents were asked to make suggestions on how errors the students made 

could be reduced or eliminated. T2 suggests that “encourage able students to share 

their computation strategies with the whole class”.  

T1 “there is need to apply different teaching methods to enhance learners 

understanding and to improve learner’s motivation with respects to mathematics since 

most learners develop negative interest in mathematics,” the teacher suggested that 

teachers should use group work as the most effective teaching methods. This suggests 

that the teaching approach or method used by teacher has a great effect on improvising 

or motivating the learners to perform better or to develop a positive attitude towards 

the subject. This agrees with Makonye and Matuku (2016) who stated that problem 

solving using ill-structured problems and group discussions motivates students and 

encourages understanding the epistemology of the discipline.  

 

T3 was of the view that learners should develop critical thinking, the teacher stated 

that, “learners should be given the opportunity to reason and solve problems without 

the help of teachers, and thus primary education should lay the foundation in relation 

to solving quadratic equations”. This clearly shows that, the teacher has a great impact 

on student’s attitude towards mathematics and also considerably affect student`s 

performance in the subject area. Therefore, attitude towards mathematics denotes 

interest or feeling. It is the students’ character towards like ‘or dislike ‘in maths.  

 

Other teachers were of the view that, there is need to have experienced teachers 

particularly in the epistemological errors to enhance learner’s performance in the 

subject.  Experience has a positive impact on the learner's performance (Didis & Erbas, 

2015). Therefore, teachers with applicable experience are able to adapt their learning in 

respect of the learner's challenges. However, this kind of experience would have been 

excellent if the curriculum had stayed the same during all their years of teaching 

experience. T5 mentioned that, “learners lack mastery of directed numbers and also 

use of wrong rules or strategies”. This clearly shows that these factors result in 

learners not being mathematically skilful to solve the quadratic equations. This is 

supported by the amount of different types of errors displayed on their scripts. 

 



92 
 

All teachers disputed the use of calculators in solving mathematical problems at form 

one level since this affect the learners thinking capacity and will negatively affect 

understanding of quadratic equations for example, T4 mentioned that,” when a learner 

continues to use electronic devices to calculate simple mathematical problems, he or 

she will damage his or her mind and this will even affect such learners in the future”. 

Furthermore, since the learners had no understanding, they had no idea of how to check 

whether their answers were right or wrong if, for example, they may punch the buttons 

wrongly. Use of calculators must be deferred until learners have developed relational 

understanding of quadratic equations, although they can still be used intelligently in an 

examining sense. Therefore, knowledge on quadratic equations is gained over a long 

period of time. 

L1 suggests that “the teacher should teach us directed numbers and quadratic 

expression because we did not master these topics very well”. Critical topics that have 

a bearing on the generation of errors when quadratic equations should be thoroughly 

and deeply looked at before quadratic equations are covered. This would minimize the 

guess work that Didis and Erbas (2015) highlighted as one cause of the errors. Their 

sequencing and the content to be included in each topic needs to be carefully done so 

as to enhance the performance of learners.They stated that the textbook should be 

provided for teachers and learners. One of the learners said that” the school should 

provide more text books for us so that each one of us will have his or her book”. (L3).  

Constructivism theory supported that misconceptions must be exploited by a teacher as 

opportunities to enhance learning and knowledge construction. . 

T5 claims that ‘teachers should always analyse learners work’ and it is supported by 

Makonye and Khanyile (2015) who reported that the only way teachers can access 

their learners’ thinking is through error analysis. 

6 Constructivist Remediation and Progression framework for error and 

misconception identification 

The Constructivist Remediation and Progression framework (see fig 5.11) is based on 

the findings.The purpose of this framework is to facilitate the detection, examination, 

and correction of learner errors pertaining to the generalization over numbers in 

quadratic equation solutions. These mistakes usually occur when students misuse 

algebraic rules, including using the zero-product property in the wrong situations. For 

example, students may incorrectly equate each element to 6 by extrapolating the proper 

method for calculating an equation such as (x−3)(x+5)=0 and (x−3)(x+5)=0 to a 

problem such as (x−1)(x+4)=6 and (x−1)(x+4)=6. These misunderstandings show a 

lack of knowledge about the application of particular rules or features. 
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Fig 5.11 Constructivist Remediation and Progression framework 

The diagnostic stage, the first part of the architecture, seeks to determine and 

categorize the particular kind of mistake the learner is making. To determine if students 

comprehend the circumstance in which the zero-product property is applicable, that is, 

when one side of the equation equals zero teachers should employ a combination of 

written diagnostic tests and oral interviews. This offers vital information on the 

conceptual framework of the learner 

The interpretative stageuses constructivist ideas to identify the error's causes. 

According to this viewpoint, students expand on what they already know, which can 

occasionally result in overgeneralization. These mistakes should be viewed as a normal 

part of the process of creating knowledge rather than as failures. The persistence of 

these mistakes could be a sign that the student is struggling with the application and 

timing of particular rules and is in a transitional stage of conceptual growth. Teachers 

are urged to acknowledge that a key factor in deeper learning is cognitive conflict, 

which occurs when students realize that their present thinking is not producing the 

right answers. 

The focused educational interventions are the main emphasis of the remediation stage. 

These ought to contrast legitimate and illegitimate uses of the zero-product rule using a 

variety of representations. Teachers could, for instance, use an area model to visually 
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illustrate the meaning of (x−1)(x+4)=6; (x−1)(x+4)=6 and contrast it with 

(x−1)(x+4)=0; (x−1)(x+4)=0. Incorporating error analysis exercises into the classroom, 

where students review and fix flawed solutions, can also assist students in 

understanding the reasons behind the failure of particular tactics. Additionally, learners 

should be moved from simple circumstances (like RHS = 0) to more difficult contexts 

(like RHS = a non-zero constant) using scaffolding. In order to guarantee conceptual 

clarity, teachers should incorporate multilingual instruction for students who are more 

proficient in their native tongue, such as Shona.  

The reconstructive stage, the fourth element, is where students reassemble accurate 

mathematical knowledge. This can be accomplished through guided discovery 

learning, in which students are not taught mathematical rules but are instead guided to 

rediscover them. Instructors ought to urge students to describe the circumstances and 

reasons behind the zero-product property's operation. Students may also maintain 

reflective notebooks in which they record their thought processes and consider when 

particular practices are appropriate or inappropriate. It is easier to consolidate precise 

generalizations with arithmetic operations (e.g., knowing that only 3×0 = 0, not 3×2 = 

0) and algebraic principles are explicitly connected. 

The progression stage is intended to assist students in advancing after they have 

attained conceptual comprehension. This entails making use of Vygotsky's Zone of 

Proximal Development (ZPD) by establishing chances for teacher scaffolding and peer 

tutoring. To enhance comprehension, practice problems should have a variety of 

formats, such as situations in which the equation is not set to zero and in which the 

right-hand side has an additional expression. To help students understand the 

importance and significance of the mathematics they are studying, teachers should also 

relate algebraic ideas to practical applications, such as modeling area or motion with 

quadratic equations. Through this process, students are more likely to build a strong 

mental schema and are less likely to rely on processes they have memorized. 

The Constructivist Remediation and Progression Framework helps students transition 

from overgeneralization to precise algebraic principle application. It accomplishes this 

by identifying misunderstandings, analyzing them from a constructivist perspective, 

addressing them with focused tactics, reassembling accurate information, and 

promoting advancement with supervised assistance. This approach, which is based on 

both constructivist and APOS theories, acknowledges that mistakes like 

overgeneralizing about numbers are developmental stages that, with the correct 

pedagogical assistance, can be converted into long-lasting mathematical 

comprehension. 
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Conclusion 

With an emphasis on the most prevalent error types found through diagnostic tests and 

interview data, this chapter has examined the nature, causes, and consequences of 

learners' mistakes and misconceptions when solving quadratic equations. According to 

the analysis, a large number of these errors are caused by the overgeneralization of 

mathematical rules, specifically the misuse of the zero-product property; a lack of 

knowledge about operational properties; haphazard procedural errors; a lack of 

awareness of the limitations of algebraic rules; and interference from preconceived 

notions. These results highlight how crucial it is to view learner errors as significant 

markers of underlying cognitive structures and developmental phases rather than just 

as failures. 

The conversation, which was based on constructivist and APOS learning theories, 

emphasized that students do not come into class with a clean slate; rather, they bring 

pre-existing knowledge and intuitive understandings that could be at odds with formal 

mathematical notions. These assumptions frequently lead to the development of flawed 

but internally coherent approaches to problem-solving. Language hurdles, a lack of 

basic mathematics knowledge, a lack of practice, and an inefficient way of organizing 

the curriculum's content were also found to be major contributors to these mistakes. 

With an emphasis on the most prevalent error types found through diagnostic tests and 

interview data, this chapter has examined the nature, causes, and consequences of 

learners' mistakes and misconceptions when solving quadratic equations. According to 

the analysis, a large number of these errors are caused by the overgeneralization of 

mathematical rules, specifically the misuse of the zero-product property; a lack of 

knowledge about operational properties; haphazard procedural errors; a lack of 

awareness of the limitations of algebraic rules; and interference from preconceived 

notions. These results highlight how crucial it is to view learner errors as significant 

markers of underlying cognitive structures and developmental phases rather than just 

as failures. 

In order to help instructors identify, evaluate, and correct student faults, the chapter 

suggested the Constructivist Remediation and Progression Framework (CRPF). Within 

the learner's Zone of Proximal Development, this paradigm promotes a learner-

centered, developmentally appropriate, and conceptually based approach to 

mathematics instruction that places a strong emphasis on reasoning, reflection, and 

scaffolding. 

The results of this study urge a change in instructional strategies toward approaches 

that utilize mistakes as a foundation for developing deeper understanding rather than 

just fixing them. Instructors are urged to use a variety of approaches when tackling 

quadratic equations, encourage students to discuss misconceptions in the classroom, 
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and create a safe space for them to make and examine mistakes. Meaningful and 

lasting mathematical understanding can only be attained through such reflective and 

responsive instruction. 
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