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Chapter 8: Predictive analytics for 

market volatility, trading algorithms, 

and liquidity risk management                              

8.1. Introduction to Predictive Analytics 

Predictive analytics can be defined as a fact-based decision-making process to gain 

insights about expected future events and decision outputs. It involves building statistical 

models using data and implementing simulations and scenarios to predict outcome 

probabilities. It is one of the three perspectives of business analytics, the other two being 

performance or descriptive analytics and exploratory or prescriptive analytics (Zhang et 

al., 2005; Foucault et al., 2013). Predictive analytics basically answers the questions: 

What is likely to happen? What can be the reasonable outcomes for a decision? What 

are the expected probabilities for all possible alternative outcomes? Why do I need to 

predict? 

The answer to the first question is easy. For any decision we make now, there will be 

consequences in the future. Many decisions in industries, such as financial services, 

insurance, healthcare and marketing depend on future events and their impact. For 

instance, to improve risk management, a loan officer might want to know the likelihood 

of default during the term of a loan before approving a loan application. To improve 

profitability on credit cards, a bank may want to know who is likely to use up their 

accumulated rewards points before expiration. For guiding capital allocation decisions, 

an insurance executive may want to know the expected claims for each insurance 

policyholder in next twelve months (Cont, 2001; Aldridge, 2013; Avramov et al., 2021). 

8.1.1. Overview of Predictive Analytics in Financial Markets 

This chapter deals with predictive analytics, which is the most discussed area in data 

science. We discover analytics in a broad and applied sense, which is motivated by the 
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need and the demand for practical solutions. We discuss predictive analytics in the 

context of financial markets, and focus on regression analysis, which tries to figure out 

the relationship between two or more variables. Data exploration and description are also 

discussed, as this is the first step to predictive analytics. Predictive analytics is proposing 

that a significant cause-and-effect relationship exists which can actually produce valid 

predictions. As markets are very noisy and any relationship only exists for a certain time, 

we show an application for change in variance and benchmark against common filters. 

Thus, for predictive analytics at the upper management level it is recommended to 

frequently re-explore descriptive analytics and conditionally switch between active 

predictors to tune our model. 

Predictive analytics is the ability to determine the likelihood of future outcomes based 

on historical data. Predictive analytics uses statistical techniques from data mining, 

machine learning and game theory to identify the likelihood of future outcomes based 

on historical data. Predictive analytics provides the business and business analyst 

functional user community. The success of an organization depends not only on 

analyzing what happened and why, but also on forecasting what will happen. Predictive 

analytics plays an important role in decision making and forecasting for their companies 

with better accuracy and confidence. Maintaining and training itself requires overheads 

and thus predictive analytics is mostly applied in areas with several time-series. 

Fig 8 . 1 : Predictive Analytics for Market Volatility and Trading Algorithms 
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8.2. Understanding Market Volatility 

Defining Market Volatility 

Most financial practitioners define volatility as simply the variation in the price of 

securities in financial markets like stocks and derivatives. This definition is very broad 

as it encompasses all variations in price, both large and small, and does not stipulate any 

time frame. Close inspection, however, reveals that in much of the literature which 

makes use of the term without further explanation particularly in finance, the authors are 

generally referring to the tendency of price returns around a series of heftier price moves 

over time, of varying time frames. Of course, the above definition is not strictly correct. 

The price process is influenced by not only jump and continuance behavior; it can also 

experience periods of minimal movement. During these periods the process will 

practically track a horizontal line. However, the above definition does fit the popular 

usage. It is also important to home in on the time period that we are concerned about 

when we consider the behavior of volatility. Much financial modeling and option pricing 

is based on volatility characteristics observed on very short times frames. 

The above definition of volatility draws attention to the word return. That is, absolute 

price movements in themselves do not constitute volatility. Only relative or percentage 

price movements actually entered in the definition do. One reason for drawing attention 

to this definition is that a number of analysts who are, quite rightly, baffled by the 

deficiencies of various price models attempt to model volatility behavior without 

recourse to the definition which relates it to return behavior. In general, one has to model 

the returns first - in particular, the correlation across time - before one can model 

volatility. Volatility is an input to derivative pricing formulae and risk measurement 

approaches. In that sense, volatility is just something to be predicted. However, the most 

common and well-accepted description of market dynamics is modeling the returns. 

8.2.1. Defining Market Volatility 

Market volatility refers to the degree of variation in the financial prices of an asset over 

time and represents an important characteristic of financial time series. A high volatility 

environment usually makes investors feel uncomfortable because the willingness to pay 

of sellers is usually lower than the willingness to pay of buyers for the price to fluctuate 

too much. Therefore, volatility has a major effect on the evaluation of many derivative 

financial products, such as options and futures. Some empirical studies indicate that the 

increase in volatility has an effect on the usefulness of volatility for the actual prediction 

of returns, the estimation of the risk premium, and the prediction of stock market returns 

at future time periods shows no improvement over using returns volatility estimation 

applied on data with a period shorter than or equal to one month, and the time series of 
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return volatility should be a prediction variable to obtain a superior forecast accuracy 

over several forecast horizons of the actual month-ahead returns in specific countries 

with developed stock markets. 

Although in practice volatility can be defined in many different ways, the most common 

methodology for this purpose is by means of the standard deviation of financial returns. 

Thus, it is possible to define volatility as the fluctuations over time of a given price 

variable price, or the volatility of the financial return if one considers in time the first-

differenced of a stochastic variable price that is assumed to follow a geometric random 

walk. Yet, the theoretical background of this type of estimation is not as solid as the one 

supporting the use of the average absolute or squared returns. The average squared return 

has become, for many years, the most common in academic and practitioner settings. 

8.2.2. Historical Perspectives on Volatility 

John Stuart Mill discussed in 1844 the idea of a return of events to a certain proportion 

bearing the relations of cause and effect relative to probable future events. W. S. Jevons 

applied this idea to the prices of commodities before 1800. Commenting on the statistical 

information contained in the early work of Pareto, Yule maintained that it enabled him 

to come to the surprising conclusion that, although the fluctuations were purely empirical 

laws, and therefore free from theoretical difficulties and reference to definite principles, 

it should be expected that future values of prices should display, in a certain measure, 

the same characteristics as historical values. Somewhat later, in 1873, the Swiss engineer 

Orest Chrevon stated that his harmonic analysis enables us to discover cycles even long 

before the data appeal to us as cyclical. More recently, Frisch, in 1932 and Yule in 1927 

attempted to show that economic and sociological phenomena vividly illustrate the 

properties of stationary stochastic processes. 

In the early 1960's, the consideration of the classical filtering theory stimulated 

considerable interest in the time-varying volatile systems by engineers and scientists. 

Indeed, it is a very natural conjecture that the variances are stochastic processes, the 

historic time span of the typical evidence being relatively short compared to the time 

span over which the variances are evolving, and the variances lacking the concept of a 

stationary distribution. Since, in the absence of a strong theoretical foundation which 

provides the framework within which we may test the presence of time-varying 

volatility, questions as to choice of confidence interval and of optimal Lag length for the 

construction of confidence intervals are important practical considerations in the 

application of the classical assumption of constant variance. Indeed, the design and use 

of a diagnostic test for constancy of variance assumes great importance. 
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8.3. The Role of Trading Algorithms 

In today’s financial markets, it is rare to find a trader executing his own operations, as 

individuals utilized to do in the past. Majority of trading in financial markets is nowadays 

conducted by machines and algorithms running on automated programs, shifting the 

focus of trading from the physical exchange floor to the electronic marketplace. By using 

advanced algorithms and relying almost entirely on the predictions produced by 

technologically advanced software, financial institutions have succeeded in improving 

the trading process altogether. The set of algorithms utilized in such automated trading 

is extensive and vast in its range of different functionalities, covering aspects such as 

trade generation, execution, portfolio optimization, trading scheduling or arbitrage 

exploitation, among others. Nevertheless, the most crucial role of algorithms, as the ones 

we are concerned with in this section, is as market traders. These algorithms are 

responsible for monitoring markets continuously, incurring in trades as soon as new 

opportunities arise. In a trading market populated by such state of the art algorithms, 

there are no subjective elements left in the trading decision process. Indeed, machines 

are thought to pursue the ultimate goal of maximizing profit through an automatic 

financial management command. But by seeking to maximize the banks and financial 

institutions’ benefits over specific time periods, clear to the goals established by each 

company, what these algorithms are really achieving is to amplify the overall activity 

level in the markets, and thus amplify liquidity and volatility. By acting as instant market 

makers or speed bumps, they ensure a fast, efficient and dynamic trading process. 

8.3.1. Types of Trading Algorithms 

Algorithmic trading has become routine, with thousands of firms and many more 

individual traders using so-called “trading algorithms” to facilitate their financial market 

transactions. Broadly speaking, trading algorithms can be categorized into three areas. 

First and foremost, there are those algorithms that employ academically established and 

implemented quantitative models and strategies, especially those implemented for 

trading securities; these rationale-based algorithms are called market making, pairs 

trading, statistical arbitrage and so on. They account for most of the trading volume on 

the various electronic exchanges around the world. In this section, we explore these 

rationale-based algorithms some more. 

They are then joined by other types of algorithms. Some of these “solicitation 

algorithms” and their more advanced cousins, transaction cost algorithms help traders 

with experience and/or information on the target markets to solicit liquidity using price 

spikes or drift; these algorithms provide critical market functions and help keep price 

movements orderly during times of heavy trading. The price spikes or drift generated by 

the solicitation algorithms often provide visibility to forgettable buy/sell programs 
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placed by flow traders with no market experience. The one-sided price drift or spikes 

signal algorithmically based long-term stock movement to the back office of other 

traders, who then come to the market committing their directional lists, assuming the 

side of the solicitation algorithm’s participants. Although the solicitation type algorithms 

are critical to maintaining market stability, they account for a significantly smaller 

percentage of the overall traded volume. 

The final family of algorithms is event-based algorithms. These algorithms reveal 

themselves when significant prices are invariably triggered by industrial finance news 

reports that report shocking news of mergers and acquisitions or senior management 

changes in a public corporation. These reports jumpstart event-related directional long 

or short trading in traded securities. 

8.3.2. Algorithmic Trading Strategies 

In general terms, one can consider two main algorithmic trading strategies, to which 

various combinations and specific alterations can be associated. Technically, an 

algorithm can perform as a market maker, acting passively by providing prices with a 

markup and waiting for someone to buy at the ask price or sell at the bid price, thus 

capturing the profit made from the spread. Market making is the earliest and most classic 

form of algorithmic trading and is the most direct way to take advantage of electronic 

markets' liquidity. Its science has been perfected by quantitative hedge funds or 

proprietary trading firms equipped with expensive technology and staffed with expert 

specialists in both mathematics and finance. Other algorithms can perform as buyers and 

sellers in the market, attempting to time the decision on when to enter and/or exit the 

trading process in order to maximize their profit. This timing is strictly related to the 

forecast of short-term price movements and consists of the following practical 

implications: Are short-term price movements predictable? If so, are prices likely to 

move upward or downward? When should short-term price forecasting begin in relation 

to actual buying or selling? When should the sequence of trading execution begin in 

relation to the price movement being forecast? And what trading volume should the 

profit-seeking trader intend to sell, in relation to the forecast price move? Finally, are the 

long-term price predictions, typically associated with price forecasting over longer time 

horizons (days, weeks, months, or years), initially obtained from pattern recognizers or 

at a very basic level from price filters, by which the positive and negative value signals 

used to extract excess returns are based on crossovers of longer- and shorter-term moving 

averages? Models can classify into systematic strategies that generate signals for quant 

funds and discretionary strategies that trigger trade actions for discretionary traders. 
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8.3.3. Impact of Algorithms on Market Dynamics 

A serious issue is that the efficacy of the algorithms is changing the market behavior. 

This behavior changes the rules relating to arbitrary weights attributed to each limit order 

and corresponding costs are responsible for creating an order book. Algorithms, which 

react to limit orders and “hit” them creating liquidity instantly, are changing market 

dynamics in a permanent way. Thus, HFT liquidity creating instantly trades profit from 

what could be an edge, by extremely fast reactions, drawn from their capacity of quick 

sight does exist. Consequences of such behavior is always a doubt: could this be some 

kind of instability on a switch point? Consequently, if installed such a switch point, could 

the leading banks? The only answer could be Yes, it’s possible. It has even been proven 

that if the order book is ruled by algorithms then such liquidity created at an infinitesimal 

cost, then a tsunami has also been predicted. 

Another way of ordering has even found this affirmation using order flow for exchanges. 

But speaking of deterministic order flow, it would be better to speak of exchange internal 

order flow and use order book for exchanges in order to predict sudden impacts. This 

being the case, then algorithms should be protected against catastrophe creating 

algorithms. This is quite strange. It would also be a challenge for all risk management 

based on prediction of impact costs. But this reflection is only the tip of the iceberg. In 

other words, it is inexcusable not to make a proper risk analysis of creating algorithms 

internal system. Because what is observed is a collective behavior which could not be 

thought without speculation. Thus is trading algorithmic. It is this “day” behavior, 

characterized by curiosity, making an impact on fluctuation which is why of trading 

speculation. Otherwise said, if the term is defined as being a constant increase of trades 

activities, this assumption is based on capital gains. 

8.4. Liquidity Risk Management 

Liquidity risk is an important area of risk management. It relates to the way banks 

manage risks arising from their engagement in maturity transformation. Banks provide 

short-term liabilities while making long-term investments. By converting short-term 

liabilities into long-term assets, banks support investment in the economy and help 

provide consumers with access to goods and services. However, if a large number of 

consumers demand to withdraw funds from their bank because they are suddenly short 

of cash, the bank cannot process these demands, since it has invested deposits in illiquid 

assets. Liquidity risk occurs when the bank is not able to attract additional deposits at 

short notice to meet withdrawal demands and not able to liquidate loans because they 

cannot be sold for cash due to market risk, creating a correlation between market risk 

and liquidity risk. The traditional wisdom is that liquidity risk is unhedgeable. Banks are 

regulated to hold additional reserves to manage liquidity risk. Additionally, banks are 
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supervised to perform regular liquidity stress tests as a function of the regulatory 

financial supervisory authority. 

The regulatory requirement is to hold excess reserves to reduce the probability of 

encountering a liquidity crisis when consumer demand to withdraw deposits exceeds the 

short-term assets and cash reserves the bank holds. Various parameters affect the cash 

reserves, including the expected withdrawal demand, the bank's ability to liquidate risky 

long-term assets, and how long it will take for the bank to get additional cash from 

external sources. The bank’s holdup in the value and risk of its short-term assets, 

expressed in cash reserves, significantly limits its capacity to manage liquidity risk, not 

only since having only monetary assets means having low net income, but also since 

having unstable cash reserves makes it unlikely to provide the expected service. 

8.4.1. Defining Liquidity Risk 

Liquidity is defined as the ease of converting an asset into cash, without incurring a loss. 

A risk associated with liquidity is that an organization might not have enough liquid 

assets to meet its obligations. In case, liquid reserves are not sufficient to meet short-

term obligations, it needs to sell liquid securities. For any organization on an ordinary 

day, selling liquid securities should incur little loss. The distinction of the situation 

causing liquidity risk to become a serious issue is that the organization's securities are 

not sufficiently liquid, so it ends up incurring a loss on the sale of the securities. Hence 

liquidity risk arises from having insufficient liquid reserves, and the organization’s 

securities are not sufficiently liquid. Theoretically as a rule of thumb, at least 10% of 

total long-term expenditure should be maintained in liquid form, on an average basis. 

Ensuring that enough relatively liquid bank deposits are available for the organization is 

usually not a difficult task except in individual crisis situations for banks and other 

financial intermediaries. However, generally, market liquidity conditions are overlooked 

in corporate liquidity management, despite the potential rise of very costly market 

liquidity problems, particularly during times of stress. The problem is that few statistical 

measures and forecasting models are available, which could help identify vulnerable 

periods. For loans, the liquidity risk taken depends on the following characteristics: the 

term of the loan, the currency in which the loan is denominated, prepayment conditions 

in the loan agreement, and amortization patterns over the life of the loan. 

8.4.2. Measuring Liquidity Risk 

This section focuses on how to assess liquidity risk, which refers to how difficult it would 

be to exit, that is to sell, a certain position over a certain time horizon at a given cost. 
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Unlike other financial risks, a liquidity shortage does not have to come from the assumed 

position. For example, one can measure the cost of selling a large volume of risky assets 

by looking at the price impact of executing large volume orders over short time horizons. 

Thus, an immediate cost of exiting a risky position is expected to be very high when the 

risk of the position is high and expected to fall toward zero when risk is low. 

Furthermore, even when one considers the issue of exiting a risky position, during a 

financial crisis the cost of liquidating that position in a short time horizon becomes very 

high because other market participants would be unwilling to participate. 

Liquidity risk measures are driven by a principle suggesting that the cost of selling or 

buying large quantities of unpleasant-to-hold assets increases with the amount of such 

assets held by the investor. Typically, traditional models calculate the cost of having to 

use market orders for optimal strategic trading, which can be solved by a stochastic 

dynamic optimization problem. Some advances in this research area have come from the 

models considering the entire distribution of as yet untaken investment actions, rather 

than focusing on its mean or variance. These attempts often find justifiable models for 

calculating estimated market impact costs. 

8.4.3. Liquidity Risk Mitigation Strategies 

Bayes’ theorem tells us that we can compute the probability of uncertain event E having 

occurred given some evidence or information event I, which is denoted as P(E|I). In 

financial markets, it is known that we can condition the probabilities of price moves on 

observed investor behavior such as the volume of buy and sell orders, the observed 

spreads between bid and ask prices or by the expectations of the underlying distributions. 

This essentially is the statistical foundation for all risk management models, including 

liquidity risk. 

Equally important to the measurement of liquidity risk are the strategies to mitigate the 

negative effect of the liquidity risk on the investor’s portfolio return and risk. Some of 

the major liquidity boundary parameters are the position size, overnight holding period, 

whether the trade is likely to be unidirectional or two-sided, and the investor’s specific 

policy of dealing with temporary marketmaker who can provide liquidity for a limited 

time period. These boundary conditions differ at any point of time for every investor 

depending on the investor’s expected return and temperament to deal with the variation 

around that expected return arising from short-term deviation from the long-term asset 

value, which is essentially the source of risk. Market prices can deviate from the asset 

value not only due to risk, but also due to market liquidity. 

In designing liquidity risk mitigation strategies, the first step is to identify the ratio of 

liquidity to risk and projected trade path for the strategy being contemplated. For 
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example, investors who voluntarily take on a greater liquidity risk, intending to realize 

maximum benefits, may be limited in the size of trade in a higher risk, lower liquidity 

market. Their trade may take longer to execute. The evidence of a long damped trade 

path is indicated by repeated price anomalies. 

8.5. Predictive Models for Market Volatility 

Understanding and forecasting volatility dynamics is at the core of most option pricing 

models even as volatility is unobservable and need to be estimated from the observed 

prices. Models of this popular form are called log-linear volatility or generalized 

autoregressive conditional heteroskedasticity predictor, which are popular estimators of 

both ex ante and ex post volatility. In the GARCH, the conditional variance depends on 

lags of the process itself and lags of error terms. The estimation is carried out using 

restricted maximum likelihood constrained for the coefficients’ sum to be unity. 

 

Fig 8 . 2 : Market Volatility 

Generalizations exist for both the mean and variance processes with the mean process 

allowing for a deterministic component, regression on other exogenous variables, non-

Gaussian distribution, time varying coefficient model structure and also allowing for 

long memory features. These dynamic regression models can also be run in a structural 

form to allow for correlations in prediction error terms stemming from two or more 

related time series. It is also not necessary for the mean effects to be stationary for the 

forecasting. Volatility prediction models have since then continued to largely utilize 

GARCH, SV, DLM and other extensions for accuracy. 
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8.5.1. Statistical Methods 

Models of financial time series emerged within the overwhelming progress of the 

empirical research dedicated to return distributions’ anomaly detection during the late 

1980s. Since then, volatility modeling has been a hot research topic in quantitative 

finance. Returns which follow a non-normal distribution are the starting point of the 

large field of empirical studies on return distributions, referred to as the stylized facts on 

financial returns. Further studies on volatility estimation by Autoregressive Conditional 

Heteroscedasticity (ARCH) are proposed, as well as the Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) model, which became the first empirical 

framework to treat the systematic factor affecting volatility as causal. The systemic 

approach is consolidated through the Multivariate GARCH (BEKK) model proposal, 

which merges the analysis on security systemic relationships with volatility pattern 

modeling. 

8.5.2. Machine Learning Approaches 

The existence of a nonlinear component in the volatility structure is evidenced by the 

success of different neural network architectures in volatility modeling. Generally, 

neural networks are used to correct residuals of other models' fit. Also, these correcting 

neural networks can be used in sequence in the outputs of two models to capture both 

linear and nonlinear effects. NNs can simultaneously capture nonlinear effects and 

correct different situations that originate imperfect descriptive functions of the 

underlying market mechanisms because of its capacity for self-adaptation in 

nonstationary environments. NNs have been expressed as universal approximators. 

There are several reports of big successes in variance and volatility predictions with 

NNs. We consider all the mentioned papers with daily and intraday horizons, but we put 

more emphasis on volatility predictions with daily horizons. 

The obvious questions now are: what is the essence of all these superior results? What 

is the reason for these particular first best scenarios? The available answer is that the 

NNs may even model properly the noise of the process represented by the model 

prediction errors. The problem that we face in choosing a machine learning architecture, 

to predict volatility of returns, is that the predictive function must satisfy the 

nonnegativity constraint. The volatility predicted values must also capture the extreme 

values verified in the historical empirical volatility series. There are several machine 

learning predictions that equipped with modeling corrections may help model the 

volatility of financial returns. These predictions differ in architecture and in the modeling 

concepts they apply. 
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8.5.3. Comparative Analysis of Predictive Models 

The following models were examined to compare their predicative ability on forex time 

series: Random Walk, ARIMA, Adaptive ARIMA, GARCH, ANN, SVM, EN, GMDH, 

and RBF. The empirical study covers a prediction interval of 1 to 10 days ahead in the 

EUR/USD, GBP/USD, CHF/USD, AUD/USD, and NZD/USD exchange rate markets. 

In general, it is rich in forecasting time series, prediction time horizons, input variables, 

and model explanations. It uses three patterns of model evaluation averaging. The 

relative error metrics are MSE, MAE, and RMSE. The best performance model statistics 

are pooled and presented for comparison in the conclusion. The choice of error reduction 

averages impacts consolidation results. Consider forecasting as a large-scale task; we 

prefer predictive power-focusing error metrics. 

Most evaluations pool errors across prediction horizons. In this case, assumptions need 

to be made as to horizon sensitivity. To avoid biasing the model prediction power, there 

are two ways to compare models. The first is to take the model that performs best across 

models evaluated, and the second is to assume that prediction variability across models 

exists according to a common error distribution. In this case, using an error ratio metric 

is imperative due to the so-called score synchronization problem. For score pooling 

across experience patterns to come into effect the prediction error distribution has to be 

the same for all the scaling errors. Additive errors are varied serially and across scaled 

tasks. A second approach is choosing a single model based on its prediction performance. 

In this case, we prefer using a cross-validation procedure to select tuning parameters 

before application. 

8.6. Integrating Predictive Analytics with Trading Algorithms 

At a specific level of accuracy, too high or too low, the signals become costly for the 

investment companies. The trade decisions must consider the risk, fees, and their impact 

on the financial result so that the signals can become a reliable tool for the investment 

decision. A trading algorithm is used for trading operation research and optimization. 

Similar to predictive analytics, the trading algorithm signals need to be optimized for a 

specific company's strategy. Every trading algorithm complexity requires their signals 

to be at a specific level of that, too high or too low. The optimization characteristic makes 

it possible to generalize each approach. The purpose of the strategy is to increase the 

investor's wealth by increasing the Marey ratio. The integration of the predictive model 

with the investment strategy is characterized by three levels of data and signal use during 

the continuous decision-making process. 

The features used to build the predictive model can be data of a different type provided 

by different data sources, e.g., fundamental factors, news, estimates of experiment 
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analysts, social networks, and transaction volume. However, specific factors are 

considered to be better indicators, e.g., open price, close price, high price, low price, 

transaction volume, and the publicly available insider information. Predictive model 

results are of the "yes" or "no" type. At the same time, the investing entropy risk is a 

market risk the sensitivity of which to microstructure variables is defined by analysis of 

volatility. Predictive model tests can be performed using data of a certain period. The 

confirmation of the predictive model with the real market should be done continuously. 

Predictive analytics signals can be used for pricing or index construction. Predictive 

modeling is part of the trading algorithm's decision-making process. 

8.6.1. Data Sources for Predictive Analytics 

New predictive analytics algorithms for forecasting financial time series will not be very 

effective unless they are provided with high quality data delivered at high speed. 

Effective predictive timing of financial market is a practical problem requiring realistic 

solutions. This means that one must consider the technology of doing such predictions 

not the fundamental theory of finance and economics. 

For example, our main focus is on the practical side of applying machine learning to 

predicting the future for financial investment. The investment process is a tiny sector of 

economics involving specialized participants who play according to their own rules. 

Therefore it does not require a general theory for financial economics to be successful. 

Clearly the prediction must be made with data from the immediate past. It is important 

to identify which data has been actually available at the time of the prediction, not data 

which has subsequently become available at a later time. For example the published 

closing price is generally available for trading algorithms to use. In contrast, the 

published daily high and low prices have been adjusted subsequently to delete erroneous 

outliers. 

The key issues are what real-time data to consider, how to process such data, and 

ultimately how to use the information to motive rules for market timing predictions. The 

question of what data sources is vital. In particular, high speed delivery of high quality 

data is crucial for quantum trading where trades are executed once every second. 

8.6.2. Real-time Data Processing 

Unlike data collection for predictive analytics projects, which is done in a relatively 

academic fashion, integration of those models into trading systems requires the 

implementation of tools capable of processing information in real-time. Practical 
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considerations such as minimizing latency while implementing a processing engine 

capable of ingesting the massive flow of news hits and corporate disclosures as they 

become public require the specification of the type of data to be processed, the 

complexity of the transformations required, and constraints on the algorithm components 

that process each individual piece of information. In our case, trading-system processing 

speed has priority over advanced functionalities, such as incremental learning of new 

topics and/or event types through online supervised classification, knowledge extraction, 

relation detection, and inference making. The primary purpose of the processing system 

is to transform unstructured text data into structured inputs for the trading system 

allowing real-time decision-making. 

Centralized or distributed processing capabilities need to be implemented to aggregate 

factors across thousands of features, which we process in real-time. A scalable data 

collection framework must leverage on a cloud-enabled architecture using either major 

providers capable of handling massive datasets or cost-effective open-source distributed 

processing clusters. Advanced automated hardware virtualization technologies, coupled 

with a regenerable processing architecture would ensure a cost-effective solution for 

managing large temporal data potentially subject to exponential usage growth. 

Consideration must also be given both to collaborative environments for notifications 

and alerts, and to the dashboards and reporting specifications required for monitoring 

the processing and its use of cloud resources. 

8.6.3. Backtesting Trading Algorithms 

A trading algorithm is evaluated by trading it on historical data before being traded live. 

A common method for backtesting a trading algorithm calculates its fixed-length 

position over the backtest sample and uses it as if it traded during the sample. Trading 

decisions made along the backtest may invoke a number of model bias issues, resulting 

in net-excess performance that is possibly not realizable in a live trading setup. For 

example, estimates of predictive accuracy may be formed from the same sample on 

which the trades are based, inflating the realized net-excess returns. Predictive analytics 

estimates may also be reconsidered as the trader observes the performance of the strategy 

over time, whether directly or through a live trading implementation. 

If a strategy trades more than once in the sample, realized returns can be further 

compromised. Trading during lunch in markets that are characterized by occasional 

bursts of volatility risks realizable returns not matching backtested returns that are 

predicated on the magnitude of these bursts matching the schedule of trades. 

Furthermore, trading strategies that are of longer duration will likely determine a trader’s 

sales at far in advance of execution. Backtest estimates of success for the strategy will 
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disproportionately suffer from the delays that are managed only for discrete trades in the 

shorter-duration scenarios. 

Trading strategy backtesting is usually less complex than for signal backtesting, simply 

because of the crude implementation of trades regardless of any outcome expectation 

and timing precision for their execution that one may be trying to exploit. Accounting 

for transaction costs, slippage, and market impact has a significant effect on a trading 

algorithm’s performance implementation in practice. Trades initiated by many signals 

are impractical for trading since they cannot be filled at exact signal price points. Hence, 

in practice, strategies might be employed for only a small fraction of signal trades, the 

most significant ones. 

 

Fig 8 . 3 : Financial Market Forecasting with Predictive Analytics 
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8.7. Conclusion 

To summarize, many predictive analytics methods have a long history of use in financial 

market prediction. However, only a few methods that we describe are being considered 

for real-world applications, like Bayesian DDM, which is widely used in risk control of 

FX transactions. There are many challenges to developing better predictive analytics 

methods to respond to those challenges. First, the performance of many statistical and 

machine learning methods expands widely based on the configuration and parameter 

selection for the employed method. However, finding the best configuration is a tedious 

task, especially for real-world applications. The second challenge is related to model 

overfitting. To mitigate overfitting risks in the training of predictive methods, it is 

essential to formulate a strategy for dividing the dataset into short-term training, 

development, and validation periods, mainly driven by the market conditions. A relevant 

third challenge is an accurate estimation of the uncertainty of the prediction, especially 

for critical applications. Improving the prediction uncertainty estimation is essential for 

many practical applications, especially in financial markets. 

 

The reason behind the above challenges relates to financial markets being highly 

dynamic systems where market conditions constantly change. The pipeline of 

development and implementation of predictive approaches for financial market 

prediction is frequently not streamlined due to the external conditions that affect the 

prediction and the system's requirements. The concrete and unique nature of the financial 

prediction task implies that an a priori setup of the development pipeline for the 

prediction is not possible. Thus, the development of better predictive methods of 

financial markets using predictive analytics will always require an element of human 

intervention. The human development effort allows the analyst to properly assess and 

fine-tune every step of the prediction pipeline to achieve better financial risk control. 

Better predictive analytics methods will directly correlate with the financial market 

prediction research. An important area of exploration in future works will be how to 

further improve the human intervention in predictive analytics applied within financial 

prediction problems. 

8.7.1. Key Takeaways and Future Directions in Predictive Analytics 

In the recent years, disruptive changes in financial markets have changed the ecosystem 

of predictive analytics in the financial domain. First, low interest rates and moderation 

of economic expansion have made it harder to make money by trading equity indexes 

and in bonds. As a result, equity traders have started using increasingly complex trading 

strategies in order to generate excessive return from trading small and midcap stocks. 
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That has made the returns from investing in such stocks highly volatile and stochastic, 

leading to corresponding volatility of returns from trading in the corresponding stock 

indexes. Second, synergies between crypto assets and traditional market have led to low 

correlation of returns from such asset classes. This has opened up the scope for enhanced 

excess return from traditional stock indexes by tracking or investing in conjunction with 

crypto indexes. 

High frequency finance has started becoming a must in time series predictive analytics. 

Strikingly, models have been developed recently that use day-ahead returns from 

multiple assets in highly correlated environments to accurately predict the timeliness of 

arrival of various high-impact economic events, which can in turn help in predicting 

asset volatility surrounding the event time. Predictive signal of such models can also 

potentially be used to optimize the hedging strategy of an asset sensitive to the arrival of 

a high-impact economic event. We look forward to the expansion of synthetic data 

generated alongside the information containing the event of interest which can thus help 

in development of the predictive algorithms based on the convenient architecture of deep 

learning models. 
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