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Chapter 7: Data engineering for real-

time processing, streaming analytics, 

and scalable decision intelligence                              

7.1. Introduction to Data Engineering 

Data engineering emerges as a pivotal specialization within the broader landscape of 

computer engineering and computer science. This field's primary focus rests upon the 

careful design and optimization of data pipelines and architectures that serve the specific 

needs of a wide array of applications. These services span the realms of artificial 

intelligence, business intelligence, real time analytics, and other specialized domains. 

Nevertheless, the diversity of these use cases, with their heterogeneous requirements 

spanning a broad spectrum in terms of needs, scale, performance, and other supporting 

engineering metrics, entails that no one technology or solution is common across all 

these domains. Data applications display widely varying telemetry, at all levels of the 

technological stack (Gulisano et al., 2012; Akidau et al., 2015; Carbone et al., 2015). 

A large fraction of the volumes ingested, stored, and processed typically accrue to 

applications that are part of real time serving systems. Furthermore, the pipelines and 

systems used to support the data, storage, processing, and serving needs of these 

applications must be optimized for throughput, latency, fault tolerance, query 

expressiveness, and any other domain-specific metric that is relevant, such as data 

retention and availability. These applications cover an important part of the data 

ecosystem, with reliable systems providing real time recommendations, personalization, 

and fraud detection functionality to users in question. Their obsolescence could 

potentially cause significant disruption to business ecosystems and the shape of the 

services offered by major economies, affecting companies that utilize recommendations 

to monetize their user interactions. The unprecedented scale of the customer bases 

already being served by some of these products provide a powerful incentive for 
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organizations to continually push the latency boundaries of the pipeline architecture 

(Stonebraker & Çetintemel, 2005; Hesse & Lorenz, 2019). 

7.1.1. Overview of Data Engineering Principles 

This work provides a practical introduction to data engineering. In this chapter, we will 

address the primary principles of data engineering, as the title suggests. Professionals 

from many different backgrounds and research areas will find many opportunities for 

contributing to the building blocks of modern data ecosystems. Throughout this work, 

our focus will be on the principles that enable the design and development of efficient 

data pipelines for data analytics, whether in batch processing or in real-time processing 

streaming analytics. 

Data engineering is a part of the data life cycle that is dedicated to transforming, 

integrating, and preparing data for analysis. Data engineering is usually the product of 

collaboration between teams of ingestion engineering and data scientists. Exploring the 

frontiers of data engineering and using creativity to solve problems old and new is fun 

work. The output of our creative effort, effective data pipelines, are key to successful 

data science, data product, data journalism, and data visualization efforts. Data 

engineering is not a perfect replacement for data scientists’ activities. However, a clear 

demarcation between data engineering on the one hand and data quality assessment and 

data science on the other is risky. We hope that the principles of data engineering that 

we present in this work will help in developing a productive working relationship, and 

productively share and open up the borders between data engineering and data science 

throughout the entire process of pulling data from different data sources to data products, 

from ingestion engineering to final analysis, visualization, and data-driven decision 

support. 

7.2. Fundamentals of Real-Time Data Processing 

Real-time data engineering consists of data and platform engineering techniques applied 

to situations where some customer experience relies on data and AI in a short time delay 

after the data was generated. A customer experience is any of the experiences of a person 

who consumes something, either in a business transaction and who has an experience 

associated with incidental that may or may not relate to a business transaction. The 

importance of data and algorithms in a customer decision made for every product 

purchase has caused organizations to leverage data and mathematics in virtually every 

activity that involves making a choice, and the cloud plays an important role by tying 

together storage, analytics, and artificial intelligence as a service. 
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Business operations are critical aspects of many businesses. Considering making 

customer experiences reliable involves managing the business risks by investing in the 

foundation and support for algorithm-based experiences. Real-time data management is 

the foundation for algorithm-based customer experiences and it is needed for three types 

of customer experiences: real-time experience, time-delayed experience, and 

background experience. Ensuring that the pipeline operates correctly, the predictions are 

accurate, and that the background analytics run efficiently or not enough changes are 

detected to trigger unnecessary updates is essential. Because the risks are significant, 

investments in admission, synchronizing, and monitoring components of streaming 

analytics require a strong business case to justify the scaling of cloud infrastructure. 

The data management problems appearing in real-time processing are organically 

motivated. In real-time data engineering, pipeline and platform design focuses on 

characteristics and attributes that originated as problems or difficulties that were 

observed in solving data engineering problems from typical application domains. 

 

Fig 7 . 1 : Data Engineering for Real-Time Processing 
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7.2.1. Key Concepts in Real-Time Data Processing 

Real-time data processing is not just about responding to events in real time. Instead, the 

specific meaning of "real-time" that we use in data processing is closely related to the 

different types of data and what "timely" means in that context. In a decision tree that 

we will explore in this chapter, we are interested in user events, data that have temporal 

meaning, and events that need to be responded to shortly after they occur. These events 

come from streaming and/or real-time data sources, and achieving the business needs 

associated with those events requires the use of real-time data processing techniques, 

capabilities, and architectures. Furthermore, "real-time" is only one type of timeliness 

that we can explore, and only one of the dimensions on which we can base our 

classifications of data processing. Conceptually, it is simplest to think of a continuum of 

scenarios that vary, for different types of data, the key business need of timely response 

to events that occur at various collected timestamps. 

There are many ways to classify and delimit specific features, capabilities, and 

constraints in real-time data processing systems. We will briefly summarize how they 

are explored to create a framework for understanding various data processing trade-offs 

so that we are able to make deliberate engineering choices when addressing any data 

processing challenge. In addition to providing a framework for navigating the large set 

of current solutions, this allows us to design future solutions that will be cataloged with 

the characteristics outlined here. Since data is created at different times, has different 

structures, and also can come from various processes, data management systems and 

architectures are optimized or specialized for different types of data and characteristics. 

"Processing," too, is a general term that refers to a number of possible transformations 

of data in a system. 

7.3. Streaming Data Architectures 

Supplying stream processing or analytics uses streaming data architectures, under a 

series of architectural approaches. Considering microservice architecture or event-driven 

architecture are the architectural pattern involved. Microservices is a recognized 

approach for constructive streaming applications, however, it does not enforce any 

temporal correlation for the exchange of messages between all microservices. An event-

driven architecture allows guaranteeing temporal ordering for an arbitrary number of 

events. It can guarantee transactional consistency, and it focuses on an optimized 

mechanism for message delivery to different types of consumers. Nevertheless, it 

requires a specific infrastructure for data exchange and strongly couples producers and 

consumers. Moreover, indiscriminate usage of both architectures can introduce latency 

or complexity overheads in the design of a streaming system. In this sense, their trade-

offs must be assessed in terms of consistency, complexity, latency, scaling, and coupling. 
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Microservices architecture is gaining adoption in stream processing applications, as 

small stand-alone executable units called microservices are assembled to offer a larger 

set of functionalities. Usually, each microservice exposes a set of endpoints for 

interaction, and a couple of microservices are responsible for the streaming aspects of 

an application. Microservices have low dependencies and are usually built using polyglot 

programming. They are easily deployable units with low operational cost, and they allow 

development teams to apply continuous integration pipeline tools. In addition, they 

provide an abstraction for scaling services where the demand is high, and they allow 

companies to apply various browsers for users and develop different functionalities on 

various programming platforms. Additionally, microservices divide functionalities, 

which allows teams to work independently on the same domain. 

Some limitations also arise with the adoption of the microservices architecture, mostly 

related to their design, deployment, and implementation. From a design perspective, the 

decomposition of a monolithic application into microservices will involve service design 

derivation criteria focusing on functionalities currently decoupled in the monolithic 

version or how to enable the streaming aspects. 

7.3.1. Microservices Architecture 

Microservices architecture, or microservices, allow applications to be built as a series of 

independent components (services), cooperating with each other over a high-speed 

network. Microservices are well-known and increasingly popular. This sort of 

architecture is worth exploring in an IoT or data engineering context, as it has a number 

of interesting features and limitations. 

Microservices provide business capabilities, reacting to requests from other components, 

or clients. Requests are sent using the HTTP protocol over a network, so the services are 

not directly communicating with each other using function calls or shared memory. Each 

service can provide a well-defined business capability, like User Registration, or 

Processing an Order. Other services can invoke the APIs provided by these services to 

get data or to trigger operations. 

Microservices architectures are an evolution of service-oriented architectures, and have 

some resemblance with them. Microservices are easier to implement than SOA systems, 

because a small service is simpler and usually easier to manage than an entire platform; 

transitive dependencies and interfaces are usually simpler too, as they are smaller and 

more focused, and there are usually less integration issues, as development can happen 

independently and in parallel on different microservices. However, microservice 

architectures and SOA systems both suffer from the same problem: network 

communications. In a microservices application, data is exchanged over unreliable, low-
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bandwidth networks, which are much slower than a local function call or direct memory 

access. 

7.3.2. Event-Driven Architecture 

In recent years, architects have adopted an event-driven architecture (EDA) for data 

engineering solutions in which the delivery, capture, and processing of events drive the 

design. An event has been defined as a significant change in a system state, which is also 

a meaningful event to a user or an outside observer. An EDA enables applications, 

services, and components to communicate and react to events in real-time by allowing 

events generated by producing components to trigger an action or a business process for 

consuming components. The components in EDA can include identity, authentication, 

configuration, versioning, network management, broker publishing and subscribing, 

chat, collaboration, logging, security, and transaction components. Communications use 

multiple protocols with assured and low-latency delivery, which are important for instant 

messaging and for many mobile applications. Throughout all of these changes, events 

must be reliable, secure, and auditable. 

The event-driven model of operations adds additional detail and capabilities to a 

microservices-based architecture for event-driven applications and flows. Event-driven 

operations add more than simple event message processing, for example, support for 

collaboration and a multi-device user experience. Timer-based notifications take the 

place of push notifications to mobile applications. Events and their resulting notifications 

usually contain basic information, plus the information required for any specific event 

type. The specified information varies by event type — be it an instant message, a chat 

room update, a transaction, a page-access update, a security event, or some other type of 

event. Events tend to be cached, versioned, filtered, and repositioned until their time is 

ready for notification. 

7.4. Data Ingestion Techniques 

Data ingested into a data lake inevitably come from diverse sources and through different 

tools. While establishing a distributed data lake, data engineers encounter the challenge 

of ingesting data into the lake before the actual analysis. This sounds relatively 

straightforward, but the challenge lies in the wide diversity of data sources and tools and 

their specific idiosyncrasies to ingest data effectively. This chapter discusses the 

prerequisite of data ingestion into a data lake and focuses on the ingestion strategies and 

techniques. 
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Data ingestion refers to the process of moving data from one or more source systems 

into a destination storage system. Data injection techniques could be classified into 

different types: extract, transform, and load ingestion, extract and load ingestion, etc. 

ETL ingestion describes the movement of data with transformations, while EL ingestion 

describes the direct movement of data that can be used in the destination system without 

further transformation. A more general distinction defines batch ingestion and real-time 

ingestion. This book focuses on the second one since we are interested in streaming 

analytics where real-time ingestion enables real-time analytics. Data engineers usually 

discuss ingestion strategies such as batching, near-real-time, and real-time streaming, 

and these three methods basically use batch methods for a certain time slice of the data 

or only ingest small portions of the data in near real-time or real-time for each data 

arriving event. 

Data ingestion is normally done when data flows into a data lake but, at times, a snapshot 

of a cold source system is ingested into the data lake such as while migrating legacy 

systems or retroactively gathering information about an event. It should also be noted 

that when data is ingested from multiple source systems on a regular schedule, the 

operation is termed as data extraction rather than data ingestion. A special case of data 

extraction for cloud-based data sources is called data replication; tools that provide this 

service are referred to data replication services. 

7.4.1. Batch vs. Stream Processing 

The amount of data generated by users and devices is increasing exponentially. 

Enterprises are challenged in continuously monitoring large amounts of data, due to 

volume, velocity, and/or frequency, to rapidly detect anomalies in user behavior, system 

behavior, and external event impact. Inside many enterprises, the data generated from 

their operations consist of variable frequency, variety, and volume streams while their 

relevant monitoring operations submit generally static frequency alerts. These 

enterprises seek for process analytics and data professionals capable of building real-

time anomaly detection analytic methods leveraging these entire diverse data collections. 

In most business analytical traditions, corporate operations are monitored leveraging 

traditional data warehouses fed by batch processes that periodically load data from 

source or operational databases to data warehouse tables. This architecture relies on 

periodic batch jobs primarily because most operational backend systems, used to capture 

business transaction data, were designed to ensure data consistency, data integrity, and 

data availability generated by transactions during set execution periods. Generally, batch 

jobs have access to the entire data collection for preprocessing since all data is 

consistently available. However, these designs tend to introduce significant delays in 

data availability for use by corporate top management. At the same time, it is recognized 
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that some monitoring operations do not require data availability for the entire transaction 

execution process and would benefit from rapid detection of anomalies and early 

warning alerts that could then be incrementally improved after the fact using existing 

static frequency batch analysis methods. 

7.4.2. Message Queues and Brokers 

Message queues decouple application components by providing a simple mechanism for 

them to communicate through a queue. When a producer wants to send a piece of 

information to the consumer, it pushes the data to the queue, where the consumer will 

later pick it up. Once it has been processed, it can be deleted. In this way, data is stored 

for an indeterminate time until the consumer is ready to process the message. 

Traditionally, this has been covered through OS process queues that manage processes 

related to hardware devices, and more recently through implemented libraries that were 

introduced in operating systems. 

In data engineering, particularly with applications based on event- or message-driven 

architecture, more specific data queues have been developed for applications connected 

to data streams. In this case, a queue is a separated application whose function is to be 

in charge of managing the lifecycle of messages. Each message has an owner that created 

it and is waiting to process it. The process that consumes the message can also be 

separate from the one inside the queue. They can be on the same machine or even remote 

from each other. The queue guarantees that this message will be delivered at least once 

to the process that owns it, storing it until this process signals the queue that it has already 

processed it. If the process fails while processing it, the queue can resend it at a later 

time, thus preventing data loss. 

7.5. Data Storage Solutions for Real-Time Analytics 

Data Storage Solutions for Real-Time Analytics Traditionally, analytics has been mainly 

a retrospective activity. Data ingested through ETL is stored in Data Warehouses and 

Data Marts. The store-and-forward model makes analytics on this legacy approach have 

time-lags, so with a focus on the long term. Operations teams in organizations that want 

to embrace the culture of Data-Driven use the term real time operations based on the 0-

time lag feedback from the analytics stored in Near-Real-Time Data Lakes. Analytics is 

not a sport of just the data aficionados; it is for everyone within the organization. 

Technology can help empower everyone with the necessary tools to perform analytics 

on the data relevant for the different domains of operations within organizations. 
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NoSQL Databases Created as an alternative to accommodate the horizontal scaling of 

Big Data volumes relentlessly growing, the NoSQL products have the most intense 

adoption in the data engineering ecosystems of organizations. With many NoSQL 

technologies available today, a detailed NoSQL framework used at scale by many 

organizations: Key-Value Stores, Wide-Column Stores, Document Databases, and 

Graph Databases. These NoSQL technologies natively support TTL, so it is common to 

have seven days, two weeks, or thirty days aggregation but not unlimited time as 

traditionally happens in Data Warehouses. Many NoSQL products or compatibles might 

have an Analytical Engine incorporated. The last-generation NoSQL Data Management 

technologies are focused on democratizing analytics by allowing everyone to perform 

ad-hoc analytics directly within the operational NoSQL Data Store. 

7.5.1. NoSQL Databases 

It is well-established that relational databases have limitations when it comes to scale, 

which is one of the reasons NoSQL databases were created. However, NoSQL databases 

were built to handle much higher ingestion rates and scalable random access reads on 

structured data without any constraint on schema, easily performing 100,000s of inserts 

per second and providing a key lookup latency on average of single digit milliseconds. 

NoSQL databases can also scale out horizontally, addressing the scale limitation that 

many prediction applications run into when processing data within various windows for 

purposes such as anomaly detection, forecasting or detection of various events, 

businesses utilize for purposes such as risk management, fraud detection, inventory 

management, etc. Fast data confusion causes lags in prediction results using prediction 

models built on historical data stored in RDBMSs that NoSQLs successfully overcome 

by doing real-time predictions within the fast data periods. As a result, fast data analytics 

and future data are often stored and processed using data structures provided by NoSQL 

databases. 

NoSQL databases are often referred to as key-value stores. Each key-value pair is read 

and written using a key with the associated value being simple or complex attributes 

defined in the framework of the NoSQL stores. In these key-value pairs, a key is assumed 

to be unique and is used to represent various real-time data entities, such as customers, 

devices, and locations. These key-value stores have restrictions on the read, write, and 

query capabilities permitted on the attributes, although some allow secondary indexing 

on the attributes for building lookup tables utilized to filter and join data within a query. 

Other NoSQL databases provide predefined JSON document structures that allow 

complex nested documents within a document. These document stores have flexible 

schema support for unstructured and semi-structured data, data such as customers that 

come from different sources and change attributes frequently can be efficiently stored. 
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7.5.2. Time-Series Databases 

Real-time analytics often involves working with time-series data. Time-series data is a 

sequence of observations of a process made over time. The observations are typically 

made at a uniform rate, and they usually have a timestamp associated with them. 

Characteristics that are typically associated with time-series data are: (1) store large 

amounts of data, (2) data is often only appended, (3) queries typically involve a time 

range, (4) require fast writes, (5) also require fast aggregation queries, (6) require special 

aggregation functions over time intervals, (7) require special functions for processing 

variations of time (for example: day of week, hour of day), and (8) data are often the 

same and/or update frequently. 

Specialized time-series databases are designed specifically to take care of the above 

needs while following the principles of real-time analytics. A traditional relational 

database is not usually optimized to accommodate the requirement of real-time analytics. 

In fact, genuine time-driven or event-driven analytics cannot be done efficiently through 

a relational database. Moreover, an OLAP solution should not be bothered for such use 

cases. While NoSQL solutions can do the job, time-series databases do it better and at a 

lower cost. TimescaleDB is a relational database designed specifically for time-series 

data on top of PostgreSQL. It has many capabilities of a traditional relational database 

for general data and provides superior timeseries functionality on both storing the 

timeseries data and performing queries over the timeseries. 

The other popular solutions that are widely used are InfluxDB and OpenTSDB. 

OpenTSDB is built on top of HBase. The architecture of OpenTSDB is very similar to 

that of traditional RDBMSs. MySQL is used for storing metadata and indexing data that 

speed up query. InfluxDB is a more recent and newer entry in this space. The architecture 

of InfluxDB is more complex and different. InfluxDB is a custom open-source, 

distributed time-series database. By default, it runs as a single server, but also offers 

clustering capabilities. Unlike OpenTSDB or TimescaleDB, InfluxDB is not built on top 

of another database, though it can use other key/value stores and databases, as a part of 

a pipeline for data collection. 

7.6. Stream Processing Frameworks 

There are several frameworks available for real-time data processing, and users may 

choose what they prefer depending on their specific use cases. In this section, we provide 

description of a few popular stream processing frameworks. Apache Kafka is a general 

pub-sub messaging system that allows flexible message routing based on user-defined 

topic partitioning, which makes it possible to separate different types of messages and 

separate consumers of each type based on business and quality-of-service needs. Users 
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can also use Schema Registry to enforce users' data schema as their data evolves. In 

addition, for organizations that run in the cloud, fully managed Kafka services are 

available, so creating a Kafka cluster does not take teams days. In spite of these 

advantages of Kafka, there are limitations on utilizing Kafka. First, it does not provide a 

compute framework. Next, Kafka is not routed for low latency data flow between an 

ingest system and compute system, because a normal roundtrip even within the same 

datacenter is about several milliseconds. For these reasons, organizations that use Kafka 

for event log repair also run an ETL program to transfer Kafka data to their data 

warehouses. 

Apache Flink is a general-purpose stream processing framework. A Flink program 

consists of reading a stream from an input base, transforming the stream and writing the 

stream to an output base. Flink allows programmers to easily develop low-latency and 

high-throughput ETL programs and easily develop a complex event processing program 

that joins several streams, finds the count, distinct counts or averages of some fields in 

a windowed time period and defines stateful functions on the resulting streams. Flink 

allows for flexible time control. Stream records can have timestamps in two formats, 

such as event time and processing time. Stateful functions that are time-dependent can 

be defined to wait for a specific amount of time. Flink provides unique fault-tolerance 

capabilities. The state of a Flink program can be saved externally. Additionally, Flink 

provides batch-cum-stream processing capabilities with a few additional lines. 

7.6.1. Apache Kafka 

Apache Kafka is an open-source distributed streaming platform. The project started in 

2010 to support efficient real-time data feeds and operational data storage. Like most 

other projects, Kafka has been highly tuned to meet scale and availability requirements. 

At the time of its release, it had its limitations. However, since then, many improvements 

have been made to the system, making it versatile enough to be used for a variety of use 

cases involving real-time processing. 

Apache Kafka is not a general-purpose compute engine, but rather a high-throughput, 

low-latency platform for handling real-time data feeds. Kafka is comparable to a 

message-queue system. However, unlike queues, messages in Kafka are not deleted 

when consumed in order to support batch consuming; instead, the topic is partitioned, 

and the consumers in the same consumer group share a partition. Kafka is also 

comparable to a data store, but is designed for extremely high throughput and distributed 

on commodity machines. Data is stored on disk in a replicated, fault-tolerant manner in 

order to allow durable message queuing. Messages can be partitioned by key or 

published to an arbitrary partition. 
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Fig 7 . 2 : Apache Kafka for Real-Time Data Streaming 

7.6.2. Apache Flink 

Apache Flink is a general-purpose stream processing framework that provides 

programming abstractions for distributed computation on data streams as well as a 

distributed execution engine. It is supported by the Apache Foundation and is one of the 

most widely adopted Big Data tools. Flink’s programming model provides support for 

complex event processing, arbitrary stateful computations over data streams, and 

exactly-once state consistency driven by distributed snapshots. The Flink operators are 

declarative, and Flink’s Lazy Evaluation Engine automatically optimizes the execution 

plan. Flink supports batch computation, although batch jobs are typically implemented 

using Spark. Internally, Flink represents batch jobs as special cases of stream 

computations; as a result, Flink’s processing model is called bulk processing as 

streaming. 

Flink provides support for both stream-based and micro-batch processing of data. In 

contrast to complex event processing, which focuses on the processing of a series of 

related events, stream processing and micro-batch processing support stateful, long-

running computational windows over continuous streams of incoming data. Flink also 

supports an expressive CEP model that can detect complex event patterns. To detect 

complex event patterns, the event data must have an order. In CEP, the patterns must 

eventually match the events but are not guaranteed to match in a timely fashion. In 

contrast, stream processing is more general in that it obtains a result immediately. This 

support becomes important for applications such as monitoring, failure detection, fault 
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localization, predictive maintenance, and intrusion detection, which involve lightweight, 

short-lived computations over incoming data streams that identify outliers or abnormal 

behaviors. 

7.6.3. Apache Spark Streaming 

Apache Spark is an open-source big data processing framework primarily used for batch 

processing. It allows processing a large collection of datasets in a parallel, distributed 

manner. Apart from batch processing, Spark also supports other paradigms such as graph 

processing, machine learning, and stream processing or stream analytics. Spark 

Streaming is an extension of Spark that provides a framework for processing continuous 

streams of data. 

Spark Streaming takes the data from the stream sources and divides the received streams 

into batches of a predetermined duration, thereby creating a Spark Mini Job for each 

batch. Then each mini job is executed by the Spark framework, and the results from each 

batch are pushed to sink services. The main Spark framework along with Spark 

Streaming provides a micro-batch stream processing. Other stream processing 

frameworks provide real-time micro stream processing, and while some provide real 

micro stream processing, Apache Spark Streaming has the advantage of providing a 

unified framework for batch, graph, machine learning, and stream processing. A single 

benefit of micro-batch processing is that it achieves more fault tolerance and more 

scalable stream analytics than real-time processing, and hence, it is easier to program the 

application using Spark Streaming than the other real-time stream processing services. 

7.7. Real-Time Data Transformation 

Real-time data transformation or transformation on the fly is an important step in stream 

processing and near-real-time analytics. Transforming raw data coming from one or 

more data sources allows creating usable data assets for analytics, machine learning, and 

other tasks that require input data to have a specific structure, be in a particular format, 

include only certain parts of the incoming data, or stored in a way that is optimal for 

specific queries. Traditionally, the data transformation step in the data management and 

analytics pipeline has been done by enterprise tools and products as part of the data 

warehousing process. As companies use data warehouses not only for reporting but also 

as the core of their data architecture, data engineering tasks, toolsets, and processes have 

evolved. The demand for interactive and personalized dashboards and insights for 

various stakeholders requires data to be transformed in real time, immediately after being 

collected. To support such real-time reporting use cases, the transformation step has 

increasingly been moved closer to or combined with the data ingestion step. The 
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traditional process of connecting to a data source, transforming the data, and making it 

available in a fast and usable form has evolved into a process whereby the component 

takes care of getting the data from sources, preprocessing, sometimes also enriching or 

filtering the data, and converting it into a form that can be easily used for analytic queries 

and putting it in the warehouse or data lake for the analytics job to execute and the 

dashboard refreshes to pick up the data. Instead of copying raw data to a staging area for 

the transformation and exporting to the warehouse, data transformation is performed in 

transit, as data is being written. 

With completion of the ingestion process, the newly transformed data is written to the 

data warehouse or batch analytics systems for consumption by various stakeholders. 

When raw data needs to be quickly available in the warehouse for ad hoc reporting, data 

engineers and analysts need a way to trigger a partial reload of raw data. This usually 

involves creating a new version of the data in the warehouse targeting a specific set of 

newly ingested records. 

7.7.1. ETL vs. ELT 

Extract, transform, load (ETL) is the traditional method for moving data into a storage 

repository. Individuals and systems extract data from source repositories, and then the 

data is transformed, changes are made that prepare the data for its intended use in 

reporting and analysis, most often metadata functions like datatype conversions and data 

validation. Then the transformed data is loaded into a target repository, often a data 

warehouse or a database. ETL has served as the pipeline of reliable, high-fidelity data to 

traditional enterprise data warehouses and cloud-based data warehouses for structured 

reporting and analysis. 

However, the emergence of cheap storage, combined with the scalability and robustness 

of cloud data warehouses, have caused a paradigm shift in data processing. The modern 

data approach of extract, load, and transform (ELT) moves a lot of raw data into 

compliant data clouds and allows data engineers to create pipelines for different types of 

reporting and analytics tools, such as data visualization, data science, and machine 

learning applications. ELT approaches are not just for today’s cloud consumption of 

data; they extend data retention for quick response time on analytical queries while 

allowing new applications to be built on top of existing data. While ELT is the preferred 

approach for the modern hybrid data processing approach in use by many companies, 

ETL actually remains the better choice in many real-time data processing applications. 
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7.7.2. Data Enrichment Techniques 

Once raw data lands as streams in data lakes and warehouses, it is rarely ready for 

immediate consumption. In fact, data engineers should use data transformation and 

enrichment processes to add backending data, annotate, clean, or format the streams 

before loading them into finished parts of the architecture. These backending tasks 

enable data analysts, data scientists, machine learning models, or reporting dashboards 

to work with high-quality, meaningful data. Data enrichment analyses can also be run in 

real-time to generate fresh data during the actual execution of batch or streaming queries. 

How data enrichment processes are designed and how they behave can have a dramatic 

impact on the development and operational time for the entire analytics platform. 

Stream and batch data enrichment processes share a number of similar characteristics. 

They describe a number of similar data enrichment techniques that address different 

problems, such as feature engineering for predictive analytics, backending processes that 

operate at wide scales, complex extracts from deep data sources, batching, or data quality 

operations that modify pretty much everything at the aspect of a single record, including 

correcting for delays in source data arrival times. Regardless of enrichment use case to 

be addressed, hatching of enrichment processes has been motivated by three key factors: 

network and processing costs, the presence of non-homogeneous environments and 

diversity of data sources; and the support for asynchronous or temporal dependencies or 

relations in data space. Designers of data enrichment processes and the operations that 

wrap and chain them have different goals. They can be interested in keeping the focus 

as much as possible on the design and then automatically optimizing for costs, or in 

guaranteeing some forms of costing transparency. Enrichment approaches also differ in 

how they factor and distribute computations among evolving states. 

7.8. Real-Time Analytics and Insights 

The analytical components of a real-time data architecture and pipelines apply 

techniques such as data preparation to clean and transform data and analytical models to 

derive new metrics or insights on the data. Keeping with the principles of data latency 

and amplification, it is important that the latency of these analytical models and 

processes are as low as possible, ideally real-time latency. Traditional approaches that 

train models offline and operate on a batch frequency are insufficient. Also, training and 

operating complex models that combine deep learning and other approaches may be 

impractical, so we need to focus on analytics that work well under real-time latency, low 

training frequency, and simple models. In this perspective, we categorize two types of 

analytics with specific model types: common real-time analytics based on time series 

forecasting with process security and predictive analytics based on predictive 

classification models. 
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Dashboards and Visualization 

The simplest form of insights is a dashboard that visualizes a collection of signal values 

over time. While dashboards can be built using historical data, the best practice is to 

perform real-time updates. These dashboards use simple plots, such as line and area 

charts, that show the value of each variable for users to explore. In order to derive a 

deeper level of real-time insights, our experience is that the dashboards need to expose 

a small set of metrics that have increasing business value. Rather than just providing this 

information on the dashboards, they should also offer more detailed catalogs so that users 

can interact and explore the other variables easily. 

Predictive Analytics 

One of the most popular examples of real-time predictive algorithms is the classification 

model that determines whether an incoming message is spam. Frequent checkpoints of 

these classification models allow coming up with a reasonable estimate of the current 

predictive model and any incoming new messages are classified using the current 

estimate in real-time without any delay. Other predictive algorithms, including ones that 

forecast timestamped values for the future based on historical data, have been recently 

gaining popularity. 

7.8.1. Dashboards and Visualization 

While real-time processing is typically used just for the analysis and detection of certain 

events of interest, streaming analytics allows you to see the results at any time of the 

processing pipeline. This functionality is generally exposed as a dashboard with various 

components like timelines, displays, charts, and maps that illustrate the results of the 

processing. Dashboards are not only used for exploration and querying but also to 

visualize patterns over time of the metrics and aggregated data. The visualization of the 

results should ideally provide the user with insights about the real-time behavior of the 

system, helping him to understand patterns that can be further investigated and 

operationalized. As opposed to data engineering for static batch processing, the design 

of these dashboards should account for two aspects. The first aspect is the actual ability 

to visualize and analyze data in real time. The second aspect is that stream analytics 

processes are usually built to be lighter than batch jobs. In other words, data flows 

derived from data streams to detected events are typically based on metrics and 

aggregates to optimize performance and costs. Some examples will illustrate the 

capabilities of dashboards, their use for data exploration and querying, and finally, their 

use for visualization over time of patterns in metrics and aggregates. Dashboards are 

used in all sorts of domains, both personal and business. They can be found in 

applications related to finance, health, security, climate control, travel, and beyond. They 
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are commonly found in business intelligence but also in network intrusions systems and 

business process management, as well as network and server monitoring. Finally, 

advanced applications, including smart cities and industrial use cases, are relying heavily 

on real-time dashboards, animation, and visualization. 

7.8.2. Predictive Analytics 

Real-time analytics are used increasingly frequently in organizations across a wide 

variety of domains to help detect new situations of interest and identify needed actions 

in anticipatory fashion, rather than merely responding after-the-fact and/or with only 

partial design. Predictive analytic techniques are of this kind, as they help answer the  

 

               Fig 7 . 3 : Real-Time Predictive Analytics: Demand Forecasting 

question: “Given the current and predicted future state of the world based on real-time 

estimates from sensors and historical knowledge of past patterns and outcomes over 

time, how can various parameters be adjusted to optimize our measures of success?” 

Such analytics have been implemented increasingly in recent years for a number of 

business applications. For example, several companies have integrated predictive 

analytic capabilities into their apps, tools, and platforms for dynamic pricing in order to 

help organizations adjust their prices faster and more effectively. Predictive analytics are 

also used in connection with device sensor data in order to forecast equipment or parts 

failures and recommend needed maintenance before problems occur, in the domain of 

the Internet of Things. This is referred to as predictive maintenance. 
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Machine learning techniques are increasingly being applied to perform predictive 

analytics, either as stand-alone techniques or as part of an online machine learning 

system that integrates real-time data, typically either as part of an unsupervised or a semi-

supervised learning framework. The employment of such techniques enables the more 

accurate prediction of variables that are strongly linked with other operationally 

significant metrics. These metrics could be the demand for airplane seats on specific 

flights, hotel rooms in a vacation area, or other perishable products or resources. In such 

implementations, the forecasts could be performed with different granularities of space 

and time and for different future time intervals, thereby helping organizations operate 

within the constraints imposed by such forecasts and optimization methods. 

7.9. Conclusion 

In this chapter, we have briefly reviewed foundational, emerging, and future concepts in 

data engineering, with emphasis on data storage and access management pipelines. We 

have illustrated concrete applications and example solutions, underlying the focus on 

data engineering for real-time processing and streaming analytics. In doing so, we have 

considered the context and communicated ideas in no technical jargon, for accessibility 

to business-oriented professionals. For professionals in engineering and development, 

we have included concepts that can be built upon for learning data engineering in 

practice, deepening technical skills through reading lists and exploration key paths. 

Future trends in data engineering that we expect include pushing the movement of 

engineering closer to analytical tasks with low coding requirements for analysts, 

automating more of the engineering understands for robustness in production use, 

automated transfer to the cloud with appropriate trust and security controls, scanner-

oriented stores for business ecosystems, and additional convergence on relational stores. 

Other areas of emphasis that we see for data engineering include intelligence-based 

automated monitoring and alerting for detection of pipeline failures, a greater emphasis 

on semantic data for wider application of business terminologies and ontologies, and 

greater implementation of human workflows around pipelines to avoid the uninteresting 

cycle of human decisions followed by automation. As a company, we also see software 

answer as a strong API and building block organization philosophy for assembling 

digital solutions traceable from their sources, easily integrating with external solutions 

and data sources, and being interpretable and understandable, built up from smaller 

pieces, for better ownership, maintenance, and evolution over time. 
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7.9.1. Summary and Future Trends in Data Engineering 

Data engineering provides the foundations of essential infrastructure, methods, and 

components that enable the little-known secret jewel of data science: its volume. The 

diversity, heterogeneity, size, and velocity of data at scale is an important descriptor of 

the petabyte and exabyte era of data. Because data is so very transient, we cannot think 

of it as a series of piles that we warehouse and then ask for occasional reporting and 

decision support querying. Data is a living entity, transforming and streaming through 

the business, requiring a different set of principles to maximize value. This is the core 

tenet of data engineering for real-time processing and streaming analytics. 

Real-time processing and streaming analytics tackle key data science challenges: 

latency, spike demand, and the derision of batch. Applications for real-time processing 

include targeted and personalized message delivery, advertising, fraud detection, and 

market monitoring. Streaming analytics allows us to continuously discover trends, 

patterns, and anomalies in data. This facilitates better and faster decision-making 

capabilities that are mission critical in a highly competitive landscape. The complexity 

of data varies greatly based on its provenance and dynamics. Data freshness is crucial 

for completing the mission critical tasks that both empower and embolden the business. 

The growth of the Internet of Things is increasing the scale and breadth of key 

performance indicators, encompassing both the enterprise and its customers at the edge, 

further demanding the new processes and patterns enabled by streaming analytics. 

Organizations will need to rethink their strategy with a focus on driving cost-effective 

and efficient ingestion pipelines and exploring old and new business questions for these 

transient data streams. Data will become ubiquitous, moving from systems-of-record to 

systems-of-engagement, in the never-ending journey to derive maximum business value. 
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