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Chapter 10: Leveraging deep learning 

for predictive financial modeling 

10.1. Introduction to Predictive Financial Modeling 

As a result of technological advancement, financial markets have recently become more 

chaotic and complex. Financial market prediction has drawn significant interest from 

many academics and institutions in a variety of fields, including data mining and expert 

systems. Stock price prediction has become a challenging task due to the market's chaotic 

nature, with various observed factors contributing to price changes. Numerous 

traditional statistical techniques and recent data mining techniques are used to forecast 

the price movement direction or value in various time horizons. 

Price prediction has been a classic problem in both academia and industry. Financial 

time series prediction is a long-standing problem, and extensive research is conducted in 

various disciplines, including statistics, econometrics, and machine learning arenas. 

Financial price prediction involves predicting the future price series of a specific stock, 

index, or foreign exchange. Financial price forecasting is the process of forecasting the 

future price of stocks, bonds, foreign exchanges, commodities, etc. A high accuracy 

forecasting model can be employed in portfolio management and trading, leading to huge 

profits. A pricing model prediction can be provided in derivative markets. On the other 

hand, highly inaccurate or erroneous predictions may cause huge losses in investment. 

Forecasting highly volatile financial indices or foreign exchange rates is a complex 

nonlinear problem, as many uncontrollable factors can change the price. How to select 

or combine appropriate modeling techniques for price direction movements must be 

taken into consideration. Generally, two approaches can be differentiated for price 

forecasting: technical analysis and fundamental analysis. Technical analysis forecasts 

the prediction price based on prior price. Fundamental analysis, in contrast, aims to 

forecast the company value by investigating the economy, industry, and company 
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relevant indicators. However, it should be noted that no single analysis can deliver 

satisfactory results in price prediction or decisions. 

 

Fig 10.1: Leveraging AI for Financial Modeling 

10.1.1. Background and Significance 

Deep learning (DL) techniques are a family of machine learning (ML) methods 

structured as neural networks possessing several dozen or more sequential layers of 

simple, non-linear signal processors (Kuo, 2011; Brynjolfsson & McAfee, 2017; 

Davenport & Ronanki, 2018). Despite the tremendous advances achieved over the past 

years by DL techniques, they have not yet been widely adopted for concrete industrial 

financial modeling applications. For instance, the latest industry risk prediction models 

for credit risk, used to estimate default probabilities of commercial counter-parties for 

creditworthiness assessment and limit setting purposes, still rely on highly hand-tuned 

stage-wised statistical learning tools, along with a variety of pre- and post-processing 

optimization techniques. Other applications such as banking and insurance policy 

modeling, pricing and settlement, lending and trading, risk management, fraud detection, 
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recommendation, and benchmarking also mostly employ similar statistical learning 

techniques. 

The reasons for the slow adoption of DL models are two-fold: (1) Data: most of the state-

of-the-art deep neural network models (DNN) have relied on image and language 

datasets for which upscale or temporal continuity is well-preserved and no intricate pre-

processing or engineering is required. In stark contrast, real-world financial data are 

high-dimensional, sparse, noisy, and extremely imbalanced which makes deep DNN 

models particularly challenging to train; (2) Model: Deep risk prediction models are 

typically composed of complicated architectures with sophisticated strategies for data 

engineering, initialization, training, hyper-parameter tuning, etc. which rely heavily on 

toolkits that are still maturing, a steep barriers to entry for practitioners. Despite these 

challenges, a small number of publications and noteworthy models have recently begun 

replicating some of the success achieved in other fields. 

10.2. Fundamentals of Deep Learning 

Deep Learning is a consolidated, state-of-the-art Machine Learning tool to fit a function 

y = f(x) when provided with large data sets of examples {(xi, yi)}. Its flexibility 

combined with its generally successful performance makes it an obvious choice for high-

dimensional, non-linear, and heteroscedastic numerical prediction tasks, such as 

forecasting stock prices or risk assessment simulation in complex financial and 

environmental systems. In regression tasks, the straightforward application of Deep 

Learning (DL) models is equivalent to fitting a (very) non-linear function y = f(x), for 

which one observation y is given both the actual values of the covariables x and the 

model hyperparameters a, so as to obtain a point estimate of the target. In the context of 

forecasting in challenging financial environments, this basic scheme of a DL model does 

not take into account the uncertainty or dispersion of the underlying stochastic process 

of financing, and therefore the uncertainty of a prediction is not communicated. This 

represents a limitation for tasks where there is a cost associated with communicating an 

erroneous prediction, or when the requirements of the task demand filtering some 

predictions to provide better calibrated ones. To remedy this, distribution-based 

predictive Deep Learning models, which predict not only the most likely outcome of the 

observations but also its full statistical description, had recently emerged. Though there 

are state-of-the-art distribution-based Deep Learning models for regression tasks, their 

application to forecasting consumer-use financial tasks is still an open area. This study 

tackles a challenging real-world problem of forecasting impending financial expenses 

and incomes of consumers of a financial company. Within the task, which is 

benchmarked with a small number of standardized baseline models, a long short-term 

memory sequence-to-sequence predictive Deep Learning was designed for use in a 
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production environment, assessing the calibration of its predictions by measuring both 

the area under the calibration curve metric and a normalization for application-specific 

costs. 

Traditionally, people train the weights of linear transformations between layers while 

keeping the activation functions fixed. Usually, one identical activation function is used 

for all the neurons on each single layer. Rectifier linear units (Relu) are used as the 

default choice for the activation in hidden units, while sigmoid and tanh functions are 

used where output values are bounded. The drawback of Relu activation is the issue of 

dead units when the input is negative, which makes people introduce functions with non-

zero values in the negative range, including leaky-Relu and Elu. As intensive studies are 

conducted, more types of activation functions such as GeLu and Mish are proposed. 

There are also activations designed for particular learning tasks such as reinforcement 

learning, where the activation functions used for neural network function approximation 

is computed by the sigmoid function multiplying by its input. However, explosion or 

vanishing gradients in back propagation are issues that harm the performance of the 

model due to the shape of activations. Techniques such as clipping and batch 

normalization can be implemented to alleviate these issues. 

10.2.1. Neural Network Architectures 

On the other hand it has been shown that a multi-layer feed-forward or fully-connected 

neural network is a powerful nonlinear function approximator (Schreiber et al., 2008; 

OECD, 2021). The generalized structure of such a network is a hierarchical set of layers, 

very similar to that of the human brain. Each layer is composed of a finite number of 

artificial neurons. Two or more neurons of different layers are connected by the weighted 

connections plus bias weight, and together they end up the three inputs plus bias weight 

with hidden layer, where hyperbolic tangent is introduced as a bounded nonlinear 

function. The new value is propagated through the weights and does the next layer's 

weighted input ones in a similar way. The feed-forward neural networks can also be 

composed of one or more hidden layers. In this configuration, the hidden neurons 

enabled the network to provide a sufficiently rich representation space, thereby 

theoretically achieving any desired approximation or mapping behaviour. However, it 

has been shown that a standard multi-layer feed-forward neural network yields a 

straightforward optimization landscape that can easily get stuck in local minima. An 

estimation error surface is complex with numerous local minima. The complex inputs 

rely heavily on their lengthy representations, which can only be used by a fully-

connected neural network. The network large dataset consists of 1488288 pieces of 

complex model and testing data. Using all data to train the model would be very 

inefficient, therefore training and testing data are selected. The model data for training 
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and testing are constructed based on different-valued real parameters and noise level 

respectively. Generally input data are segmented equally or randomly from data points 

for each input-segmenting method. These two feed-forward networks using dissecting 

algorithms can be called segmenting input with multi-hidden layers and multi-output 

nodes, respectively. The multi-hidden-layer net would readily exhibit the behavior of a 

monolithic standard graphical model, for which the regularization and the thresholding 

division assume the roles of the original static unregularized training construction. 

10.2.2. Activation Functions 

In a deep neural network, each layer contains a set of neurons and each neuron takes 

input as a weighted sum of neuron outputs from the previous layer plus a bias. The 

weights and bias take account of linear transformation of the data flow, while the 

activation functions bring in non-linearity. Basically, once a task is defined, an 

architecture is constructed, and weights are initialized, the training phase comes. The 

weight parameters are updated via gradient descent by back propagating errors during 

training. The selection of activation functions for different tasks is an issue with 

importance. It is acknowledged that activation function selection significantly affects 

model performance. Strategies on activation selection, mostly involving considering 

prior knowledge of data prior, are developed to release the effort on the time-consuming 

process of hyperparameter tuning, while model-agnostic approaches simplify the 

concern with an automatic solution on the choice of activation functions based on 

reinforcement learning. Generally, there are two main types of activations: the standard 

functions and the flexible functions. 

10.2.3. Loss Functions and Optimization 

For mathematical models describing the dynamics of the observed process, state 

variables xt are used, and a loss function L(θt; λt) defines parameters of the model to be 

estimated. Still, the application of Deep Neural Networks (DNNs), which are trained to 

approximate a mathematical function given a set of its parameters, follows a different 

approach. For DNNs the time series that is described, i.e. {yt, t = 0, 1, . . . }, is divided 

into a set of observations X that is fed into the architecture to train parameters Υ, then 

applying this model for the out-of-sample observations Y. Models, like GLM or 

Autoregressive Moving Average (ARMA), are highly interpretable mathematical 

functions. In contrast, black-box DNN provides a set of parameters that cannot be 

directly connected to the data generating process. Thus, DNNs provide less control over 

the definition of the observable process they try to approximate. 
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One of the main differences with DNNs is the missing definition of a state representation. 

The dimension of the input layer must be described but which particular features of the 

time series must be used (lagged observations, scaled or divided by volatility) cannot be 

coded directly into the architecture. Instead, bitmaps of the input features are usually 

used for directly feeding the observations as t × n matrices, where t is a time window 

and n is the number of the time series. This allows architectures to recognize harmonic 

cycles or periodicity like in Convolutional Neural Networks. Nevertheless, it imposes 

the order and definition of the events included for the training. 

Two tasks must be accomplished for the optimization of financial models built using 

Deep Learning: first, a loss function must be defined, i.e. how to assess the quality of 

transactions taken basing on the output of the model, and second, a big dimension 

hyperparameter optimization task related to neural architecture searching must be 

solved. While the latter mimics the structure used in forecasting time series easily, the 

former is much more complicated to create. 

10.3. Data Preprocessing Techniques 

Proper data pre-processing is the key to successful implementations of machine learning 

models,  especially for deep learning models. Poor quality, biased, or incomplete data 

will hinder the performance of a model even with sophisticated architectures and 

hyperparameter choices. On the other hand, a good dataset will mitigate the impacts of 

model architecture selection and hyperparameter tuning and is usually good enough to 

produce acceptable performance levels on fully vanilla models. As real-world finance 

data is often huge and noisy, this work spends a lot of time and effort surveying the credit 

risk prediction practices in financial institutions to obtain clean and useful data. This 

section introduces each step of data pre-processing along with proposed scripts. The 

proposed data pre-processing approach has the potential to automate the decision-

making process of other data pre-processing steps as well, which can greatly benefit 

other research topics that apply machine learning models to a wide range of data. The 

following describes the three main steps of data pre-processing in detail, including data 

cleaning, incorporation of new datasets, and encoding schemes and techniques applied 

to improve the effectiveness of deep learning point forecasting methods. The section also 

discusses the weighting schema used for BB and SKU loss functions and the embedding 

module architectures. It is noted that embeddings with a history length of 125 were used 

for all data and settings, including baselines. User and item embeddings with different 

architectures were carefully tuned and cross-validated. The one with the largest 

validation AUC is reported for each method. Comprehensive ablation analysis is also 

provided to show insights into the importance of each component involved in the whole 

framework. In the first part, the careful data pre-processing procedure is first elaborated 
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on in detail and then the modelling process, hyperparameter setting, and optimization 

process are introduced. An important step in preparing a dataset with chronological time-

ordering for machine learning and forecasting is to curate it from behalf of the actual use 

cases and commercial implementations of prediction models. Outside well-established 

datasets are unlikely to reveal the actual real-world decision-making processes and 

reflect a business’s concerns or objectives. Thus, this work first studied in-depth credit 

risk detection practices in large financial institutions to prepare a dataset that contains 

high-quality information to investigate how deep learning and machine learning can 

better support credit risk prediction in terms of and precision. 

 

                               Fig 10.2: Data Preprocessing Techniques 

10.3.1. Data Cleaning and Transformation 

This study collected lending record columns related to the risk of loan repayment from 

the authentic loan platform in China, including loan related information, loaner’s 

account basic information, and loaner’s account transaction record information. For each 

record, there were 95 types of features and over 20 types of records available, and more 
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than 170 million transaction records were processed. In addition, collaborations with 

data scientists and financial experts from the loan company also helped in understanding 

the domain knowledge. It is obviously infeasible to model all 170 million transaction 

records and 95 features due to the high computation cost and high dimensionality during 

acquiring model weights. Due to the collaborative work with domain knowledge experts, 

initially, the feature selection algorithms were implemented and the following features 

were filtered: 44 types of loan features, 18 types of loaner’s account basic information 

features, and 12 types of loaner’s account transaction features. 

It is shown that for rebalancing the highly imbalanced classes, both down-sampling of 

majority classes as well as cost-sensitive learning approaches can be useful. A down-

sampling method is proposed, where the majority class samples are rebalanced by 

randomly deleting samples. However, this method can potentially lose information 

regarding training samples from the majority classes. To prevent the loss of majority 

class samples, a cost-sensitive SVM is trained with a re-weighted objective function, 

with weights inversely proportional to the class frequencies. The effectiveness of using 

cost-sensitive class weighting prior is verified. Finally, with multiple available machine 

learning models, it is shown that for imbalanced data, performance varies significantly 

by the underlying classifier, evaluation measures, imbalanced ratios and even between 

different datasets. It is shown that there is no single best classifier and model training 

strategy that is appropriate under all situations. Thus, robust methods and learning 

strategies regardless of models are necessary to improve the stability of detection 

performance for imbalanced data. 

As consumer lending has become a lucrative business for financial technology 

companies in the past decades, there is an urgent need of developing a machine learning 

risk prediction system. To do so, a variety of pre-processing and data mining techniques 

are proposed to address challenges encountered in risk modeling using real-world 

business data. This study finds that deep learning approaches outperform classical 

statistical learning methods by a significant margin and at present models are in 

production, facilitated with better interpretability of the model prediction outputs. 

10.3.2. Feature Selection and Engineering 

One important preprocessing step for signals containing a large number of features is 

feature selection. Only selecting a smaller feature subset that preserves predictive power 

reduces the need for memory and computation, leading to a more understandable, easier 

to tune, and generally better trained model. Feature selection may be related to Xavier 

initializing most of the heavy convolution lenses in the DNN feature extractor in trained 

bias-variance trade off. Feasibly selecting features before they are fed into the DNN 

helps keep the number of neurons exponentially smaller than that of input features, and 
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is essential for the analyses of sparse inputs such as stock event representation. The 

feature selection step, e.g., using a linear model or information gain rank-based selection, 

can be constructed ahead of training DNNs on an input set. 

Selecting signal features increases the interpretability of the solution while training the 

model to predict on a raw feature input space may not. Processes with lesser memory 

footprint cost, e.g., limit DNN input parameters, and training diminutive features are 

easier at avoiding spurious minima. Adding a final class-based pooling operation in this 

framework can account for how much output nods will receive an interpretation in terms 

of input features. 

10.3.3. Normalization and Scaling 

Normalization is required if time series from different sources or with disparate value 

ranges are fed into the same model as multiple input features. Data that vary greatly in 

scale can lead to the issue of exploding gradients during training. Thus, large magnitude 

values overshadow smaller magnitude values, causing the neural network not to learn 

effectively. Data normalization is a common pre-processing step used to prevent the 

model from converging into an undesired local minimum in financial time series 

forecasting. Standardization and scaling flat to a certain bound are common practices 

when normalizing the training features . 

An ad-hoc way to normalize financial time series input features is to transform them to 

the interval of ( −1, 1). Hence, the inputs, returns, volume, and labels are all rescaled by 

a simple linear transformation to values between −1 and 1. Then, the transformed inputs 

are fed into a simple feed-forward fully connected one stratum dense network, 

comprising three hidden layers, with hyperbolic tangent activations. During 

implementation, approximately 20 percent of past data, including up to one and a half 

months of price movement, is utilized to predict the last day. The mean square error 

(MSE) loss function is used to measure the predictive performance. The Mean Absolute 

Error (MAE) error is used as an evaluation metric while providing the reference 

directions and probabilities for model selection. 

The output probability is then fed into the loss function to compute the binary cross-

entropy loss and its gradient. Then it propagates backward through the computational 

graph of the prediction to update all learnable parameters, including the weight matrices, 

kernel matrices, and projection matrices learned by the training or fine-tuning MLP 

models, either end-to-end during training or off-line during modelling. Each training 

pass for the financial time series of a single minute is regarded as one batch, and the 

model parameters are updated after all samples in the training set are used once to form 
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one epoch. The training is terminated when reaching the maximum threshold of 100 

epochs or when the updating approaches zero. 

10.4. Deep Learning Models in Finance 

Deep learning is a promising technique to deal with the heterogeneous, highly variable 

patterns in finance. It is a standard econometric framework to describe the data-

generating processes in macroeconomics, finance, and beyond. In conducting 

econometric analysis, several ways must be decided upon, including the choice of targets 

to be modeled, fitting and inference methods, sources of information, and control for 

endogeneity. The goal of this paper is to improve upon this standard by addressing the 

following aspects of deep learning in the context of applied econometrics. 

The proposed deep learning model can be perfectly described and estimated in this 

framework. Still, they are perfectly aware of the practical issues that arise in 

implementing it. They deal with the model class in its theoretical generality. Still, they 

illustrate the computational feasibility of the deep learning model in a large application 

dealing with important and complex safety and stock pricing. 

The experiments demonstrate predictive ability for both intra-day and daily price 

movements, and conditions under which this ability depends on background stock 

information. They emphasize that stock price prediction may be ill-posed, highlighting 

interesting directions for future research, such as recursive training and model averaging. 

The usefulness of the empirical exercise resides in the potential extension to a portfolio 

of stocks. These and other applications of the methodology in forecasting financial time 

series will take longer than typical econometric applications of similar size and 

complexity. Still, they highlight a new way of thinking about predictions that may be 

fruitfully applied in finance. 

The analysis of the pluggable deep learning architecture compares predictive ability 

under various assumptions. In its basic form, it treats stocks as independent and 

identically distributed. While the model remains general and applicable in this way, it 

misses the factor structures and correlations that are fundamental to the pricing of stocks 

as complex systems. As these biases can be dealt with and acknowledged, this choice is 

comparatively tractable and illustrates typical selection biases that forecast horizon 

varies with prediction interval length. Under this assumption, the pairs of inputs and 

targets are constructed using the interarrival time difference. In its simplest form, the 

model architecture treats the selected prediction pairs independently. To expose the idea 

most simply, no recurrent viscosity is assumed. However, if delays or long-memory 

processes are suspected, previous inputs one or more time steps back can also be 

incorporated. 
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10.4.1. Recurrent Neural Networks (RNNs) 

Recurrent deep learning architectures have received a lot of attention in the past decades 

in the computational intelligence community. These models have been employed in a 

wide range of applications spanning from text classification to speech recognition and 

stock price forecasting. Recent advancements in deep learning, combined with 

increasing processing power, have made it possible to train RNNs on massive amounts 

of data. RNNs break the limitations of hidden layer architectures widely employed in 

feedforward networks. RNNs accept sequences as inputs and, by doing so, preserve the 

information from previous items in the sequence. This work considers the formulation 

of Gated Recursive Networks based on recurrent architectures for supervised learning. 

RNNs differ from standard feed-forward architectures in which a neural network 

receives as input a single item and produces as output a single target value. On the 

contrary, the RNN accepts a sequence observation of items as input and produces a 

sequence of estimates. To this end, a hoisted feedback operation is applied to the hidden 

layer, resulting in a presentation of the hidden state that no longer depends exclusively 

on the input. The application of the feedback traverses the hidden layer itself. Since 

RNNs consider the whole sequence in predictions a bulk of memory is required, limiting 

their usability. Thus, it is important to analyze a portion of the output history and 

feedback of observations to attain a more computationally acceptable architecture. 

In financial engineering, forecasting is important in many different applications, 

portfolio optimization, regulatory compliance, risk exposure assessment, and 

management procedures. In times of stress, financial predictions become unreliable 

creating a challenge that must be addressed. Financial time series exhibit both short and 

long spikes, depending sharply on unexpected events. RNNs seem to be a good candidate 

for stock price predictions. They are able to capture temporal relationships, and model 

sequences of inputs, they are also quite resistant to noisy inputs and fluctuation of the 

data. 

10.4.2. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of neural networks that are mostly 

known as good image classifiers. CNNs consist of convolutional layers, which have 

convolutional filters, pooling layers, normalization layers, and fully connected layers. 

To forecast time series using CNNs, one can either take the original time series and feed 

it as a 1D vector to the model or transform the input data through Image Processing and 

generate pictures. In this latter method, 2D images are generated so that CNN can treat 

them as pictures. Recently, CNNs have been used for the purpose of forecasting financial 

time series, both to forecast fundamental variables such as interest rates or currencies 
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(i.e. 1D time series), or to forecast price series from stock indices or financial assets (i.e. 

2D images). As to the first kind, it is possible to feed a CNN model with numerical data 

(unprocessed) and retrieve good results. In this sense, CNNs have been used to forecast 

the volatility of financial time series. 

On the second kind of input data, financial information is transformed into images 

through different mathematical methods, and then fed to the CNN model. The 

transformation of numerical financial data through Image Processing, more specifically 

through Transforming Recurrence Graphs into images, is used to forecast its volatility 

in a stock index. This model is primarily based on two types of Convolutional Neural 

Networks: the first model consists of a Conv2D layer which is applied to time 

information converted into pictures (images) through the RG transformation; and the 

second model is a simple CNN used to forecast time series data (TSDs) unprocessed. 

Aside from the differences in data treatment, both models have several common aspects. 

The first is common to both model specifications, which is the data set used to test these 

models. The second is that once the image treatment of RG is performed, no more pre-

processing is needed; all these images are used as input for both models. A third common 

aspect is the splitting of the dataset into a training set for training models and a validation 

or testing set for future predictions. The fourth common point is that the models are 

implemented in Python using Keras, with a TensorFlow backend, and run in a machine 

with an Nvidia GTX 1070 with 8GB of memory for a graphical processing unit (GPU). 

10.4.3. Generative Adversarial Networks (GANs) 

Research of GANs has flourished rapidly, which finds a wide range of applications in 

computer vision and beyond. GANs simply have two competing neural networks: a 

generator and a discriminator. The generator draws samples from a space, and the 

discriminator judges whether a sample comes from the training dataset or is generated 

by the generator, which correspondingly gives the generator a reward. During 

competitive training, the distribution of the generated samples eventually converges to 

the distribution of the training dataset. Both the generator and discriminator are typically 

neural networks, which are complex nonlinear functions that can approximate their 

target distributions well. Compared to those non-competitive training methods, the 

advantage of GANs training is that the algorithms need significantly larger iterations to 

achieve the same level of accuracy. 

The first paper is exploring strategies that are effective against a set of adversarially 

bounded policies. For the concern of action-space continuous MDPs, a GANs-based 

algorithm called APAC-Net is proposed, which solves certain classes of MFGs in 

dimension up to 100. The algorithms trained under such a supervision are robust against 
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adversarially perturbed policies, which is expected to have applications in safety-critical 

sequential decision making. The second reformulation of this paper is widely accepted, 

or formulated as a min-max game, which leads to familiar GANs in various settings. 

Two frameworks in which GANs have been adopted in the mathematical finance 

literature are identified. In the first framework, the no-arbitrage condition is exploited to 

recast a constrained control and optimization problem as a minimax problem to estimate 

the SDF. 

10.5. Time Series Analysis with Deep Learning 

To build the end-to-end DL-based Financial Trading System, input data is first 

transformed to be compatible with the analyzer network. Data from a financial market 

is collected over a time window. Given this time window, rates are sampled for a set of 

assets, each containing a 10 minutes resolution time series input. Each input time series 

is transformed using one of two DL networks, a CNN and an LSTM adapted to energy 

consumption forecasts, to obtain an estimation of the future market movement regarding 

a specific asset. Given all above N assets and respective sample predictions, a confidence 

estimator loads a trained CNN, providing the necessary information to infer trade entry 

and exit points. A Probabilistic Neural Network is trained to assign each trade a market 

movement confidence score. Then, given inputs consisting of the movement prediction 

made on the chosen asset and general market prediction of other assets, the network 

attempts to classify the market movement into one of three potential scenarios (uptrend, 

downtrend or no-trend). 

Time series data analysis is a critical problem in various fields, including financial, 

climate, social and biological sciences. Time series data is a sequence of observations 

indexed or ordered by time. Commonly, the objective of time series analysis is 

estimating meaningful statistics and patterns of the observed sequential data. In 

particular, the forecasting task aims to estimate the future values of a time series data 

based on previously observed associated measurements.  
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Fig : Deep Learning for Financial Time Series Prediction 

10.5.1. Understanding Time Series Data 

Failing to account for the time element can render human reasoning and prediction futile 

in numerous situations where the evolutionary characteristics of reality play an important 

role. In such cases, countless pieces of historical information will be represented as time 

series data. Each data point can be uniquely described by two sets of characterizing 

features: the learning input/output pairs (past/future states), and the covariates (possibly 

weighted real-valued inputs) that best describe them. Nevertheless, as the real-valued 

time series grow longer, the dimensionality of the input space grows exponentially, thus 

rendering it very difficult to analyze the data and work with them. Creating surrogate 

models, which have a lower dimension than the original cached data space and can 

predict the output using its own inputs, are still useful alternatives. 

Financial time series, which represent the money commodities flowing in and out of 

various financial markets, on the one hand exhibit a highly volatile, wealth-seeking 

behavior due to the speculation performed by investors, companies, and other 
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organizations in the ongoing, global visualized 24/7 trading rooms. Just as one cannot 

expect the perfect prediction of the arrival times of vehicles boarding and disembarking 

from a station, accurately predicting future prices in financial markets is impossible due 

to the multitude of simultaneous influences exerted on price levels, which trail back to 

very different historical moments in time. Nevertheless, a better understanding of such 

markets can have a huge impact on forecasting price levels, which is the task aimed for 

in this paper, where financial time series are understood as graphs. On the other hand, 

time series can exhibit periodic behavior, such as seasons or tidal waves in weather or 

underwater observations to monitor drop-offs in oceans. Also, similar evolutions should 

produce similar results. This is why scientists proliferated models of temporal 

evolutions, alternative time-domain representations, and equivalent data set treatments. 

This was also the case with financial time series. 

10.5.2. Techniques for Time Series Forecasting 

In the financial world, time series forecasting has become an integral part of decision-

making since it enables the prediction of future trends using historical time series data. 

With the development of information technology and a growing number of applications, 

high-frequency time series forecasting with a large number of records has gained 

attention. Time series forecasting is an extremely challenging problem since the values 

are sequentially dependent on one another. In recent years, deep learning methods have 

achieved state-of-the-art performances in various domains by capturing complex non-

linear temporal relationships. However, the capability of these methods with regard to 

time series forecasting has been overlooked. Traditional statistical models, such as 

ARIMA or Exponential Smoothing, generally assume a linear relationship in the data 

and are thus rarely suitable for complex time series data. Recently, machine learning 

algorithms, such as SVM, are capable of learning non-linear relationships and have been 

applied to time series forecasting applications. 

Yet, it is often hard to model sequential data. Some recurrent neural networks (RNNs)-

based architectures have been proposed for time series forecasting, including long short-

term memory networks (LSTM), Gated Recurrent Unit networks (GRU), and deep 

recurrent neural networks (DRNNs). Nonetheless, RNNs based models have problems 

with difficulty in parallel computations, the vanishing gradient, and overfitting. 

Furthermore, although convolutional neural networks (CNNs) ignore the sequence order 

of time series data, many 1D CNNs based models have been developed in the literature 

for time series forecasting. Extensive empirical studies demonstrate that they can 

compete with current state-of-the-art methods and achieve superior performance on 

several public datasets. With the remarkable advance of deep learning techniques, 

various methods have been applied to time series forecasting, including seasonal 
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decomposition, fully connected networks, RNNs-based networks, CNNs-based 

networks, and hybrid models. 

In recent years, deep learning applications in time series forecasting have attracted much 

attention as a plethora of data sets become available and deep learning techniques 

develop rapidly. Diverse methods have been proposed for time series forecasting, 

including CNN-based networks, RNN-based networks (GRU or LSTM), and hybrid 

models. In particular, convolutional neural networks (CNNs) are effective in capturing 

both local and global patterns in time series. It leverages deep convolution and 

downsampling operations that lead to fewer parameters as well as a larger receptive field. 

In addition, some deep learning methods can also model complex temporal dynamics. 

For computational strategy, RNN-based networks typically suffer from a huge number 

of parameters and inefficient computations. The CNNs-based networks enable parallel 

computation in training and adopting fewer parameters compared to RNN-based 

methods.  

10.6. Conclusion 

A new set of momentum factor models that enhance the classical Smart Beta strategy by 

incorporating additional asset classes, modeling frequencies, and loss functions is 

presented. All models are end-to-end trained and specialized towards addressing a 

diverse set of risk types at numerous points throughout the architecture, from risk 

prediction to risk-aware asset pricing. Extensive empirical evidence shows that 

momentum factor models built within the proposed framework significantly outperform 

alternatives also employed in practice. 

A new approach to prediction markets that sustains liquidity and prevents manipulation 

is presented. Participants individually manage a fund that places wagers in order to 

maximize their expected returns. Liquidity providers continuously supervise funds, 

measuring their performance and contribution to liquidity. If a fund is badly performing, 

the liquidity provider either withdraws its support, in which case the corresponding 

market closes, or manipulates the fund’s prices. Both cases destroy liquidity whereas the 

former is irreversible.  

10.6.1. Emerging Trends 

With the continuous rapid economic development and improvement of financial 

globalization, there are more and more securities and financial tools appearing in the 

market, so speculation has become a common phenomenon. Stock price prediction is to 

utilize numerous original data, such as company stocks, macroeconomic conditions, and 
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investment situation, and through deep learning and machine learning models, to 

reasonably integrate the features into a model to predict future stock trends. At present, 

researchers mainly focus on studying the internal peacefulness of the stock market. 

However, this paper makes use of stock-related news and focuses on stock prediction 

from the perspective of external influences. A blending ensemble model is proposed, 

and the three sub models are composed of a two-layer deep learning model and a basic 

SVM classifier. Such a well-trained model ensemble is demonstrated to be capable of 

stock price trend prediction sufficiently by optimizing a strictly defined ensemble cost 

function. The new proposed core ensemble algorithm can not only be applied to stock 

price-related domains but also to various domains, input types, or sub-models. These 

methods have been considered the hottest trend and have been widely used. This paper 

uses sampling data from October 2014 to October 2020 to train the model designed using 

various deep learning algorithms. Based on the well-trained model using all model 

outputs as the input of SVM, the test data from October 2020 to November 2022 is used 

to obtain the final predictions. To evaluate the quality of the new model, the model 

dependent on only price data is also trained, and the comparison results show the evident 

improvement of prediction performance. Additionally, not only the LSTM, CNN, and 

SVM are used, but also other machine learning methods are considered so recursively 

for the comparison of the correlation of the model outputs proposed. 
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