Big Data Analytics with Microsoft: Scalable Intelligence Using Azure Synapse, Fabric, and Power BI

##plugins.pubIds.doi.readerDisplayName## https://doi.org/10.70593/978-93-7185-151-0

Authors

Swarup Panda
SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

Keywords:

Big Data Analytics, Microsoft Azure, Machine Learning, Power BI, Data Visualization, Cloud Data Warehousing, Scalable Intelligence

Synopsis

This book is a complete guide for professionals and data enthusiasts who want to make the most of Microsoft’s cloud-native ecosystem for big data analytics. It covers essential services like Azure Synapse Analytics, Microsoft Fabric, and Power BI. The book provides a full framework for scalable data processing and smart decision-making. Readers will learn best practices for data ingestion, transformation, storage, modeling, and visualization. They will also see how to combine data engineering, data science, and business intelligence workflows within a single Microsoft environment. With practical examples and architectural designs, this book helps readers build secure, effective, and cost-efficient analytics solutions that meet the needs of today’s enterprises.                                                                                               

References

Ajiga D, Okeleke PA, Folorunsho SO, Ezeigweneme C. Methodologies for developing scalable software frameworks that support growing business needs. Int. J. Manag. Entrep. Res. 2024;6(8):2661-83.

Salloum S, Dautov R, Chen X, Peng PX, Huang JZ. Big data analytics on Apache Spark. International Journal of Data Science and Analytics. 2016 Nov;1(3):145-64.

McPadden J, Durant TJ, Bunch DR, Coppi A, Price N, Rodgerson K, Torre Jr CJ, Byron W, Hsiao AL, Krumholz HM, Schulz WL. Health care and precision medicine research: analysis of a scalable data science platform. Journal of medical Internet research. 2019 Apr 9;21(4):e13043.

Barga R, Fontama V, Tok WH, Cabrera-Cordon L. Predictive analytics with Microsoft Azure machine learning. Berkely, CA: Apress; 2015 Aug 19.

Abourezq M, Idrissi A. Database-as-a-service for big data: An overview. International Journal of Advanced Computer Science and Applications. 2016;7(1).

Demirkan H, Delen D. Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems. 2013 Apr 1;55(1):412-21.

Nothaft FA, Massie M, Danford T, Zhang Z, Laserson U, Yeksigian C, Kottalam J, Ahuja A, Hammerbacher J, Linderman M, Franklin MJ. Rethinking data-intensive science using scalable analytics systems. InProceedings of the 2015 ACM SIGMOD International Conference on Management of Data 2015 May 27 (pp. 631-646).

Baldominos A, Albacete E, Saez Y, Isasi P. A scalable machine learning online service for big data real-time analysis. In2014 IEEE symposium on computational intelligence in big data (CIBD) 2014 Dec 9 (pp. 1-8). IEEE.

Talia D. A view of programming scalable data analysis: from clouds to exascale. Journal of Cloud Computing. 2019 Feb 11;8(1):4.

Sandhu AK. Big data with cloud computing: Discussions and challenges. Big Data Mining and Analytics. 2021 Dec 27;5(1):32-40.

Published

7 August 2025

Details about the available publication format: E-Book

E-Book

ISBN-13 (15)

978-93-7185-151-0

Details about the available publication format: Book (Paperback)

Book (Paperback)

ISBN-13 (15)

978-93-7185-524-2

How to Cite

Panda, S. . (2025). Big Data Analytics with Microsoft: Scalable Intelligence Using Azure Synapse, Fabric, and Power BI. Deep Science Publishing. https://doi.org/10.70593/978-93-7185-151-0