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Chapter 7: Utilizing machine learning to optimize 

product lifecycle management from design to end-of-

life     

7.1. Introduction 

Fulfilling customer needs through the right product, at the right moment, and at the right 

price is the main objective of product lifecycle management (PLM). PLM integrates 

information, processes, business systems, and people across an extended enterprise from 

the customers' perspective. This begins with the conceptualization of the product, 

continues through its design, manufacturing, distribution, purchase, support, and final 

disposal, and is supported by data and information storage and information technology. 

PLM brings together a company's functions and those of its suppliers, resellers, and 

customers to provide an integrated view of data, processes, and business systems. By 

uniting product data with business processes and systems throughout the organization 

and around the world, PLM enhances collaboration and enables organizations to 

capitalize on the synergies potential in product-related activities. The expected results 

are a shorter time-to-market, an improved product quality, reduced manufacturing costs, 

lower service and support costs, and a product line that better meets customers' needs 

(Kiritsis, 2011; Garcia & Freire, 2014; Liu et al., 2022). 

Because PLM impacts the entire product lifecycle, all companies and organizations that 

affect the final product must be part of the collaborative team. This practice of breaking 

down the classical functional financial reporting from product conception to product 

sales creates the environment to visualize company opportunities for accelerated product 

development through innovation synergism. PLM rationalizes the development and 

management of product-related data that enable organizations to achieve their strategic 

objectives in costs, quality, and time. The PLM historical evolution has accumulated 

enormous amounts of data in this product-related repositories. Organizations are asking 

themselves how to take advantage of product-related data to improve PLM decisional 

processes (Younis et al., 2020; Yildizbasi, 2022). 
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7.1.1. Setting the Stage for Product Lifecycle Management 

Product Lifecycle Management (PLM) has emerged, in the last decades, as a business 

strategy that manages the complete lifecycle of a product, from inception, through 

engineering design and manufacturing, to service and disposal. PLM integrates people, 

processes, business systems, and information to facilitate the effective and efficient 

management of products and associated data. The goal is to optimize performance, 

improve innovation, support collaboration, and manage for profit within a largely virtual 

enterprise structure in an accelerated time to market environment, with enhanced ability 

to deal with risk and uncertainty. PLM drives innovation onto the agenda of senior 

management and potential investors. 

PLM also builds the knowledge infrastructure for innovation and by natural extension, 

competitive advantage. PLM has developed from an Engineering-centered perspective 

into a much broader multi-disciplinary concept that supports the entire Enterprise 

through the deployment of a knowledge-centric Approach, supported by Collaborative 

Enabling Technologies around a Products Developments and Service Ecosystem that 

extends out to Customers and Partners, supported by State-of-the-art Information 

Technology that services these activities, enabling dynamic Relationships and 

Transactions, all within the context of a defined Organizational Environment. Building 

on the Business and Technical Disclosure Concept, to embrace both the temporal and 

spatial aspects of the Product Lifecycle and Product Family, PLM is defined as the 

business view of a Product Family, the activities associated with developing and 

Commercializing Products within that Business and Technical context, the supporting 

Organizational Infrastructure all Businesses need to set up and maintain, and the tools 

and technologies to implement the required Processes to deliver Products that customers 

want. PLM allows companies to align their vision with product. 

7.2. Overview of Product Lifecycle Management 

Product Lifecycle Management (PLM), utilizing a technology and process focus, takes 

a broad look at the systems involved in the lifecycle of a company’s products. PLM 

recognizes a continuum of product management activities beginning with product 

development, progressing through materials and manufacturing planning, project 

management, and supporting the customer, to managing the end of product life. PLM 

integrates people, processes, and technology and extends across technology and 

functional areas. PLM provides a system whereby both product-related information and 

product-related processes are available and useful to all employees and processes 

throughout the enterprise. To participate fully in the process of PLM, the company must 

dedicate itself to a rigorous system of data management, providing everyone with the 

necessary information and processes to make critical path decisions. 
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A primary goal of PLM is to facilitate a shared understanding of product-related concepts 

across functional areas to improve. Product-related knowledge includes design 

specifications, design and manufacturing process capabilities, internal budgets and 

financials, external market and customer requirements, manufacturing and materials-

related capabilities, schedules, and tooling requirements. PLM involves the 

consideration and continuous management of a set of ideas, concepts, and details that 

result in sellable products. It covers activities that begin before product design starts and 

extend until after the product is no longer produced. Successful PLM depends on the 

integration of product-related knowledge developed by functional teams over a series of 

product development and production cycles. 

PLM encompasses a broader scope than product development (PD) alone. PD is part of 

the overall PLM process. PLM can be viewed as a superset of PD covering many 

different activities and phases in a product’s lifecycle. PLM focuses on managing a 

product’s life and on making life easier for those who determine a product’s life, “the 

product champions.” They shepherd the product through design, production, and 

customer support while responding to changes in the marketplace. 

 

Fig 7 . 1 : Product Lifecycle Management 

7.2.1. Definition and Importance 

Various dynamic, non-linear, and interactive processes are involved in turning a 

conceptual idea for a product into a real, tangible, and marketable product. New products 

go through several transformations, and transition through various stages, from the 

inception of the idea to the sale of the product to the end customer and its subsequent 

support over its useful life, and finally to its disposal, or recycling after its useful life. 
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Each of these stages of the life of a product is filled with events that may have far-

reaching implications in terms of the associated costs, the perceived customer value for 

the product, and the product's impact on society and the environment. The cumulative 

total of events associated with all the stages in the life of a typical product is termed the 

Product Lifecycle, which is a representation of the inevitable changes endured by a 

product during its life. 

Proper and effective management of each stage of the product lifecycle is essential to 

meet product performance and profitability goals, and to optimize resource utilization, 

while keeping in mind the environmental and societal concerns associated with the 

product and its use. The importance of managing the product's choices and decisions 

across its lifecycle stems from the impact they can exert, and the potential they can 

create, for sustainable benefits. Effective decision-making can lead to enhanced 

performance, waste and cost minimization, better and greater market acceptance and 

competition, and societal benefit. From a functional standpoint, multiple departments 

making different and discrete decisions lead to poor integration of knowledge, expertise, 

and resources. Decisions made in one department impact decisions in other departments; 

therefore, coordination across departments at the organizational level is needed to 

manage the product lifecycle effectively. This was achieved through a product lifecycle 

management philosophy. 

7.2.2. Stages of Product Lifecycle 

This chapter addresses the stages of the product lifecycle. It is divided into two sections. 

In Section 2.2, we describe the generic stages of a product lifecycle, and Section 2.3 

describes in detail the stages of a specific product lifecycle – managing the lifecycle of 

optical products. We take a generic approach to the product lifecycle. Different product 

categories or types will have product lifecycles of different lengths and some may have 

extra or fewer stages. However, the following sections can be considered the product 

lifecycle in outline. A typical product lifecycle consists of inception or development, 

introduction, growth, maturity, decline, and disposal. This is a simplification as different 

products will spend different amounts of time at each stage, may skip some stages 

altogether, and may be very cyclical, for example, high fashion items, art, or technology. 

Nevertheless, the underlying principle of the product lifecycle concept remains: products 

are born, live, and die and managing them at the various stages of their lifecycles can 

increase competitiveness and profitability. 

The stages of the product lifecycle will affect both the PLC policies and strategy and the 

product position. The duration of each lifecycle stage is very important in determining 

the length of time that a product will be in the various stages, and what needs to be 

achieved. These factors, combined with the competitive environment, will affect the 
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decisions and processes that need to be implemented at each stage. Focus on the product 

lifecycle concept is not new. The adoption of designers, marketers, and artists is very 

old, for instance, with respect to high fashion and technology both being very aware of 

the product lifecycle idea for a long time. However, it is only recently that industry has 

recognized the advantages and the need to manage product lifecycles with particular 

emphasis on the various stages of the cycle. 

7.3. Machine Learning Fundamentals 

Machine Learning (ML) is a branch of computer science and applied mathematics that 

studies algorithms and tasks that exhibit some form of intelligence from experience. An 

experience can be viewed as an overview of a specific application of the ML task, 

therefore defining the typical observations the algorithm will make during its operation, 

as well as any expected rewards for a given state or prediction. The term intelligent task 

is typically reserved to automatic, situation-specific strategies for tasks generally defined 

at a very high hierarchical level, such as perception, signaling, communication, and 

decision making. More specifically, a learning task is one that is performed by an agent 

that is able to acquire information about the world with the purpose of changing its 

behavior; it allows the agent to learn general rules from its observations, which will then 

allow it to predict and select the right action to take in any situations. Any technique that 

allows an agent to make better decisions based on prior iterations of that task can be 

considered a learning task. The mapping from experience to performance, which is at 

the center of the learning process, can be determined by different ways: supervised, semi-

supervised, unsupervised, self-supervised, transfer, active, multi-task, inductive, or 

interactive learning. Through supervised learning, we can think of a practical way of 

associating a space of answers to a space of questions or contexts in which he answers 

in order to improve our chances of being right. 

What may immediately appear as a technical detail, just an underlying formulation 

device in the sense that we could just as well describe a particular task in ML without 

necessarily pointing out the experienced mapping statistical nature, is in fact a very 

powerful principle. The large data and computational requirements of such pragmatic 

learning methods essentially drove the interest in ML in recent years. By exploiting the 

almost unknown joint distributions between the task categories and the input data, and 

the ease of representation by large combinatorial models, ML can be applied for 

predictive management to several tasks from many different domains. The basic idea is 

that when data and computational resources are available in large amounts, a more 

empirical approach should be taken, instead of relying on a small set of learned priors. 
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7.3.1. Introduction to Machine Learning 

Machine learning is an essential research field in artificial intelligence that has 

significantly advanced in the past few decades. Machine learning comprises a variety of 

methods and algorithms inspired by the observation of how biological beings learn. It 

allows the use of computational models to learn from sampling, generalizing knowledge, 

and making predictions that are not instructed explicitly. The assisting components are 

sampling through data generation or laboratory measurements, generalization through 

model choice, and prediction through inference. In the current cloud-based era, a great 

quantity of data is produced every day by humans, machines, and research institutes, 

enabling the advancement of machine learning. Enabling algorithms, inspired by deep 

learning for neural networks, enabled the training of systems with hundreds of layers 

and trained for image classification and natural language processing. State-of-the-art 

models are available in open-source computer vision, NLP, and reinforcement learning 

platforms. These platforms allow one not only to access feasible pretrained systems but 

also, if the user possesses significant labeled validation data, to finetune them, thus 

adapting them to a task that relies on the labeled validation data. The combination of 

quantities of available data and state-of-the-art infrastructures enabled by the cloud is 

empowering society and becoming an enabling technology for breakthrough 

developments. 

The name of the field of machine learning has recently become a label for all new 

methods allowing a computer to automatically extract patterns from data. These patterns 

allow the development of systems trained from data, rather than being explicitly 

programmed. The explicit programming approach is undoubtedly the most successful 

practice in computer science, which has generated almost all current successful 

computer-based decision-making applications. It has led, for example, to the computer-

controlled molecules that we currently have in our pockets. However, some smart and 

stress-resilient humans enable the flight of massive machines that cross biosphere 

compartments by continuously making decisions based on a continuous flow of sensor 

data. 

7.3.2. Types of Machine Learning 

The field of machine learning is extensive and varied. Particularly, it can be tailored to 

tasks ranging from recommendations and predictions to knowledge extraction. Likewise, 

tasks in these areas can themselves vary greatly. This means that there are various 

dimensions or perspectives from which we can classify the machine learning field. 

Classical perspectives include type of supervision (for example supervised, 

unsupervised, semi-supervised, self-supervised, task-specific), the underlying algorithm 

used in training (such as neural networks, trees, ensemble, kernel-based), and the kind 
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of task (for instance, classification, regression, or density estimation). Furthermore, these 

perspectives can themselves be further divided. In this chapter, we present the main types 

of machine learning. 

In supervised learning, an explicit supervisory signal is provided for training, in the form 

of input-output pairs. This means that for every training input - be it an image, sound, 

text, or other type of information - the correct output is provided by some oracle. This 

supervision is also sometimes called external, because, at least in theory, it can be used 

to help improve the task, even if the task is far outside the capabilities of the students. 

There exist many types of supervisory signals – from the input being mapped to binary 

classes in classification, to real-valued scores in regression, or probability distributions 

in density estimation. There exist many types of tasks involving supervisory signals. For 

example, training a neural network to classify images of handwritten digits into one of 

10 output classes (0 to 9), or estimating the function that relates the air temperature rate 

of change to a real-valued output which reflects the temperature at a 1km height in a 

region is termed supervised learning. In these tasks, the training dataset is composed of 

input images labelled with corresponding ground truth classes (the correct digits) in the 

case of image classification, or data collected over time containing both input and output 

variables in the case of system identification. 

7.3.3. Key Algorithms in Machine Learning 

Machine learning is extremely efficient in discovering and analyzing patterns in data. A 

number of algorithms have been developed across different ML types to realize the 

above capability. Some of the most common algorithms for computer vision/image 

processing are K-nearest neighbors, Convolutional Neural Nets, Random Forest, 

Support Vector Machines, and Decision Trees, Long Short Term Memory Networks, 

and Expectation-maximization Algorithm. Natural language processing has its own 

specific set of ML algorithms as well: Recurrent Neural Networks, and its specialized 

form, Long Short Term Memory Networks, Naïve Bayes, and Hidden Markov Model. 

The above algorithms are representative of one or more of the major machine learning 

approaches: Predictive analytics, perceptron, convolutional neural network, restricted 

Boltzmann mask, hidden Markov model, support vector machine, K-means clustering, 

and expectation-maximization. Predictive analytics is the process of computationally 

extracting information from data sets and using it to predict future trends and behavior 

patterns. A practical application of predictive analytics is data mining. A perceptron may 

be a very simple model of a neuron, but it performs a binary classification task on a set 

of inputs, producing an output based on a threshold value. Convolutional neural 

networks are designed in particular for classification of images, and they have enabled 

huge strides in computer vision and practical applications: the classification of objects 
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depicted in a photograph, and facial recognition. Restricted Boltzmann machines are 

stochastic neural networks that can learn a probability distribution over the set of inputs. 

7.4. Integration of Machine Learning in Product Lifecycle Management 

The adoption of PLM in industrial production environments is insufficient because of 

the high investment in the PLM digital backbone and the low perceived benefit on the 

company return. The PLM digital backbone consists of a PLM software suite provided 

by specialist vendors and the integration of this software suite in the IT landscape of the 

company, which often implies a connection to existing ERP and CAD systems. In the 

conservative field of industrial production, the investment in this digital backbone may 

seem bloated compared to the sum of point solutions that would solve very specific PLM 

use cases. Companies that do invest in a PLM solution point to the large range of 

visibility provided by PLM as the main benefit of interest. The earned visibility enables 

analysis and decision making on both PLM tasks and other related business processes, 

such as sourcing and production, that enable long-term company risk reduction and value 

creation. PLM Systems that comprise an IT and process integration digital backbone 

may contribute innovation cost reduction over market-orientation alone. The PLM 

digital backbone is of recursive design. PLM systems support use case workflows. 

Workflows enable structure and integration of the PLM process, documentation, 

temporary personnel, and the structure integration of all other company processes 

involved in the PLM task. The output of PLM workflows is valuable information, which 

contains data about materials properties, risks, and fabrication process cost and time. 

These data can be analyzed and reused to provide faster feedback to the PLM task 

decision-making. 

Intelligent use of PLM digital backbone data for decision support and workflow 

automation is geared towards making the digital backbone profitable and occupying the 

space of data investment in intelligent enterprise architecture. Machine Learning 

research can thus reduce the perceived data economy of PLM systems and specializes 

their action towards the automation of dull and repetitive workflows. We assume that 

the investment in the digital backbone would be further incentivized, if this backbone 

were capable to support economic and risk management through decision making and 

automation of workflows for all company processes that contribute to the PLM task. 

7.4.1. Role of Data in Machine Learning 

Data is the most critical component required to implement machine learning into the 

modern product lifecycle management systems. Machine learning models take several 

different data types as input to implement a functional mapping of the data from inputs 
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to outputs and build a model to identify various patterns hidden within the data. The 

models learn from the initial training data. These models are then validated with another 

testing dataset to monitor the model's functionality. The models are then used to predict 

the future data with the same input feature set. The overall objective of implementing 

machine learning is to take advantage of advanced computational capabilities and apply 

various machine learning algorithms onto various datasets and then extract useful 

prediction capabilities and functions for all. The traditional science of trial and error is 

replaced using various prediction algorithms. However, there are various considerations 

to be mindful of while using machine learning models. 

For the model to generate maximal output accuracy, the input data should be in the 

format whose transformation resulted in the optimal prediction accuracy and correlation. 

In neural networks, the input data often should be normalized or scaled to eliminate the 

bias depending on other classifiers. In addition to enhancing the model performance, 

proper data pre-processing may help visualize the hidden patterns within the data. 

Training dataset and testing datasets are also considered important since they help the 

user analyze the model's accuracy on unseen data. If the model is trained with only a 

limited set of training data, functionality might reduce drastically on unseen data. On the 

other hand, appropriate data augmentation can help. However, as data augmentation 

increases the dimensions, the model can easily become misleadingly accurate. It 

becomes hard to monitor, especially in the case of neural networks or deep learning 

models, where the high predictive accuracy due to high dimensionality might mislead 

the user who is trying to explore the model's decision footprint. 

7.4.2. Machine Learning Techniques for PLM 

There are many types of algorithms for machine learning, with various strategies being 

employed in each of these for data representation, learning, and prediction. Each 

algorithm type has its own unique advantages and disadvantages, such that no one type 

of machine learning is most appropriate for general-purpose problem solving. Thus, 

various types of algorithms are often combined into one overall hybridized algorithm to 

leverage the advantages of each. Consequently, hybridized algorithms from different 

disciplines can contribute even better to solving some specific product lifecycle problem 

than the original stand-alone versions. This section begins with a brief description of and 

rationale for the utilization of some of the more important types of machine learning 

commonly utilized in PLM applications. 

Experts have categorized machine learning applications in many different ways. Various 

machine learning tasks employed for PLM are classification, joint classification and 

regression, regression, ranking, time-series, association rule mining, structural, 

clustering or grouping, graph, and miscellaneous models that do not fit into the previous 
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types. Most of the task types are primarily handled using either supervised learning or 

unsupervised learning. The selection of which machine learning algorithm to use will 

predominantly depend on the amount and quality of available data, the computational 

model, time, and energy limits, plus whether the task is supervised or unsupervised. 

These issues and constraints determine the success or failure of using machine learning 

techniques to solve specific PLM problems and must be taken into account in order to 

avoid some well-known pitfalls. The following subsections summarize common 

machine learning algorithms used for PLM. Some algorithms are much more prone to 

fail than others. 

7.5. Design Phase Optimization 

The design phase in PLM holds significant importance, as decisions made at this stage 

have profound effects on subsequent product phases. Given its impact on a variety of 

design objectives such as performance, manufacturability, assembly and service ease, 

recycling potential, and product costs, extensive research efforts have been dedicated to 

optimizing various aspects of the design phase. With the advent of advanced 

technologies and extensive user-generated data, the product design phase is being 

revolutionized with collaborative product platforms that promote active engagement by 

customers and designers alike. Such paradigm shifts in product design offer tremendous 

opportunities for organizations to develop data-driven design and design optimization 

approaches, which employ the latent potential of web data to maximize product 

acceptance and enhance design objectives. 

The creation of innovative products requires multiple design choices in the design phase, 

including concept design, detailed design, design for manufacturability, design for 

assembly, design for reliability, design for service, and design for recycling. 

Conceptualization of unique product ideas that satisfy consumer needs can foster product 

acceptance and development. Despite the advancements in optimization methodologies 

and software, several organizations still rely on designers' knowledge and experience for 

addressing product design choices. Regardless of its advantages, such an approach 

suffers from subjectivity and may not address the different constraints associated with 

product design. Machine learning has provided data-driven approaches to the associated 

product design challenges across varying product phases. 

Due to the unstructured nature of product development activity, ML applications in this 

area have focused primarily on aiding product development decisions, while leveraging 

the information cataloged in PLM and other related databases. The intent of ML is to 

directly provide information that makes it easier to make better decisions. Such data-

driven approaches can be significantly helpful in product development decision areas, 
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including product concept development, intuitive product design description, user-

influenced product details, product design redesign, and product design validation. 

7.5.1. Data-Driven Design Approaches 

Products are traditionally designed based on expert knowledge and experience. In the 

past decades, this trial-and-error product design process has proven to be time- and cost-

intensive, and presently, with the rapid increase in product complexity and diversity, on 

top of more volatile product market dynamics, expert-centric product design alone is not 

sufficient anymore. Unlike mechanical engineering, where closed-form equations and 

known design rules can capture the design behavior with a good level of accuracy, the 

design of complex multi-disciplinary products are often done through software 

simulation tools that capture the underlying physics behaviors in an accurate manner. 

Traditionally, the simulation-driven design process starts with some initial design 

variables being specified, and by following some iterative optimization procedures using 

the simulation tools, the most optimal or near-optimal product design is found. Though 

these optimization procedures reduce the time needed to search for the optimal design, 

they still don’t capture the actual demand behind these design choices. 

With the recent revolution of big data, optimization and machine learning, researchers 

have begun leveraging a data-centric approach to expedite critical design choices in the 

design and development phase. Specifically, design choices that can benefit from a data-

driven approach typically satisfy two conditions: First, the design choice is among a 

small number of candidates and second, the correlation between the design choice and 

multiple business performance need to be explicitly established and substantiated. These 

methods have since been referred to as Data-Driven Design methods. Once these 

conditions are satisfied for a specific product design choice, Data-Driven Design 

methods provide a more accurate and cheaper surrogate for expert knowledge and 

expertise, allowing for better and faster design decisions. Leveraging data to guide the 

design of products across the entire product lifecycle is critical to optimizing activities 

from design to end-of-life. Moreover, the Data-Driven Design methods have the 

potential to be used across all activities. 

7.5.2. Predictive Modeling for Design Choices 

This section explores predictive modeling techniques that use data to analyze the 

limitations for possible design choices for a given product. A product design is most 

meaningful if it meets a specific purpose in order to satisfy a specific market segment. 

In order for the design to be successful, data about design attributes and market 

preferences must be obtained to predict how a set of design attributes resonate with 
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consumers. The model accuracy can help establish the reliability of the predictions 

generated, which would consequently guide the product design decision. 

Various forms of model algorithms can be utilized to predict consumer preferences over 

product attributes. The basic prediction methods such as Multiple Linear Regression and 

its extensions are commonly applied due to their interpretability in terms of refitting the 

model coefficients. Generalized Additive Models enables a semi-parametric functional 

improvement in model prediction. Specifically, GAM employs non-parametric functions 

on parts of the input space to yield better prediction as compared to MLR. Although 

MLR and GAM are useful in consumer market preference modeling, they are not 

scalable to higher dimensional input produced by interaction terms or high-dimensional 

functions. 

 

Fig 7 . 2 : Modeling Techniques for Product Design Choices 

Machine Learning techniques can address many of the drawbacks of classical consumer 

preference modeling methods in performance scaling, accuracy, and automation 

capability. While MLR and GAM typically require an explicit formulation of the input 

to the function of interest, ML techniques alleviate this requirement in favor of improved 

prediction accuracy. Various regression methods fall under the ML category such as 

Classification Trees and Support Vector Regression, and Matrix-Completion model 

based on Singular Value Decomposition. Random Forest could achieve very high 

accuracy with high-dimensional input while offering good interpretability in identifying 

important input variables, but it is still prone to overfit in scenarios where sample size 

cannot keep up with the dimension of the input variable. 
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7.6. Manufacturing Process Enhancement 

The Manufacturing process really connects designing activities with the product testing 

and validation steps since during this the product is fabricated, assembled when required, 

and delivered to customers. During this activity the product is transformed from its initial 

form into something tangible and valuable, but it is also worth noting that this step 

comprises a series of complex activities that could have a deep impact in product 

lifecycle costs. Manufacturing costs can correspond up to 75% of product cost and the 

product structure can have around 92% of impact at the manufacturing costs. 

To add more complexity to the manufacturing process and resulting costs, products or 

their components can be subject to inspection and testing activities throughout the 

different stages of manufacturing until their shipment to customers, in order to prevent 

defective products from reaching the customer. Testing for defect detection is a crucial 

step in the product development process lineage and the cost of product’s defective 

occurs at different phases of its lifecycle, including cost of exchanges, estimating 

recalling expenditures, the loss of brand reputation, and a decreasing return on 

investment in return on sales. Inspections for defect detection are indispensable due to 

the need of preventing defective products from entering the customer’s premises. 

Today, artificial intelligence is being used more broadly in a variety of ways to facilitate 

product production. Machine learning techniques have been investigated extensively to 

improve item quality by examining the data collected from the operational process. 

Focused on the application of distributed learning for detecting anomalous 

manufacturing or workpiece surface characteristic. The input data needed to train the 

learning algorithm is a set of photographs from the workpiece surface of acceptable 

quality. Further details are found in. 

7.6.1. Quality Control through Machine Learning 

Identifying product defects or their causes is critical to maintaining product quality, 

which is especially essential for products of high value, such as military hardware and 

automotive components. While product design and testing are crucial to enhancing 

product quality, manufacturing process control and defect scanning are the most critical 

quality assurance functions in modern industries. Traditionally, these tasks depend solely 

on human skills and intuition. However, recent advances in machine vision systems offer 

new ways to integrate machine intelligence capabilities into defect detection. Based on 

statistical and heuristic methods developed over the past several decades, computer 

vision algorithms today can solve challenging vision problems at almost human-level 

performance. 
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Still, the deployment of computer defect scanning systems is not focused solely on 

machine vision and traditional feature extraction methods. Often, old-school machine 

vision techniques, such as optical character recognition, are still used. Moreover, some 

companies have reported a reluctance to consider AI-assisted defect detection due to 

concerns about the black-box nature of ML methods as well as the additional costs that 

accompany AI-enhanced solutions. For those and other areas of quality assurance, ML 

is better suited for purposes that include solutions that detect anomalies in existing 

systems. Detecting defects is a well-defined computer vision problem. It has associated 

labeled images that are available for training supervised classifiers. Such classifiers must 

first be optimized for the specific images being scanned. Such ML classifiers have been 

trained under strict performance benchmarks and are easy to integrate into factory or 

assembly lines. Multiple commercial products exist that claim to enhance human 

performance with respect to defect detection. These systems achieve excellent 

performance in high-stakes environments, such as scanning for defects in semiconductor 

wafers. Such ML-enhanced solutions can be deployed on factory floor-mounted 

scanning systems, wearable goggles, and even mobile devices. 

7.6.2. Supply Chain Optimization 

Supply chain management is a crucial aspect of production chains for various industries. 

Many manufacturers consider their supply chain management as a strategic instrument 

to achieve a decisive competitive advantage in order to optimize logistics and apply 

advanced technologies. Applying machine learning into complex business operations in 

supply chain management adds a new level of transparency. Transparency provides more 

exact information for better understanding an enterprise's operations, which in return can 

open up new paths for optimization. 

Artificial intelligence has made a great impact in logistics and supply chain optimization. 

Various fields of supply chain management have applied machine learning 

methodologies, like demand forecasting, scheduling, warehousing, predictive 

maintenance, inventory optimization, risk management, and last mile logistics. Several 

new developments are ahead of us; we cannot ignore the great ongoing work on 

optimization in company logistics and supply chain processes. From demand prediction 

for fashion as well as the prediction of demand from social media activities, up to 

hailstorm as well as rain prediction, new methodologies and concepts will enhance 

existing concepts. Adaptive heuristic or meta-heuristic optimization in the context of 

neural networks or reinforcement learning will drive intelligent autonomous concepts 

and systems to cope with complex problems in supply chain management. These systems 

and their components interact with each other in delivering goods and services needed 

at desired time at reasonable prices. AI will help to intelligently connect supply 
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information flows and act on these signals. Machine Learning-based controllable and 

dynamic supply chain logistics will enable applications such as logistics route 

optimization, digital twins, self-controlling logistics networks, advance predictive 

analytics and data-driven insights, reinvent contract logistics, and reinvent last mile. 

7.7. Sales and Marketing Strategies 

Machine learning can play a crucial role in developing effective sales and marketing 

strategies to drive revenues at all stages of the product lifecycle from introduction to 

growth to maturity to end-of-life. It can help understand customer needs and behaviors 

in depth. Every potential customer segment may map to a different set of needs, and 

machine learning can help break down the mass of customers into distinct segments. 

That can in turn guide the type of marketing messages, campaigns, and channels that 

would be effective for each segment. With techniques like deep learning, customer 

attributes can be derived from visual, audio, and text information. Real-time learning 

techniques can refine the attributes, and therefore the segment definitions based on 

sentiment and brand perception analysis. Once needs are clearly defined, candidates for 

product or service solutions can be created or refined and tested by using generative 

design techniques. 

Machine learning can also help focus product, service, and marketing offerings for 

particular customer segments based on sales trends, profitability analysis, and 

recommendations based on customer behaviors and preferences. In addition, it can also 

support product bundling and configuration. Lastly, machine learning can help track 

competitors' strategies and performance. By automatically extracting share price trends, 

and financial and organizational developments, insights on competitors' strategies can 

be derived, and alerts for significant events set up based on pre-defined thresholds. 

Machine learning techniques can be applied to timed historical information to create 

accurate volume forecasts of product and service sales across total and market segments, 

across categories and parts, across channels, and globally and locally. For new products 

and services such as substitutes for legacy offerings, collaboration with other 

stakeholders in the lifecycle may be needed to develop forecast models. Those forecasts 

can then be automatically updated based on market conversations and commentary 

recovered using natural language processing techniques. 

7.7.1. Customer Insights and Segmentation 

Customer insights and segmentation are crucial in formulating effective marketing 

strategies. Traditional methods of customer segmentation rely on surveys and the 
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analysis of internal data, which can be expensive and time-consuming, as they require 

detailed demographic data. Although these established techniques are still useful, the 

emergence of online customer data offers novel opportunities. This opens up new 

possibilities for customer insight generation as well as segmentation, as typical problems 

such as transaction non-disclosure or sample representativeness do not exist in this case. 

Customers are more likely to share their preferences and needs with firms on their 

websites, blogs, or social media sites and to include this information in their interactions 

with others. Furthermore, a multitude of clickstream data, where purchases are linked 

with the sequence of clicks that led to them, is available that can provide clues about 

customers’ intents. From this data, researchers have proposed a number of innovative 

customer insight-generation and segmentation methods such as utilizing predictive 

analytics to identify preferences and needs or leveraging topic modeling to identify 

interests. 

In applying these new methods in practice, companies need to acknowledge a number 

of factors that influence the likelihood of the successful implementation of advanced 

analytics techniques for customer insight generation and customer segmentation. 

External factors include data transparency, validity and credibility of online data, 

integration with offline data, customers’ concerns, and data ownership; internal factors 

are managerial aptitude, internal expertise, and strategic intent. In particular, while both 

traditional and “new” customer segmentation techniques are helpful, organizations 

would benefit from using hybrid approaches. These approaches combine the strong 

points of both external and internal data sources while mitigating some of the drawbacks. 

The integration of these techniques requires thinking outside the box to make the best 

use of the available resources. After all, their marketing implementations and value lie 

in their ability to move from “talk” toward steering and managing a portfolio of services-

based product offerings. 

7.7.2. Demand Forecasting 

Accurate forecasting in a supply chain is brought about by good demand planning and 

is fundamental to its performance. Generally, forecasting is the estimate of future events, 

whereas planning is the creation of detailed action proposals in qualitative and 

quantitative terms. The focus of supply chain forecasting is to predict demand as 

accurately as possible. Demand forecasting is part of the larger process of sales 

forecasting, which involves predicting market demand for products and services. Sales 

forecasting, however, is at a much more granular level, predicting requirement figures 

for each stock-keeping unit at specific locations for very short planning horizons. The 

sales and operations planning process attempts to integrate existing information and 
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translate demand forecasts into more manageable terms that ease the tactical and 

operational planning and execution parts of the business. 

To illustrate the importance of demand forecasting, an example based on a multi-stage 

supply chain for a non-perishable product made from saving-related components showed 

that a 10% forecast error in item demand in the first period, the heaviest demand period, 

would lead to: a 9% to 18% increase in production costs, depending on whether such 

irregular demand patterns are clustered on a specific period of time, or are evenly spread 

over time; a 9% to 15% decrease in service levels; a 10% to 13% increase in product 

cost; and a 114% to 154% increase in the time-related part of logistics costs. Both the 

service level as well as the total logistics costs were found to be much more sensitive to 

incorrect forecast assumptions than production costs. 

7.8. Product Usage and Performance Monitoring 

In the past, products were viewed as singular entities: once sold and delivered to 

customers, the manufacturer no longer interacted with it until it was at end of life and 

either disposed of or sent for recycling. Such products tended to be characterized as 

“black boxes”; that is, their internal mechanism was inaccessible to anyone but the 

manufacturers, and once sold, there was little or no information flow from the customer 

or the product back to the manufacturer. Product development and design activities, such 

as deciding on the materials and processes to be used, as well as the overall mechanisms 

and design principles employed to implement the function, were thus performed without 

fuller knowledge of the final product or how it would actually be used in practice, the 

performance metrics that would ultimately determine its success or failure among 

buyers, and social or other behaviors that affected production, display, and consumption. 

However, products are increasingly being designed and embedded with sensors that 

allow for real-time information exchange with the customer; advances in wireless 

communication and miniaturization technology have allowed products to become 

“smart,” which has led to the rise of the Internet of Things. Products can now interact 

continuously and in real time with manufacturers, support organizations, and other 

products. Such developments are enabling enterprises to monitor and fine-tune the 

product during its use and to better understand customer preferences and patterns of use, 

which has led to more effective and efficient product servicing and enhancement. 

The potential benefits of this digital transformation of products are substantial. 

Continuous monitoring of product use allows for the development of detailed timing, 

performance, and consumption profiles. In turn, these profiles can be used to better tailor 

or augment the product or service delivery, including fine-tuning or optimizing the 

schedules of energy, fuel, or other consumable resources to product initiation, allowing 

for better alignment of product provisioning with actual use. The use of sensors can also 
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provide for predictive maintenance by the detection of signals and patterns associated 

with deterioration of performance, thereby mitigating risks associated with catastrophic 

failures. 

7.8.1. Real-Time Data Analytics 

Utilizing an enhanced telemetry of information received from the products will enable 

companies to fulfill the key objective of proactively monitoring and managing product 

usage and performance over the lifecycle. This requires the collection of data on product 

usage and performance from a variety of sources such as sensors, feedback from 

customers, suppliers, distribution and service channels, product test, etc. The data 

acquired will have to be properly analyzed in real-time, to drive fact-based decisions and 

trigger appropriate actions that would ensure the delivery of the promised 

product/service performance to customers throughout the expected usage duration. 

Moreover, the performance data from the actual product usage will have to be aggregated 

and related to product design characteristics and other contextual product lifecycle 

information that would help enhance design improvements. 

The integration of artificial intelligence and machine learning techniques into the front-

end of the tools used to analyze field product data will drive the realization of this 

enhanced capabilities for organizations. Such advanced capabilities in-skill the potential 

of discovering facts on the pseudo distribution of specific attributes across specific 

subgroups and the connection of attributes and subsequent performance of the product 

with other attributes previously unknown to impact performance. Speed and quality 

improvements in deciphering volumes of product usage data, such as computer vision 

enhancements integrated into the toolsets that take advantage of advanced neural 

networks will drive further progress. Enabling machine-empowered sophisticated 

analytics at user desktops will close the loop between making data available, analyzing 

it, and embedding the insights back into corporate processes. Putting advanced analytics 

to real-time use is a necessity for organizations challenged by the speed of digital 

competition. 

7.8.2. Feedback Loops for Continuous Improvement 

For example, lifetime assessments may vary tremendously due to a vast number of 

influential factors, e.g. container designs (size, volume, and the geometry of outer and 

inner surfaces), the materials selected and the performance of the production processes 

in terms of deviations from design specifications, the packaging and storage of products, 

the storage conditions (temperature, humidity, exposure to light, and physical stresses), 

and the handling of products until consumption. During product design, optimization 
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and assessment processes can be applied to these innovative containers based on 

modeling, testing up to the final design confirmation, or a combination of these options. 

At lifetimes specified by the structure-function relationships, the cost of the product is 

in a balanced relationship with its probability of failure. However, these functions may 

be difficult to determine. Machine learning and other advanced data science analytics 

have the capability to extract latest lifetime performance information of product 

functions and their correlations with the factors discussed above from product 

performance data accumulated in large databases in order to adapt function-lifetime 

assessments crucially influencing cost and reliability. The product function-time 

correlation data base can be utilized for the real-time monitoring of the performance of 

products and to continuously modify and update function-lifetime assessments. In 

addition, machine learning methods can detect anomalies and relevant unknown 

correlated factors, raising the possibility of their consideration. Thus, the advanced 

analytics will constitute a powerful feedback loop from the post-marketing phase to the 

pre-production phase of the product life cycle. 

7.9. End-of-Life Management 

The last phase of the product lifecycle is the end-of-life (EOL). At that point, either the 

product becomes obsolete due to its reduced utility and/or support by the manufacturer 

or the product is pushed from the market by the arrival of new and more attractive 

versions of the product. During this phase, the decision about the product end-of-life 

should consider not only the economic costs, which are central in the other phases of the 

product lifecycle but also other non-economic aspects such as legislation and the 

customer’s opinion. In the EOL phase, the product could either be recycled or disposed 

of, fulfilling the considerations of sustainability. The EOL strategy is especially 

important for complex products made of multiple materials. Once the product has 

reached the EOL, it might be that only the electric and electronic components should be 

discarded according to the level of degradation reached, leaving the hard structure still 

usable. 

The actions to be undertaken during the EOL management are influenced not only by 

technical and economic factors but also by environmental and social concerns. 

Customers increasingly demand sustainable products, influencing the companies in 

fulfilling EOL activities. Eco-sustainability is becoming a requirement in many business 

sectors, prompting the emergence of large governmental regulation worldwide on EOL 

items. The cradle-to-cradle concept is trying to enhance the economic aspect by 

minimizing the amount of waste by reintroducing strategic materials into production 

processes, and stimulating companies to be more responsible by tracing the entire supply 

chain. According to the cradle-to-cradle concept, wasted materials would become 
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nutrients, maintaining their utility until the end of life. The recycling can regenerate the 

resource, but only if the material is sent back into the right production process, ensuring 

that its properties are reusable. The new version of the product that goes into production 

with recycled materials is named “closed-loop”, as the EOL considerations are taken into 

account during the design phase along with re-design. 

7.9.1. Sustainability Considerations 

Sustainability considerations are placed high on the agenda due to growing global 

population, limited resources and climatic change. Therefore, products are not only 

designed according to cost-performance requirements but also with respect to 

sustainability aspects. Sustainability is a diverse term. Specifically, in the course of this 

work, the term sustainability is used with respect to product realization, in the concrete 

context realizing a product, such as design, production, or distribution. With respect to 

this context of application, sustainability refers to improving the product development 

and realization, e.g. design-for-sustainability and consequently, the product's lifecycle. 

This includes reduction of energy, material or water consumption, environmentally 

adverse material usage and respective emissions in each phase of the product's lifecycle. 

 

Fig 7 . 3 : Extend Product Market Presence 

The need for creating products in a sustainable way is twofold: First of all, the 

innovations by developing tools and methods for engineers, product designers and 

decision makers. These innovations lead to improved sustainability measures in practical 

application within organizations, firms, and society. The second main need for creating 

products in a sustainable way is the readiness to adopt the innovations of tools and 

methods for engineers, which require organizational and cultural shifts, such as 

awareness of sustainability aspects, willingness to change product designs or business 

models, perform multi-criteria assessments of products. However, there is no actual 

planning and solving product lifecycle management tasks with respect to sustainable 
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product performance impact, and consequences of product lifecycle stages on other 

product lifecycle stages, or other products in the product portfolio. In particular, 

sustainability aspects are often not taken into account, or they play a minor role. 

7.9.2. Recycling and Disposal Strategies 

Recycling and disposal of products at the end of life can have a significant impact on 

sustainable product design, management, and innovation. The environment is burdened 

with overregulation and no incentive to make products more recyclable, increase the cost 

involved for companies, and push them away from their core competencies. This is 

especially true for electronic products where the required methods to recycle and take 

materials from the product are delicate and time-consuming, specifically when there is 

an extensive use of toxic materials. Due to these issues, the infrastructure for recycling 

is lacking. 

Increased prices for rare earth metals created higher scrap values, but yet many 

government regulations, taxes, and fees do not make it an appealing business. 

Companies should start considering not only the product costs but also the end product 

lifecycle costs associated with the reintegration of the used product back into the design 

process. The only very profitable product in the recycling chain is the bottom recycling 

of aluminum where it takes little financial investment to reintegrate it back into the 

supply chain as well as high demand. 

The product design usually remains with the highest degree of freedom to achieve higher 

efficiency, create a more sustainable product, and influence the global footprint. Adding 

design functionality for less or no initial product complexity at the beginning of the 

lifecycle will be of best use to the end of life recycling strategies. The four main types 

of product design strategies are recycling and disposal, reuse, remanufacturing, and 

refurbishing. These functions help companies develop sustainable end of life recycling 

strategies and provide information on other available services at the end of the negative 

development product lifecycle. 

7.10. Conclusion 

Utilizing Machine Learning to Optimize Product Lifecycle Management from Design to 

End-of-Life concludes the exploration of a broad area of research that combines machine 

learning methodologies for optimizing several aspects of Product Lifecycle 

Management. The relationship between PLM and machine learning is reciprocal: on one 

hand, PLM provides large-scale and complex settings for application of machine 

learning optimization; on the other hand, machine learning is an enabler to optimize 
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several complex PLM processes. To this end, we picked a few selected PLM domains 

and propose a handful of representative machine learning optimization methodologies 

for each, for direct contribution to the PLM area. Those domains include design 

optimization using predictive models, lifecycle data analytics and forecasting from 

historical data for PLM strategies support, and lifecycle simulation using machine 

learning for seeing the future of products and their ecosystems. 

The complexity of the PLM optimization task, the fact that the PLM domain has a unique 

characteristic of cross-pollination of complex data and disparity of processes from 

component-level to the industrial ecosystem-level, and the rapid development of the 

efficiency and capability of machine learning algorithms, create risks but also 

tremendous opportunities for both the PLM and machine learning areas. While the 

research endeavors presented are a step towards further clarification of the potential 

contribution of machine learning, in terms of the development of machine learning-

empowered algorithms that focus on artifacts and decision-making processes unique of 

the PLM domain, further work is needed for developing specific theory and methods for 

optimizing PLM using ML. Finally, research combining ML and PLM is important not 

only in advancing both areas, but also for addressing the tremendous challenges posed 

by the Fourth Industrial Revolution regarding the optimization of the design, production 

and delivery of products and services that are becoming more and more efficient and 

sustainable, based on process efficiency and reduction of waste. 

7.10.1. Final Thoughts on Advancing PLM with Machine Learning 

The overarching principle of the insights outlined in this book is that Machine Learning 

methods have the power to bring large benefits for Product Life Cycle Management 

teams and initiatives. PLM – from design to end-of-life – yields a large synthesis of 

activities, often with a multitude of tools and systems, either integrated into an 

information architecture or operating in silos. The volume of data created across these 

operations from different systems is large, and much of it is underexploited, leading to 

either missed opportunities or wasted efforts. Machine Learning can help unveil 

recommendations based on that data. Although these recommendations cannot supplant 

the judgment of long-term industry experts and the value of proximity to manufacturing 

issues, they can provide useful support to decision makers and workers in the breadth 

and depth of their tasks. 

We have explored and presented insights from methods developed and applied in various 

domains: there is a vast number of unsolved problems in PLM, which would benefit 

from the application of ML approaches. Each domain tends to be tightly defined and 

specialized, but we advocate a diverse and interdisciplinary view on scientific 

developments, adoption and adaptation. We trust that the tools and domain-specific 
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methods that have been presented will be useful both in academic and industry 

environments. For companies, the difficulty of PLM will require an exploration of 

solutions, many of which will require proprietary investments. The shared insights in the 

book may lower the risk threshold for companies wishing to utilize external parties to 

help solve their in-house challenges. Academic institutions can also contribute through 

closer collaboration with companies, in order to tightly coupling theoretical advances 

with practical developments. 
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