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Chapter 7: Predictive models for early 

detection of diseases and managing 

public health crises 

7.1. Introduction 

In 2020, humankind was awakened to the harsh reality that, despite several initial 

successes in different fields of physical and life sciences, we are still not fully equipped 

to deal with biological and healthcare-related issues and are incredibly vulnerable to 

unforeseen events like the COVID crisis. Rapid developments have been made in many 

different areas related to disease predictions and applications; however, research and 

development in predictive models, especially in healthcare and medical decision-

making, have not been satisfactory and are still in a premature stage. Because of all these 

reasons, we have been encouraged to explore further the application of new and 

innovative methods in predictive healthcare and illustrate many different areas related to 

that. This book is intended as a first step in this direction. Health is one of the most 

important aspects of an individual’s life as well as of a society as a whole. Over the past 

several years, numerous research activities around the world have been undertaken in 

different areas related to the field of public health. Numerous predictive models have 

been developed as data mining tools that can be deployed to enhance the decision-

making capability of individuals as well as of policymakers and authority figures in the 

healthcare field. Specific examples include predicting the epidemic of diabetes, 

cardiovascular diseases, chronic diseases, COVID-19, and even predicting the number 

of infections and deaths caused by COVID-19. These models can assist individuals as 

well as authority figures in the healthcare field in planning and executing the necessary 

tasks in the timely management of these diseases, thus reducing the number of hospital 

visits and admissions and the consequent medical expenditure associated with this 

disease. In addition to these distinct areas, predictive models have been used in several 

other distinct healthcare issues (Dilsizian & Siegel, 2014; Krittanawong et al., 2017; Lee 

et al., 2017). 
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During infectious disease outbreaks, the rapid dissemination of knowledge and a 

coordinated global response play a major role in mitigating their impact. Governments 

depend on reports from infected countries before they are affected by the infection. The 

speed and effectiveness of this response rely on the rapid sharing of reliable, secure, and 

high-quality information, as well as on public stockpiling of emergency supplies, which 

remain at low levels for prolonged times during the pandemics. The international media 

play a major role in relieving the panic of people by delivering high-quality information 

concerning the outbreaks to the public (Ristevski & Chen, 2018; Mehta et al., 2019). 

 

Fig 7.1: Early Detection of Diseases and Managing Public Health Crises 

7.1.1. Background and Significance 

Infectious diseases significantly threaten human and animal health. Despite extensive 

research efforts and significant advances in chemistry, immunology, treatment protocols, 

and vaccine technology, emerging and re-emerging diseases still occur and can even 

spread rapidly across continents. Infectious diseases account for 25% of total deaths per 

year. The emergence and re-emergence of infections are caused by increasing population 

growth, an aggressive advance of urbanization, ecologic changes, impacts of the global 

economy, and growing travel and trade among economically integrative countries. The 

recent and ongoing outbreaks of global infectious threats initiated by newly emerged 
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viruses, along with the re-emergences of infections, have provided a gloomy prediction 

for the future presence of these events. The control of these diseases is even problematic 

and hazardous for the world during the pandemic status. 

7.2. Overview of Predictive Modeling 

When distinctive patterns are found that might suggest the propensities of experiencing 

particular future socio-health states, or when the potential effects of certain modifiable 

variables of interest on the expected incidence embodied on the patterns for such socio-

health states are uncovered, it is indeed predictive modeling, regardless of the methods 

utilized for that. Predictive modeling is an unusual term in the methodologies used within 

the social sciences, distinctively so when speaking about socio-health research. Hence, 

such researches have been referred to cluster detection studies, which nevertheless hold 

common elements to predictive modeling. Unlike many predictive models, cluster 

detection models tend to have a purely exploratory nature; that is, they do not propose a 

predefined model. Still, researchers using predictive modeling often rely solely on a 

testing methodology in order to validate the models, which is not totally devoid of 

exploration, because the testing methods provide information about the suitability of 

certain model specifications amongst the joint models considered. Unfortunately, 

technical restrictions typically pose major limitations to predictive modeling of rare 

event occurrences within the social sciences; particularly, small sample sizes on the 

estimating stage of the modeling. Combining the information from multiple data sets 

while accounting for the correlations among moderating effects enables a possible 

approach to handle the small size challenge; specifically, multiple occasions of the same 

social units. 

An increased availability of cross-sectional micro-level data on large populations has 

facilitated research efforts to label and model predictive geo-social determinants for 

many socially relevant events, where motivating this type of researches is the 

longstanding concern in the socio-health area about descriptive studies finding extremely 

high relative incidence variations across space. In social epidemiology there is 

widespread recognition that identifying the determinants of health outcomes and the 

disparities in their distribution across social groups is critical for designing effective 

interventions. Descriptive studies assess the health-related burden of specific events, 

associating socio-health units with the socio-health events at hand. 

7.2.1. Research design 

Predictive modeling provides estimates for outcomes based on one or more self-

contained statistical models that combine a set of predictors defined beforehand for every 
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data point in the data. Predictive modeling rests on an assortment of explanatory and 

predicting models aimed at drawing predictions of a response from a range of predictor 

variables that help better explain the response variable. There are a number of 

assumptions underlying prediction model development: the use of prospective data, 

sample sizes that vary by prediction rule, an outcome that is clinically useful, the 

availability of historical data, the absence of modeling mapping transitions to 

predetermined endpoints, testing of rules on several populations, and the implementation 

of results in clinical practice modules. Predictive modeling operates through the 

formation of data into an event-derived model and through classical validation methods 

like cross-validation, splitting methods, bootstrap resampling, etc. Extensions of the 

aforementioned concepts are nomograms, neural networks, faithfully calibrated 

prediction rules under Bayesian concepts, etc., which have remained non commercially 

utilized, with the exception of neural networks and nomograms for some areas. 

Health prediction uses a variety of modeling techniques borrowed from traditional 

econometric or health economic modeling tools. Examples include Bayesian and 

conventional econometric techniques such as weeks-dependent indirect demand 

equations, or time-dependent dynamic factor models. These, along with discriminant 

analyses and fuzzy models, can be used for estimating short-term health prediction 

studies. Genetic algorithms are now being used to assess decision thresholds to balance 

overall prediction risk for large epidemics with small probabilities of occurrence. These 

modeling techniques require access to abilities of epidemiologists, economists and 

health service managers, along with user access to cross-disciplinary modeling resources 

in identifying realistic sources of error such that usable probabilistic information can be 

disseminated. 

7.3. Types of Predictive Models 

Predictive analysis incorporates a diverse range of model types and methods. There are 

statistical methods that carry a long tradition of statistical tests associated with 

confirmatory statistical analysis. These methods have an important rationale in detecting 

if relationships exist and, in that case, to provide information about their nature, i.e. the 

nature of the dependence or correlation relationships, the direction of these relationships 

(positive or negative) and the way they relate to the random variable or the response sets. 

Predictive analysis goes a step further; not only seeks to understand relationships but to 

go a step further and infer more specific information, like the values of the random 

variable. This type of analysis is possible by setting for the user a predictive algorithm, 

usually a regression of one of the response variables on the one or several of the 

independent variables, which can be used with the explained model and when especially 

careful about generalization errors, used with the personalized model that is more 
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ameliorative in terms of generalization errors. The major models for that purpose are 

linear regression and logistic regression. And several modifications of these models 

including regularized versions to incorporate the effect of having many variables or 

variable selection methods. 

We also have machine learning and artificial intelligence methods that were developed 

during the last decades. They have become increasingly more popular. These data-driven 

methods, known for being able to treat a high number of explanatory variables, rely on 

algorithms that can replace statistical models and are known for their predictive power. 

These algorithms include k-nearest neighbor, decision trees, random forest, support 

vector machines, neural networks, generalized additive models or deep learning 

architectures. 

It is possible to define the parametric approximation error using an information-theoretic 

model, but in practice, designers of statistical models use common sense assumptions 

that are driven by experience with similar past prediction problems. If these fit well, the 

prediction will be good; if they do not, the prediction may be terrible; but this is also true 

of most machine learning methods. 

 

Fig 7.2: Types of Predictive Models 
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7.3.1. Statistical Models 

The methods that take the observed data to discover the relationship between the 

predictor and the response variable are called statistical models. The term “statistical 

model” is used in a very narrow sense and is distinguished from “machine learning 

models” because the latter take no explicit encapsulated structure. The distinction 

becomes a bit vague because of the close kinship of the two paradigms. Most machine 

learning model methods make use of the available training data to make inferences about 

the underlying joint distribution generating the recognition. Such training, if it happens, 

becomes just a technical detail. In statistical methods, such inferences are central and 

unavoidable. A second technical distinction emerges from the different ways that the 

two methodological classes think about generalization, meaning how they think their 

algorithms can work successfully on data outside the training set. 

Statistical methods typically formalize generalization by postulating some parametric 

model complexity that generalizes well from the data set used to set the parameters. The 

model typically has a small number of parameters, thus avoiding overfitting problems 

on the data set (but may underfit). Statistical models have to make specific assumptions 

about the problem at hand, usually about the distribution of the function, to be trained to 

properly encapsulate the similarity of the observed training input-output pairs to be 

successful elsewhere. The accuracy of a statistical model depends on the place of prior 

knowledge and how well these assumptions match the underlying task.  

7.3.2. Machine Learning Models 

Unlike traditional statistical approaches, which hinge on strict assumptions regarding the 

data, machine learning techniques are adaptable, demanding fewer a priori 

specifications. However, against this flexibility stands a plethora of learning 

architectures with diverging inductive biases. Therefore, it is imperative to judiciously 

select candidates for any supervised predictive task. From a make-or-buy standpoint, 

standard linear methods and classic generalized additive models may be considered 

entry-level products to out-of-the-box solutions, whose strong performance on 

benchmark datasets is indicative of the credibility of the results they produce; however, 

these results also need to be treated with due skepticism. Relating to the latter, offline 

validation remains essential for any machine learning model. None of the techniques 

being used will ever substitute the brain ability to embed the underlying signal in the 

proper configuration of the model complexity, which will, consequently, be informed by 

the dataset at hand. 

Numerous studies have associated critical healthcare tasks with standard machine 

learning models. Logistic regression has been employed to predict chronic disease 
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through instrumental variable analysis, to estimate the probability of hospitalization 

following radical prostatectomy and the need for readmission following liver 

transplantation, to model the choice of pediatric providers, or to jointly analyze 

individuals' cardiovascular risk scores and comorbidity patterns. Least squares, or 

support vector regression, have been applied to fingerprint the public health effect of 

smoking bans in restaurants and bars, or to predict length-of-stay following total hip 

arthroplasty. Also, linear and multi-class support vector machines have been exploited 

to predict which patients would accept participating in a tailored intervention to reduce 

alcohol use. Artificial neural networks have been used in forecasting breast cancer 

incidence rates or predicting bed utilization, heart transplant, or hospice utilization. 

Nonetheless, to the best of our knowledge, no comparative study has considered all 

mentioned algorithms for predictive tasks in Public Health. 

7.4. Data Sources for Predictive Modeling 

Understanding of a phenomenon and its description using prediction models require 

availability and accessibility of a wide range of appropriate data. This is valid for any 

field of research and predictive modelling is not an exception. Moreover, quality and 

quantity of data are directly linked to the accuracy and reliability of the obtained model 

and inference. Predictive modeling of infectious diseases needs a large-scale and 

multimodal set of data to ensure accuracy and reliability. Data sources are primarily 

determined by the type of organism and the disease. However, it is essential that the 

available data should cover representative and large geographic areas during an extended 

period of time, otherwise, the predictive capabilities of the models may not be of real 

use in a real-world scenario. 

For related research, appropriate data can be mentioned as: Genomic and transcriptomic 

data, Metabolomic and proteomic data, Epidemiological data, Phylogenetic data, 

Climatic data, Environmental data, Social media data, Electromagnetic data, Mass 

spectrometry imaging data. A major source of epidemiological data comes from 

universities, public health institutes, or governments. Additional data, such as travel-

related data, can also be found in some commercial airlines or in some initiatives. 

Genomic and transcriptomic data are retrieved from samples from field outbreaks and 

clinical cases or from publicly available bioinformatics databases. For modeling the 

transmission risk of zoonotic diseases, the adequate epidemiological data resources 

include: Disease outbreak reports, additional data sources. For modeling fungal 

respiratory infections, additional data sources were mentioned.            
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7.4.1. Epidemiological Data 

Epidemiological data consist of individual-level records on diseases, environmental and 

host factors over time. These data are collected in different ways, usually through disease 

surveillance systems, clinical trials, or observational studies. The best known source of 

epidemiological data is at the population level, comprising counts of observed cases of 

disease and counts of the population at risk at a specified place and time. Collecting 

disease data at the population level is useful for identifying disease outbreaks, but does 

not provide individual-level information on other factors associated with increased risk 

of disease such as environmental factors, genetic predisposition, socio-economic status, 

and comorbidities. Individual-level data are necessary for developing predictive models 

that include these factors. 

For infectious diseases, individual level data can often be obtained from the notification 

of infectious diseases or from observatory studies that are motivated by the infectious 

disease notification. Both of these sources can provide varying levels of additional 

information. A more complex source of epidemiological data consists of individual-level 

data for a large number of people, such as those provided by population-based health 

surveys. These include data on infectious and non-infectious diseases, demographics, 

comorbidities, socio-economic data, and behavioral and lifestyle factors. While there are 

very few surveys that include questionnaire data on infectious diseases, many others 

include data on non-infectious diseases. Such surveys are also used for linking 

population-based health records to genotype information for various diseases and traits. 

Disease and risk factor data from such surveys are usually collected cross-sectionally 

and are not suitable for predictive modeling purposes. 

7.4.2. Genomic Data 

The emergence of new pathogens has posed a challenge to public health agencies. In the 

past, scientific agencies have compiled genomic, phylogenetic, and epidemiological data 

to characterize novel pathogens in outbreaks. These efforts are crucially important, as 

the genomic data enable us to understand if a pathogen has an unusual rate of genetic 

change and if it is related to other pathogens that have caused disease but have not yet 

been identified. With the explosion of data available, it is now possible to rapidly bring 

together large amounts of phylogenetic and genomic data for many of the more important 

pathogens. Thanks to these data, new pathogens can be compared with known 

pathogens, and ongoing evolutionary changes in nucleotide, amino acid, and gene 

content can be identified for trend studies. In this section, we briefly outline the available 

data and the important role they play for public health agencies. 
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Since 1999, when the first complete prokaryotic genomes were sequenced, we have 

witnessed an explosion of genomic data for many pathogen species or groups. For many 

key pathogens in public health–related species, the available information includes 

sequencing data, annotations for gene function, phylogenomic data, protein signals, 

repeat regions, and transcriptome and RNAi data, as well as virulence gene databases 

and virulence prediction resources. Such genomic data are important for several reasons. 

If an outbreak strain is genetically related to a virulent strain from another location, we 

may be concerned that it is a new example of a strain that is capable of causing disease. 

If it is not, we must orient our control measures differently. From genomic data, it is also 

possible to analyze the evolutionary history of the pathogenicity locus, and its 

relationship with loci from other similar pathogen species, and to analyze if the new or 

outbreak strain differs significantly from its relatives from other locations and times. 

7.5. Model Development Process 

The model development process in predictive modeling can be complex and iterative. 

After the problem statement has been defined, the first task is to collect the data. This 

would depend on how the data might be defined from different disciplines under 

different conditions. The data can be from primary sources, where the investigators are 

required to develop the data collection process, or secondary sources, where relevant 

data can be utilized from existing repositories considering how the dataset matches with 

the problem statement. The development of models for disease detection and managing 

public health crises can use historical databases from the healthcare departments related 

to the occurrence of the specific disease or adverse events caused by the rationale of the 

development of the predictive model. The data could also include risk factor 

questionnaires, surveillance data, and data from biosensors. In the case of health 

emergencies, forecasting models can also use crowd-sourced data available in the public 

domain to develop predictive models for detecting public health emergencies critical to 

allocating community intervention resources. 

Most of the data used in modeling processes are prone to variations and need 

preprocessing in the modeling stage. Preprocessing includes data organization, cleaning, 

and transformation. The preprocessing of data aims to ensure the data is available for 

modeling without detrimental effects on misinterpreting the outcomes. The 

preprocessing steps may also include de-identification, dimensionality reduction, and 

conversion of data types to reduce noise and avoid overfitting and underfitting the 

classification models or prediction models. The methodology should ensure balance in 

the dataset when population sizes across the output class are unequal to avoid biasing 

the model for classes with larger training samples. These preparatory techniques help in 

addressing the problems that could augment analytical bias and allow for selection bias 
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that could change the nature of the data and add uncertainty to the estimation of the 

predictive model. 

7.5.1. Data Collection 

Data collection is pivotal in designing predictive models. Adequate and relevant data is 

essential to recognize the patterns specifying a condition. When sufficient data is not 

available, it leads to poor and unreliable model performance. Several data sources exist 

to collect data to monitor public health diseases. Population inquiries provide 

demographic and economic data on a periodic basis. If data on requirements relevant to 

disease prediction is collected, these inquiries can be beneficial. However, the data is 

only available at yearly intervals or longer. There are also a few low-sized surveys that 

collect data quickly but are not adequate for temporal disease prediction. 

 

Fig : Predictive Models for Early Detection of Diseases and Managing Public Health 

Crises 

In a majority of cases, hospitals, clinics, and emergency department visitations provide 

data for predictive modeling. Using routine data from monitoring systems to detect 

changes in health indicators could assist in targeting data collection of other variables 

more efficiently. Any widespread collection of health-related information on the target 

population from one of the disease monitoring systems will be exceptionally beneficial 

as it provides a wide temporal window of information and a shorter historical record. 

The drawback of this method, however, is that in order to consider a health outcome 
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indicator as a predictor variable, it cannot be regularly included in the model and should 

definitely be publicly available. 

7.5.2. Data Preprocessing 

Preprocessing the data is one of the important but often neglected procedures in building 

models in the health domain. In the health domain, data is often not clean because they 

were collected from different health institutions, observers, and environments. Health 

records usually refer to many items, having different data types, such as numeric, 

categorical, free-text, dates, and times. Data usually has conditions such as missing 

values, outliers, and noisy data. All these conditions make the data unprepared for the 

model to learn efficiently and effectively. Preprocessing aims to eliminate as much as 

possible these conditions and prepare the data in a suitable format so that more 

meaningful and precise results can be provided by the model. By neglecting 

preprocessing, its consequences might lead to understanding incorrectly or 

misinterpreting the results given by the model. The models created would incorrectly 

represent humans’ and animals’ health, especially they could not be used again for 

further predictions. 

Given these reasons, in this section we highlight the most frequently used data 

preprocessing techniques in the models presented in this study. The procedures described 

below should be used as guidelines, and the actual implementation should depend on the 

specific context of the data, and the experience of the data scientist. Health data 

frequently has values that are not available. Consequently, data needs to be either 

discarded or handled, so that they can be incorporated into the decision models. If only 

a few records in the data are missing values, then the records can be omitted, and the 

model is developed with the remaining data. In contrast, if a large number of records has 

missing values, this might produce a poorly developed model that cannot make good 

predictions from the health data. These missing values can be imputed using several 

techniques, such as replacing the missing values with the mean or median of the non-

missing values in the attribute, replacing the missing value with the mode for the specific 

class attribute, or seeking the records that have similar attributes and identifying their 

similarity using distance formulas. 

7.6. Applications of Predictive Models 

In recent years, increasing efforts have been put into the development of predictive 

models for the early detection of health problems or risk situations. There is great interest 

in finding early signals that would alert public health authorities, allowing them to take 

quick preventive measures that would otherwise not be taken if using more traditional 
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analysis methods. Predictive models have been used to predict an infection outbreak, 

usually the subject of prediction being a location or population group. Models in the 

biostatistics area have been used for this purpose, particularly those dealing with the 

analysis of time series of health-related data. 

With predictive models, health authorities can take early actions that impact the growth 

of an epidemic, especially in the case of infectious diseases. These actions can be 

controlling the disease spread if it is virulent, such as the plague, or motivating 

vaccination of at-risk populations if they are subject to the development of detrimental 

consequences as a consequence of an infection, such as the case of hepatitis and 

pneumonia caused by viruses. The predictive models are based on prediction equations 

involving some relevant variables such as climatic variables, behavior patterns, 

demographic data, and economic factors, which, once known, help estimate the future 

trajectory of expected cases or mortality. There are examples of applied models 

predicting the incidence rate of diseases such as malaria, dengue, rabies, tuberculosis, 

and various types of influenza. 

7.6.1. Disease Outbreak Prediction 

The outbreak of communicable diseases tends to be spatially and temporally periodic. 

Their distribution and dynamic patterns are influenced by many socio-economic and 

environmental conditions. Therefore, accurately predicting their spatial-temporal 

patterns is beneficial to risk management. Moreover, accurate forecasting is helpful for 

vaccination programs, security companies, and local health authorities to carry out health 

education to prevent disease incidence. Indeed, early warning of disease outbreak is 

necessary for vaccine companies to prepare for the vaccines which could avoid the 

occurrence of possible epidemics. Health authorities and consequently the economy 

would also greatly benefit from accurate disease forecasting. Predictive models can 

provide an advance warning for the probability, type, timing, and likely location of an 

outbreak. It is essential for public health agencies to implement control and mitigation 

measures in a timely manner to avoid severe consequences. 

Not many efforts have been taken to specifically evaluate predictive models that can 

reliably forecast human infectious diseases. Here, we review statistical predictive models 

and machine learning predictive models. Moreover, the accuracy of the prediction 

models is also compared. The performance of some prediction tools is summarized. The 

statistical predictive models include time series models. Regression models rely on virus 

data and covariates to develop a forecast. The classic regression models in operation 

include modeling cases and seroprevalence as functions of temperature, humidity, or 

other factors. Machine learning methods have recently gained great popularity across a 

variety of research domains. Decision trees in operation incorporate virus data and one 
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or more covariates. Random forest and gradient boosting machines involve an ensemble 

of decision trees. Bioinformatics research relies on neural networks, hidden Markov 

models, and support vector machines. Many compare quite favorably against classical 

methods. 

7.6.2. Resource Allocation in Health Crises 

In response to health crises, there is a demand for accurate projections of the future 

progression of an epidemic. For a variety of reasons, this situation might be problematic. 

The timing of the first peak is normally not certain, and the height of the first peak is 

very uncertain unless it is far in the future. It is typical for many new infections to happen 

days during the week and fewer on weekends and holidays. If the tail of mortality 

representing deaths due to causes unrelated to the epidemic is too short, forecasts will 

tend to be negatively biased. Forecasts will tend to be positively biased if the tail is too 

long. Furthermore, most forecasting models are estimated on the historical record, which 

may be a poor guide for truly novel diseases. Many prior pandemics have exhibited 

exponentially increasing episodes of exponential growth of some duration, pre-picking 

the peak and size. The very nature of pandemics compels attention to multiple objectives 

in guiding policy. 

While predictive research has made major pathways and conceptual advances, the 

requirements of timely forecasts in the middle of possible catastrophe imply some need 

for basic rapid R&D in theory and method. It is commendable that there are applied 

operational groups working to distill arguments from simulations. It might also be timely 

to assemble data on prior countrywide forecasts to inform about forecasting capabilities. 

In most countries recountings within each category of death provide private information 

about the cause of death, and its direction for prediction purposes. Usefulness of online 

panels for daily infection and vaccination counts within certain special categories about 

special group-focus guidance is being demonstrated family by family. Prior experience 

with pandemic preparedness plans has led to country-by-country differences in predicted 

mortality from new and re-developed pathogens. 

7.7. Conclusion 

The use of predictive models can be an essential resource for the healthcare system. 

Furthermore, several examples were observed where predictive models were able to 

differentiate predictive healthcare events before being expressed. Consequently, if 

knowledge about an important healthcare issue can be detected earlier than common 

practice, then predictions may provide additional and valuable knowledge to the public 

sector. It helps to allocate limited resources in a smarter way, facilitate additional focus 
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on critical and pending deadlines, and support the public sector in achieving a more 

efficient use of the available resources to solve public health issues faster. The 

experience and competencies embedded in predictive models are remarkable, and should 

be made available to public actors. Predictive models may therefore function as a 

lighthouse for public actions, illuminating the path ahead. Based on these, a further 

reflection on handling predictive models can shed additional light on how to link private 

efforts with the unfolding of highly relevant issues in new ways. 

If it is implicitly or explicitly decided that the predictive models should function in an 

explorative mode, it is anticipated that they will be used to revise plans and budgets 

dynamically during the next hospital admission based on how the situation, as 

recognized in the model, evolves during the execution process. This is the ideal use to 

cope with the complexity, uncertainty, and unforeseeable nature of modern public 

healthcare predictions, and may shift focus from detection and control of exceptions with 

postmortem consequences towards a more proactive search for proactive public action. 

Consequently, healthcare hospitalization predictions should be made available at the 

management level, with the clear understanding that knowledge about hospital 

admission forecasts becomes cumulative as new experience and historical data unfold, 

so that foresight can be improved along the way. All in all, the availability of predictive 

models can foster a proactive public healthcare policy. 

7.7.1. Emerging Trends 

Tele-health and telemedicine are starting to be used to provide enhanced services for 

patients that need specialized medical expertise that is not available in their geographic 

area. mHealth and the use of mobile health devices that include monitoring features are 

becoming more common in particular for patients with chronic diseases, as the ability to 

non-invasively and continuously monitor these patients can save the healthcare system 

a large amount of money, and greatly benefit individual patients as well. Behavior-

influencing apps and goals are being widespread and being integrated into some of these 

platforms and services. Not only do these apps help patients become aware of their 

behavioral habits, they provide suggestions and techniques to patients to help reinforce 

and even help modify undesired or poor behavior. With the introduction of new mobile-

connected devices, the sports fitness environment is undergoing a renaissance of new 

and improved comfort, performance, and monitoring features, enabled by technology 

and user-centric design. Together with the introduction of expert systems and powerful 

mobile apps that are able to non-invasively capture private user key behavioral 

indicators, the predictive health monitoring framework will be greatly enhanced and 

improved. 
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