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Chapter 4: Applying machine learning 

to enhance diagnostic accuracy and 

device functionality  

4.1. Introduction 

Machine learning is an exciting, emerging field in which computers learn independently 

from the data they collect and their experience with this data. A subset of artificial 

intelligence, machine learning has the potential to significantly enhance the functionality 

of medical devices and any other processes reliant on accurate classification of highly-

dimensional sensory data. For classification tasks associated with high-dimensional 

datasets, suitable tools may not be readily available (Bhelkar & Shedge, 2016; 

Chalapathi et al., 2019; Analog Devices, 2020).  

These tools may range from automated tools such as those utilizing convolutional 

networks for pixel data classification to customized classifiers using machine learning 

techniques for both pixel data and non-pixel data. While many medical devices utilize 

classification for diagnostic purposes, the vast majority of diagnostic devices do not use 

machine learning. However, we believe that there are substantial advantages in the use 

of machine learning to enhance the diagnostic capabilities of devices in the medical 

domain. In this chapter, we will discuss the domain of medical diagnostics and the need 

and potential for the incorporation of machine learning in diagnostic modalities currently 

in use. 

Over the last few decades, there has been enormous and rapid progress in our ability to 

generate and collect data and increase improvements of computer algorithms utilizing 

multivariate techniques to explore the hidden predictive potential of that data. This has 

occurred at the same time that powerful sensors have been developed to collect medical 

data associated with the body tissues and fluids. In parallel, there have been increasing 

advances in computing power and storage as well as in the capabilities of the algorithms 

for utilizing this computing power to explore the correlated dataset in an efficient and 
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effective manner. As a result, we are amidst a revolution in our ability to utilize data for 

improvement in diagnosis, prognosis, and prediction of therapeutic response at all levels 

of evidence (Li et al., 2024; Xu et al., 2024). 

4.1.1. Background and Significance 

Machine learning has established itself as an essential player in the realm of artificial 

intelligence, one of the fastest growing fields in technology and science, rapidly 

transforming business sectors and offering creative solutions to prevailing dilemmas. 

ML effectively relies on algorithms to assimilate and scrutinize data in novel and 

sophisticated manners, allowing technology to perform tasks that surpass the efficiency 

and accuracy of human capabilities. Consequently, ML has become an integral cog in 

the operation of intelligent systems. The triumphs that intelligent systems have 

experienced is in large part due to the recent dramatic advancements in the expounding 

of ML theory as well as powerful enhancements in the computational heft of computers. 

Given this backdrop, it is perhaps logical that ML is being progressively embraced by 

numerous knowledge-based medical disciplines such as radiology, dermatology, 

pathology, neurology, ophthalmology and cardiology. Indeed, several studies have 

revealed that ML and, more precisely, deep learning, which performs the modeling task 

using sparse representations that are learned by convolutional neural networks from the 

realm of associated data, has successfully outperformed expert medical practitioners in 

the diagnosis of radiologic chest disease, the prediction of prognosis following image-

guided radiotherapy for brain metastases, and sleeplessness categorization with 

polysomnography data. However, in terms of experimental validation and forthcoming 

clinical translatability, the grouping of employed neural networks and final datasets 

remains in its infancy when compared to the MRI biometric community. 

4.2. Overview of Machine Learning 

Despite the increasing popularity of machine learning (ML), numerous and diverse 

definitions try to demarcate the subject. One of the most common attributions defines 

ML as a computer science discipline that develops algorithms that can learn from 

observed data and make predictions based on these observations. More formally, ML 

can be defined as a research field aimed at developing computationally feasible 

procedures that can estimate a mapping function from inputs X to outputs Y based on a 

database, which has been generated by a probability distribution P(X, Y). When P maps 

the input/output space, the function can be characterized as error-free. However, since 

the observations are usually corrupted by noise, the goal of ML is to find an 

approximation to P. This approximate function, however, is usually defined for a finite 
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number of points in X, whereas it can be used over the entire support of P to define the 

mapping function. 

 

Fig 4.1 : Applying Machine Learning to Enhance Diagnostic Accuracy and Device 

Functionality. 

A related definition views ML as a set of tools to discover patterns in data, enabling data-

driven decision-making. This ontology matches the original intention of ML, which is 

to infer generalizable models from empirical data, a feature that differentiates ML 

methods from mathematical modeling. This implies two additional characteristics of 

ML: First, ML is agnostic regarding the model: classical statistical approaches are 

characterized by the specification of the mathematical form of the model, whereas ML 

selects or estimates the model from the data, providing a greater number of possible 

model structures, both linear and non-linear. Second, ML offers flexible approaches for 

forecasting. While exploratory data analysis focuses on obtaining information from data, 

using summary statistics and graphs, ML focuses on obtaining knowledge from data by 

forecasting test data. 

ML can be categorized into supervised, unsupervised, and reinforcement learning. In 

supervised learning, a model is built based on a training set containing features and the 

labels of each feature vector. When the model is validated and can generalize well in 

unseen data, it can be used for prediction tasks. In unsupervised learning, only observed 
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data is used, and the learning algorithm is asked to find patterns or groupings. In 

reinforcement learning, an agent takes actions in an environment to maximize 

cumulative reward. However, diminished return phenomena appear because of the 

sequential nature of the tasks. 

ML techniques have attracted enormous interest due to their suitability for data-rich 

environments, such as finance, e-commerce, marketing, social media, and healthcare, 

among others. Within the healthcare context, applications include predicting diseases, 

adverse events triggered by therapeutic interventions, and treatment responses from 

electronic health record data; improving disease surveillance from event monitoring; 

diagnosing diseases from images, genomic and proteomic data; refining health system 

management and performance analysis by effectively allocating resources, predicting 

disease prevalence, and enhancing quality of care. 

4.2.1. Definition and Key Concepts 

Machine learning (ML), a subset of artificial intelligence (AI) that has emerged over the 

past few decades, allows computer programs to automatically receive information from 

data and use it to support decision-making without requiring explicit programming for 

the particular task. Supervised learning, one of the two major classes of ML algorithms, 

requires a training set of input-output pairs that allows the program to learn the 

association of inputs with desired outputs. Once trained, the model can operate on new 

input data, producing a predicted output. In contrast, the other major class of ML 

algorithms, unsupervised learning, does not require labels. While supervised learning is 

more commonly used in image classification tasks, especially in medical imaging, 

unsupervised learning is often employed in exploratory data analysis problems. 

For supervised learning to be useful, a large collection labeled observation pairs must be 

acquired prior to developing a model for general use. Labeling of medical images for 

tasks such as disease classification is a labor-intensive process and requires the expertise 

of medical professionals. Alternatively, unsupervised learning can search through large 

datasets, locating structure such as clusters or outliers that create a basis for hypotheses 

or augment the training of models supervised by more limited labeled datasets. Speed 

and compatibility with parallel processing make so-called "deep" neural networks 

particularly computationally attractive methods of ML, especially in recent years as 

massive computer processing capability has become available to researchers. 

Technical advances in both ML methodologies and available computational resources 

have fueled its rapid expansion into many aspects of medicine. Classification tasks, 

which can encompass the detection and diagnosis of particular diseases, conditions, and 
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physiologic states, represent the most common applied use of ML in the medical 

domain.  

4.2.2. Types of Machine Learning 

Machine learning methods can be broadly categorized into supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning. In 

supervised learning, the input data is annotated with the desired corresponding output, 

such as class labels in classification applications or numerical values in regression 

applications. Given the labeled input-output mappings, the goal is to learn a deterministic 

or stochastic function to be able to reliably predict the output for unseen data. In 

unsupervised learning, only the input data is given, and the goal is to find hidden 

structures in the data. Examples include clustering algorithms and generative models. In 

reinforcement learning, an agent learns to interpret the current state of an environment 

and then make decisions with the goal of maximizing a reward signal. The learned policy 

is then employed to guide the agent's behavior in the environment. 

Most commonly used machine learning algorithms, such as logistic regression, support 

vector machines, linear regression, and deep neural networks, are in the supervised or 

the semi-supervised category. Commonly used unsupervised algorithms include 

Gaussian mixture models, kernel PCA, dictionaries and auto-encoder based compressive 

sensing, dictionary learning, and latent variable models such as probabilistic PCA, 

transfer learning, and variational autoencoders. Some recent attention has also been paid 

to generative adversarial networks for generating new samples and for semi-supervised 

learning. 

4.2.3. Applications in Healthcare 

Machine learning is applied in medicine to predict medical outcomes, derive insight from 

sensor data, and help with device programming and testing. It solves key problems, such 

as, diagnosis; precision diagnostics considers a growing number of omics, imaging with 

deep learning, and physiological measurements to create a multidimensional disease 

landscape; longitudinal assessment of clinical condition considers integrated pathology 

from omics, wearable sensors, images, and clinical tests to derive insights on prognosis; 

and precise prediction of clinical events or therapy response considering large input 

factors and prediction horizons. Abundant data, computing power, cloud-assisted 

deployment, model transfer, and clinical unmet needs enable the underlying ecosystem 

for machine learning in medicine. Healthcare devices increasingly come with integrated 

embedded sensing and processing capabilities. These devices can benefit from improved 

users and patient outcomes via enhanced device functionality, device testing and 
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optimization, and better understanding of individual sensor data. Embedding intelligent 

algorithms within the devices can enhance functional capabilities – allowing, for 

example, non-contact sleep stage monitoring to enable personalized sleep optimization, 

and near real-time fetal heart rate monitoring in varied environments to enable effective 

labor monitoring. 

However, intelligent healthcare devices need to be validated thoroughly. Generalizing 

model training with multi-domain, temporal, and subject-specific variations in stress and 

sleep is important for predictive solutions; this requires extensive modeling. Modeling 

these variations would usually also require a large dataset, which is not possible for 

device-related physiological signals, due to the existence of significant inter-subject and 

intra-subject variations. Hence, transfer learning helps with adaptation models that stress 

on subject-related factors or exploratory models that use information from multi-subject 

data to gradually adapt and converge to solution, while generalizing across the 

variations. Additionally, the processing implementation also requires careful design of 

the feature extraction, filtering, and sensor data glitch handling aspects along with 

embedding the models. Further, these require careful lifecycle monitoring for 

enablement and scheduled recalibration due to variations stemming routine changes, 

health condition changes, device conditions, and system drift. 

4.3. Diagnostic Accuracy in Healthcare 

Diagnostic tests are very important in order to classify and possibly assess and 

characterize a disease or a health problem. Classifying if a patient has cancer, is diabetic 

or has a coronavirus infection, is only a few examples of some possible diagnostic tests. 

The probability to detect the disease, if it is really present, is defined as positive 

predictive value. The probability to detect a common disease, if it is really absent, is 

defined as a negative predictive value. Both values are a subject of the applied test 

accuracy and represent the quantitative concept of diagnostic test accuracy. Positive and 

negative predictive values are functions of the condition prevalence and describe 

accurate tests to identify a target population that is tested to classify as diseased or non-

diseased. 

A non-choice will be made in a medical imaging task. In most imaging modalities, a 

probe will send radiation, light, sound or magnetic sources to the pathology under 

consideration. A detection device will receive the response signal from the stimulus. The 

sensitivity of a medical imaging system should be sufficient so that normal patients are 

not disturbed by interference features in the diagnostic image which could confuse the 

diagnostics. Also, there should be a high efficient choice probability that abnormal or 

diseased patients will have the correct expectation-maximization. We reviewed the 

mutual relationship between diagnostic accuracy and device functionality. Low imaging 
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accuracy can be compensated by advanced diagnostic methods. We will have a look at 

the performance compromises for some advanced standard methods as well as their 

possible solutions. 

4.3.1. Importance of Accurate Diagnostics 

Accurate diagnostics are key to the field of healthcare. Whether for tracking health 

status, identifying infection or disease, preventing adverse health events, or monitoring 

recovery to avert complications, diagnostics must be trustworthy and reliable. If a fault 

occurs in a diagnostic, the implications can be disastrous. Even a simple at-home 

pregnancy test can cause serious implications for a person’s health if its results are not 

accurate. Consider the case when a patient is misdiagnosed as not being pregnant, and 

thus does not seek pre-natal care that may diagnose or help her mitigate pregnancy-

related health issues, such as gestational diabetes or pre-eclampsia, and later delivers a 

severely unhealthy infant. Doctors, too, need to be thoroughly trained in how to perform 

when using and interpreting results from diagnostic devices and tests. 

Misdiagnosis can also lead to improper intervention, including medical or surgical 

procedure errors that carry significant risks, which potentially can worsen health. 

Consider a tumor that has been diagnosed as benign based on an imaging test to be 

removed laparoscopically, only to later find that it is confirmed malignant. In this case, 

it is likely that the patient will need to undergo additional treatment with non-targeted 

chemotherapy or radiation, which have major systemic effects, or radiation or 

chemotherapy for a more localized approach. As with pregnancy tests, diagnostic testing 

may carry the burden of false negatives, but false positives in diagnostics can be equally 

impactful to patient wellbeing. Misdiagnosis by either result may lead to either 

unnecessary or lack of treatment, resulting in complications, additional tests and 

diagnoses, or even increased financial burden. 

4.3.2. Current Diagnostic Methods 

The diagnostics landscape comprises several traditional diagnostic methods. Physical 

examination, also known as a clinical exam, is the first step in assessing a patient's 

healthcare problem. Various forms of imaging modalities, including MRI, CT, and 

ultrasound, offer visualizations of internal tissues and organs of the human body. 

Invasive surgical procedures may also be performed if necessary, causing a mixture of 

reactions, including stress, fear of disease, and increased distrust associated with 

treatment. In challenging cases, these may be combined with second opinions, but more 

often through trial-and-error studies, such as guided therapy and diagnostic studies, 

which add time to the overall process. Defining monitoring and managing disease are 
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part of the feedback during a rational clinical decision-making process. Laboratory 

investigations contribute towards more precise and quicker diagnostics. This includes 

microbiology testing, such as bacteria or parasite screening, immunology studies, 

hormone, blood, and urine analysis, and finally, histopathology investigations. 

Nevertheless, these conventional methods have been associated with significant 

problems, such as limited availability of skilled professionals, sample storage issues, and 

increasing in-disease prediction costs. Especially for patients with chronic illnesses such 

as diabetes, asthma, and hypertension, current screening and diagnostic approaches face 

significant hurdles to achieving patient-centric timely diagnostics due to limited 

sensitivity. Moreover, samples such as blood and tissue cannot be easily stored and can 

be difficult to obtain in patients such as infants without severely aggravating conditions. 

These examples show unmet needs in timely diagnostics in various patient populations, 

resulting in healthcare services that compromise patient outcomes and experience. 

4.3.3. Challenges in Diagnostic Accuracy 

Diagnostic tests play a crucial role in confirming the presence of a disease to aid the 

clinician in clinical decision-making. A diagnostic test must have high sensitivity and 

specificity for it to be reliable. As medical science advances, it has reached a stage where 

we have a wide range of sophisticated diagnostic processes available to us, but no 

diagnostic test today has 100% sensitivity and specificity for every clinical problem. 

Results are more accurate when more tests are utilized that complement each other. 

Many diagnostic tests including imaging and biopsies are adjunct to clinical assessment 

and most clinicians prefer them to augment their clinical impression rather than replace 

it. Accuracy of diagnostic tests is affected by several factors and recently, attention has 

been drawn to the overriding nature of the pretest clinical probability. In other words, 

the ability of a diagnostic modality in predicting the disease state is dependent on the 

state of the patient before conducting the test and the pretest probability is inferred from 

prior knowledge based on study of the natural history of diseases. 

Diagnostic tests can have suboptimal performance for a variety of reasons. The most 

fundamental issue is the difficulty in accurately determining the status of cleanly defined 

disease and nondisease. Most conditions pursued by diagnostic tests are not only defined 

by signs and symptoms but are also understood to unfold over periods of time. There 

exists a group of individuals who possess some characteristics of disease or health but 

do not yet fall clearly into either category, and this category of individuals is often 

described as diagnostic dilemmas. In many instances, diagnostic dilemmas would 

resolve over time but in others, it would not, highlighting the fact that the boundaries of 

diagnostic categories are blurred. Further, the patient’s stage of the disease and the 

presence of confounding comorbidities will also impact the accuracy of tests, especially 
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as it relates to sensitivity. It follows that the error or false results for a diagnostic modality 

would not be uniform across all the patients being tested for a specific condition, leading 

to controversies on the sensitivities and specificities stated for most diagnostic tests. 

4.4. Machine Learning Techniques for Diagnostics 

The availability of increasingly higher-quality electronic health records is opening the 

door for innovative approaches to provide population-level insights that may improve 

the understanding of disease risk and treatment response. Because health data is made 

up of varied modalities that may require differing preprocessing steps and represent 

various perspectives regarding health risk, many machine learning techniques may fit, 

and even complement, a research question of interest. Additionally, supervised, self-

supervised, and unsupervised techniques alike may prove useful. Below, we provide an 

overview of several prominent applications of ML methods for predictive modeling, 

clustering, and risk stratification related to disease diagnosis. 

 

Fig 4.2: Machine Learning Techniques for Diagnostics. 
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4.4.1. Supervised Learning Approaches Predictive modeling has been a common thread 

in many ML applications to health data. Knowledge of ground truth labels or outcomes 

of interest during model training allows the vast amounts of health data to be mined into 

powerful diagnostic models. Many techniques fall into this category, from traditional 

supervised regression and classification to more modern deep learning techniques. 

Internal validation using temporal or external study cohorts has been crucial for 

establishing the robustness of these predictive models, and much work lies ahead to 

quantify the clinical impact of these models. Adding structure to the predictive modeling 

task, hierarchical labels on the disease state can also be incorporated to further 

complement rare or heterogeneous disease states. 

4.4.2. Unsupervised Learning Techniques In the absence of adjudicated event labels on 

the dataset of interest, unsupervised learning techniques enable deep exploration and 

embedding of clinical data sources. Self-supervised methods, similar to supervised 

algorithms, can be trained on large amounts of data to characterize clinically relevant 

features. Reinforcement learning has gained traction with clinical design help, 

optimizing its tuning to improve patient and clinician outcomes alike. Traditional 

unsupervised clustering techniques such as K-means, Expectation-Maximization, and 

Hierarchical clustering provide interpretable and simplistic disease discovery aids. Topic 

modeling, probabilistic clustering, predictive modeling, and matrix factorization can also 

discover latent themes from textual or categorical data. Autoencoders applied to rich and 

multi-modal datasets may also yield similar dimensionality reductions. Thus, group-

level latent features or modes of data variability can be mapped, grouped into disease 

clusters, or even linked back to ground truth event labels. 

4.4.3. Deep Learning Applications The superior performance of deep learning hinges on 

the availability of sufficient amounts and variety of risks for training. Yet, recent 

breakthroughs in the application of self-supervised techniques have demonstrated the 

efficacy of leveraging massive amounts of unlabeled data to learn embeddings. These 

embeddings can be cleverly paired with supervised learning techniques to maximize the 

concordance between the supervised and self-supervised studies. Alternatively, pre-

trained embeddings can serve as input seeds for downstream supervised tasks with 

limited amounts of training examples. Various encoding models have been devised to 

process multi-modal clinical data, from categorical/multi-hot encoders to continuous 

encoders for health imaging, audio, or time-series data. 

4.4.1. Supervised Learning Approaches 

The most prominent family of machine learning techniques are the supervised learning 

approaches. These model the mapping from the input space to the output space, and 

require labeled training data to develop the model that represents the mapping. The 
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labeled data typically consists of training examples made up of input-output pairs, it is 

the data from which the algorithm will learn. The input data is usually a nanovector, and 

the output can include a class label, a class probability, real-valued quantities, or the 

structured output of objects such as sequences, trees, or graphs. The first two scenarios 

pertain to classification tasks, while the last belongs to the domain of structured output 

prediction. This essential requirement of labeled data creates a problem because it is 

expensive and often difficult to obtain. However, when adequate labeled data is 

available, supervised learning techniques can attain very high accuracy on unseen data, 

and are among the most prevalent techniques applied to real-world problems. 

The family of supervised learning methods and their variations have seen recent success 

in diagnostic and prognostic prediction tasks in a variety of application domains. Most 

of the work follows a similar methodology pattern: construct the main data set from raw 

data; extract features that inform the diagnostic label, or class, or the prognostic 

threshold, and which describe its relationship with the input; develop a mapping model 

that models the relationship between the feature vectors and the diagnostic or prognostic 

output; and finally validate the model on a test set. These tasks contribute to the majority 

of the main areas, or classes, of work within the ML community. In the following, we 

will briefly summarize the most well-established supervised learning methods. 

4.4.2. Unsupervised Learning Techniques 

Unsupervised learning techniques are a category of machine learning where the model 

learns from unlabeled data. Unsupervised learning seeks to discover patterns or 

structures in complex data; Information is learned only through features, kept internal to 

a model, that are encouraged to extract explanatory and relevant aspects of interest. This 

property allows fruitful interactions with human subject matter experts, as models can 

be interrogated for insights and visualizations planned to help users better understand 

the task domain. The most common tasks performed are data clustering and dimension 

reduction. Data clustering groups samples according to how similar the samples are to 

one another. There are numerous algorithms available, such as DBSCAN, hierarchical 

clustering, and Gaussian mixture models. Dimensions reduction is commonly used to 

help visualize collections of datapoints in 2D or 3D when their initial feature 

representation is high-dimensional. Popular algorithms are t-SNE and PCA. However, 

because images are already low-dimensional objects, dimension reduction has yet to be 

applied to improve the data description. The most frequently used technique remains 

Euclidean distance. Other representations can be employed to overcome shortcomings 

of distance: nearest neighbor graphs; Laplacian eigenmaps, for taking into account the 

graph structure of the dataset; or unsupervised representation-based classification, which 

builds a more supervised object representation to perform the classification. Another 



  

72 
 

limitation of the standard Euclidean distance is that it considers samples to be like one 

another only when they are proximate. To account for this, kernel methods employ 

kernels to measure the affinity between samples, which consider the influence of the 

whole dataset and the feature space to compute distance. 

4.4.3. Deep Learning Applications 

Deep Learning is a subfield of Machine Learning that is based on multiple layers of 

processing for feature extraction and transformation. Deep learning techniques can be 

used for detecting salient features in a data set and then for classifying the set, therefore 

using a hierarchical feature learning structure. Such techniques have been widely 

popularized after the introduction of Convolutional Neural Networks, which were 

inspired by biological processes and are widely used for image and video recognition, 

image classification, medical image analysis, and video analysis. The main advantages 

of deep learning methods are their capacity of handling high-dimensional data, their high 

accuracy compared to other methods, and the fact that they require little or no feature 

selection of the training data. 

Though there are more and more applications based on CNN usage and its variants, most 

of the medical diagnosis deep learning techniques are still in experimental phase, and 

further research is needed for fully integrating such methods in the medical practice. As 

an example, a system based on a specific architecture learnt from a large dataset, 

calculating on patient subtypes measures like sensitivity, specificity, positive predictive 

value, negative predictive value, F1 score and area under the receiver operating 

characteristic curve. The system outperformed the radiologists in every biometric, 

achieving an area under the receiver operating characteristic curve of 0.956 in detecting 

esophageal cancer, thus behaving on par with expert radiologists.  

4.5. Enhancing Device Functionality 

Computer applications or services are typically reliant on centralized computing servers 

located remotely from end-users for computation or data servicing. However, with the 

rapid advancement of semiconductor technology and an array of sensors within devices, 

a novel trend is emerging towards the integration of machine learning directly into 

devices. In contrast to centralized functions, machine learning enables devices to 

perform highly specific smart tasks, realtime local data processing, or intelligence 

augmentation directly on the edge with minimal communication with back-end services. 

While consumer mobile devices have benefited from integration of machine learning 

capabilities, new powerful and flexible hardware platforms adapted from mobile 

computers are enabling other traditionally less-intelligent devices ranging from 
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wearables, kitchen appliances, smart home utilities, cars, to industrial sensors to directly 

host machine learning tasks. 

A key benefit of on-device machine learning is that it allows for real-time data 

processing. Data collected from sensors, such as cameras or microphones, can be 

processed locally without incurring network latency. Thus, tasks can be performed 

rapidly, improving user experiences. For instance, on-device machine learning on 

mobile cameras is used for computational photography applications that augment, 

enhance, or even change the captured images or video in real-time, boosting the 

capabilities of traditional cameras significantly. More generally, on-device machine 

learning enhances the capabilities of traditional accelerometers, gyroscopes, compasses, 

and GPS sensors, which are often not accurate meaningfully for practical applications 

including health tracking, navigation, and motion sensing. The convenience of having 

an ability to rapidly process data and provide inference on-device for various 

applications enables better interactions and improves the experience for users. 

4.5.1. Integration of Machine Learning in Devices 

Machine learning increases developmental capabilities to create intelligent devices that 

meet current diagnosis needs. This section describes the hardware methods for model 

integration, activities implemented by models running on the device, and the edgeML 

model. Device integration is necessary for a device to be released into the market or to 

be within a use case that requires, for getting a model from a laboratory environment to 

real use, hardware and software development and validation, device and application, 

considering necessary confidentiality and security. The main activity performed is 

inference, running a model to predict classes or output device diagnostic or correction 

values. While the inference activity is on the device, it is possible to run other activities 

from different people within the device application architecture, deployment model, and 

processing type. Device integration for inference is about the speed and accuracy of 

device configuration for model execution and the amount of inference runs done by the 

model on the existing resources. This section addresses only the basics of device 

inference for internal enhancement for its use cases, diagnostics, corrections, and content 

extraction. 

The simplest way to integrate a model flavor into device architecture is to run inference 

on its chip or make a model onboard the application OS. Because this solution blends 

different environments, the inference resources must be enough to have a reliable model 

output latency with adequate accuracy for all observed situations, and the safety of the 

application function must not be affected by the execution of the inference. EdgeML 

defines the methodologies and techniques structures to allow ML model designs that run 

onboard the devices. This device integration approach is essential for devices aimed at 
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unsupported use cases or with high security and confidentiality requirements. For 

example, supported devices, where sending the input data or the model output is 

detectable, and the action generated is risky, such as industrial machines. 

4.5.2. Real-time Data Processing 

Self-learning algorithms that analyze data in real-time offer the potential to elevate the 

specificity and sensitivity of devices and the data they provide caregivers. This enables 

devices to make recommendations while conducting the intervention, rather than waiting 

for the user to input information. This is appealing not only to the time- and attention-

deprived caregiver or parent, but also to all researchers and practitioners concerned with 

the integrity of data captured by devices, as it removes the reliance on user input for 

accurate insights. This change could be particularly advantageous for devices capturing 

complex data and must make recommendations while the task is being executed, for 

instance, when a device provides auditory scaffolding during therapy and assesses 

quality in real-time. 

Of note is the gradual transition from remote post-processing of data to live feedback 

and recommendations. At the core of this transition are strides in the development of 

real-time, efficient data analysis methods. These strides have been focused on both data 

and the type of machine learning algorithm. Remarkable contributions have been made 

in facial recognition, which is now at the core of many devices assessing behavioral 

health. Low-power CNNs enable real-time recognition, as do re-engineered architectures 

created for the analysis of streaming video. Several facial recognition learning 

approaches have been deployed by research groups, as open-source implementations 

jointly developed with companies, or as for-profit solutions. Other domains are now 

following suit, with potential benefits for data integration and quality, including breath 

analysis for telehealth applied to infections, lung ventilation function assessment for 

enhanced telemonitoring of COPD, and several post-stroke applications involving 

imaging during rehabilitation therapies. 

4.5.3. User Experience Improvements 

End-user experience is a key differentiator in how a device is accepted and continues to 

be used after initial purchase. This experience goes well beyond the general purpose 

functions that a device may offer. Typically devices are designed or used to look for a 

specific event. A key user interaction is therefore to present, mark, or annotate such 

events after measurement, and this task is typically completed using dedicated but 

relatively generic software after data capture. These definitive event markers provide the 

foundation for any further time-series analysis and potentially the data upon which 
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diagnosis or therapy decisions are made. However, the task of marking events in 

wearable data can be time-consuming and arduous. For example, lay users may have to 

spend hours using software to find the minute number or message time of the actual 

occurrence of a particular event, and this level of user involvement can deter even an 

interested user from engaging with the software, leading to lost useful data. 

Improvement in the user experience provided by devices is increasingly being discussed 

as a driver for consumer use and engagement with these technologies. Therefore, the 

development of device systems that can automatically identify event timings present 

obvious advantages including reducing user workload and confusion, allowing rapid 

data-linking during event-rich measuring, and potentially facilitating therapy decisions 

based on device data combined with pre-defined clinical rules or algorithms. The 

combination of event annotation and use of these annotated events may result in a 

feedback system loop. Regular reports to users could help them adjust their behavior to 

improve the outcome. 

4.6. Case Studies 

Specific applications of ML show computer vision tasks as image denoising and 

labeling, and general ML focus on predicting outcomes using tabular data. Some ML 

applications in healthcare demonstrate the variety of improvements that ML can enable 

in healthcare delivery, since a significant proportion of modern healthcare is based on 

health records analysis using standard statistical prediction approaches. 

Machine Learning in Radiology 

Radiology is undergoing an unprecedented transformation with the advent of ML 

techniques for image acquisition, enhancement, and analysis. AI is currently reshaping 

not only how images are analyzed but also how they are enhanced and generated. ML 

has already been able to efficiently denoise images acquired at low doses to decrease the 

exposure to harmful ionizing radiation. Fully autonomous deep learning algorithms have 

been or are projected to be released shortly to perform screening tasks, capable of 

detecting early breast cancer by mammography, lung cancer by CT, or diabetic 

retinopathy by fundus imaging. ML computer vision libraries allow virtually any 

hospital or medical center with a computer to build on previously documented propriety 

and non-proprietary algorithms to undertake the research to validate their performance 

using local data. 

Predictive Analytics in Patient Monitoring 

AR, the real-time overlay of virtual information on a real-world interface at the point of 

care, has been termed pregnancy’s killer app. When used to disclose information on the 
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state of the patient or fetus to the provider and patient that otherwise remained hidden, it 

has shown promise for decreasing premature birth rates. With the enhancement of 

predictive dashboards using ML models, providers at risk for burnout could have an 

interactive tool at their disposal to prioritize their care to patients with the greatest need 

at that moment. 

AI in Pathology 

AI has enabled the real-time digital analysis of key tissue features in biopsies, thus 

mobilizing the long-grounded theory that tissue structures could serve as an early disease 

warning niche. Biopsy adverse events, Wegener’s granulomatosis, and other interstitial 

pulmonary diseases have been identified using tissue architecture in images that are, on 

their own, insufficiently effective for pathologists’ qualitative assessment. 

4.6.1. Machine Learning in Radiology 

Advanced machine learning (ML) techniques, which are used commonly in a multitude 

of applications, including radiology, often do not examine what is learned, especially in 

conditions of "black-box" techniques such as deep learning. They require massive 

amounts of data for training, yet achieve superhuman performance on certain tasks. 

Other forms of ML rely more on permissible algorithms based on statistical theory, and 

expert knowledge of the domain of application, and commonly highlight exploratory 

analytics to augment other approaches at drawing inferences from data. These 

approaches indeed have an important role in radiology as well, especially in exploring 

discovered patterns, which could be useful in setting future hypothesis-driven work. A 

survey purported the large-scale availability of data among the downsides mentioned in 

the radiology space, which would lead to better optimization of deep convolutional 

neural networks (DCNNs), as well as limited greater accessibility and transparency for 

lesser regulated specialties such as radiology, since radiology deals with a considerable 

amount of sensitive data. Irrespective of the debate, deep learning operations, especially 

in radiologic applications concerning image categorization, localization, and detection, 

as well as semantic segmentation achieving superhuman performance, the radiology 

community is now cautiously optimistic about the potential use of AI and ML in clinical 

practice. The major aspects relate to detection, segmentation, and classification tasks, 

while a radiology application/environment includes images accompanying text reports, 

or attempts to learn directly, essentially leveraging multimodal data. 
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4.6.2. Predictive Analytics in Patient Monitoring 

Traditional statistical techniques have long been utilized in health care settings for 

predictive capabilities and forecasting future events. Logistic regression and general 

linear models can uncover a variety of predictors related to the event of interest. 

However, these traditional supervised learning approaches typically only deal with a 

small number of predictor variables, as results become quickly overfit due to the high 

dimensionality of the data. The growth of important data sources offers a unique 

opportunity to provide better, more informative, and timely predictions. For example, 

digitally monitored telemetric data can offer the opportunity to inform clinical decision-

making earlier than was previously considered possible. Experts have estimated that up 

to 40% of in-hospital cardiac arrests could be appropriate to predict. Early warning 

systems based on traditional statistics have existed for certain conditions for a while, 

including early warning scores. These early warning systems betray their heritage by 

relying primarily on physiologic signs, such as body temperature, heart rate, blood 

pressure, and urine output. 

 

Fig : Applying Machine Learning to Enhance Diagnostic Accuracy and Device 

Functionality. 
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4.6.3. AI in Pathology 

Pathology is a research and diagnostic tool that deals with the study of diseases, changes 

due to genetic and cellular mutation, and the reactions and interactions of all these 

changes. The digital transformation of pathology started with the introduction of whole-

slide scanners. Such systems scan microscope slides and produce high-resolution 

digitized images of the whole tissue section, allowing remote access and image analysis. 

Digital pathology, unlike conventional light microscopy, increases the productivity of 

pathologists and allows the embedding of advanced quantitative analysis. 

As all image-based medical specialties, pathology is also experiencing a rapid 

introduction of Machine Learning in its workflow. Pathology, amongst image-based 

specialties, is probably the one that has the largest room for disruption due to the clear 

limitations in accuracy suffered by human observers and the expected boost in 

performance by using Machine Learning technology in assisting pathologists’ decisions. 

It is indeed commonly thought that digital image analysis will be instrumental in creating 

a more efficient and effective practice of pathology in the near future. The first use cases 

in aiding pathologists' decision-making are already acquiring regulatory approval and 

subsequently coming into the market, for example in the diagnosis of breast, prostate, 

and lung cancer. 

In the last decade, the push to increase productivity and the advances in computer 

resources, especially deep learning, have rendered artificial intelligence (AI) a 

probability-like optimized technology for some of the most difficult daily tasks in the 

field. Medical image analysis is rapidly moving towards the transfer of responsibilities 

on the shoulders of algorithms, who are taking over many low-level tasks, such as the 

quantification of cellular markers from immunohistochemical images or the recognition 

of areas of interest in histological sections, such as tumoral areas. Long-term strategies 

seek to accomplish higher-level tasks using high predictive performance automatic 

procedures, starting from disease diagnosis. 

4.7. Conclusion 

With a fast-growing aging population together with the increasing incidence of 

cardiovascular and neurological diseases, there is a clear demand for healthcare systems 

that can offer smarter and automated decision-making supported by leading 

transformative tools such as artificial intelligence and machine learning methods. The 

widespread adoption of wearables, telemedicine technologies, cardiovascular and 

neurological diagnostic and bio-micro/nano-sensing devices promise to address this 

growing demand and to remedy several shortcomings in current healthcare practices. AI 

and ML methods can be applied to improve the diagnostic accuracy of several health 
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issues such as mortality from cardiovascular diseases and neurological distress, as well 

add-on value to the functionality of such diagnostic and therapeutic devices. In this 

regard, the recent breakthrough with large language models and self-supervised learning 

paradigm inspires the prospect of a universal AI model for several tasks. 

The future progress of using AI/ML in the space of health technology is towards the 

development of a one-stop comprehensive platform that can allow universal diagnostics 

anytime and anyplace, creating more equitable and sustainable access to healthcare and 

dispelling the huge burden for primary healthcare professionals. However, models must 

be responsibly developed and their misuse or malfunctions should be hence prevented. 

This comes with the necessity of collaboration between different fields of work: When 

it comes to medical diagnosis, AI cannot work in isolation — it must work with the help 

of and hand-in-hand with healthcare professionals. Moreover, any devices designed for 

the advancement in this field should be co-created with health end-users for safe and 

trustworthy use. 

Developing diagnostics services and devices using AI/ML offers the possibility to build 

smarter and more successful solutions for digitizing, automating, and improving the 

accuracy of diagnosis processes. Moreover, in the realm of diagnostic services, the entire 

process could be shortened and made less complex as the solutions would be easier to 

transmit and understand, therefore making testing easily available for the general public 

and widening the intervention gap. 

4.7.1. Future Trends 

In the coming years, the bottom line focus of device development and deployment needs 

to be making devices capable of doing the jobs they were meant to do in as effective and 

accurate a way as possible. The constant drain on the attention resources of healthcare 

providers caused by device misuse or misunderstanding to the extent that it becomes 

common practice may risk lives, especially when it comes to at-risk patients. New 

generations of smart devices coupled with easier analytics pipelines and streamlined 

capabilities should enable informed users to utilize multi-modality sensing potential 

alongside intelligent analysis more effectively. Cross-device diagnostic capability 

enhanced by multiple modalities is a capability that is further still to be fully realized. It 

is certainly true that interesting results have begun to emerge in the cross-signaling 

space, but that is about it for the time being. Systems which fuse inputs from multiple 

modalities and/or devices into a single more complete view of the physiological makeup 

of the patient are obviously a holy grail solution. Untapped periods of interest cueing 

driven by the sharp rise and fall detection capability could stimulate ever-more 

responsiveness herein. 
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Careful thought must be given to the take up and scope of use of novel devices intended 

to supplement and enhance existing healthcare protocols, especially within non-

traditional user groups. This is, however, a consideration which cuts both ways. 

Development of improved feedback methods on devices expanding capability has the 

potential to significantly reduce the attentional burden of healthcare providers while 

simultaneously increasing efficiency. Devices which trap engagement context 

information, and then present it in a form which is usable and of value to providers post-

hoc generate novel possibilities for engaging users at risk but not previously included in 

regular health tracking.  
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