

20

Chapter 2: Fundamentals of embedded

systems for the design of smart medical

equipment

2.1. Introduction to Embedded Systems

Research on Embedded Systems has become increasingly common and important in

recent years. The successful implementation and design of such systems have recently

gained notoriety given the common integration of Embedded Processors in commercial

Electronics. Although these were traditionally found only in specialized usage, the

development of high performance programmable microcontrollers and the parallel

advances in Sensor Technology have brought their use to areas such as Electronics for

Robotics, Telecommunication and Medical Electronics. In these areas, Embedded

Processors have shifted from having only a supportive function in dedicated circuitry to

a more controlling role in complex innovative solutions.The Medical Electronics field

has made a rapid and broad move to the architecture of Smart Medical Equipment. The

move from traditional Electro-Medical Equipment has led to changes in design

philosophy. Devices now possess high information content and rely on sophisticated

Software Algorithms that often enable the visualization and storage of data (Ahmed et

al., 2018; Jagadeeswari, 2018; Firouzi et al., 2022). The bundle of Electronics with other

areas of knowledge in the design of a medical product may involve rehabilitation

therapists, orthopedists, bio-mechanic engineers, dentists, physiologists, cardiologists,

vascular surgeons, and neurologists, among other professionals. Interdisciplinary

collaboration may lead to the successful completion of a medical product, or pieces of

autonomous “high-tech” cure or diagnostic equipment can become available.An

Embedded System is Computer Hardware and Software with a dedicated function within

a larger mechanical or electrical system or Product. Embedded Systems have been

essential in designing Smart Medical Equipment. Device smartness is expressed, for

instance, by data Communication, User Interface, Storage, Display, Information

Processing, and Diagnostic Capability. Typically, Embedded Systems contain

Deep Science Publishing

https://doi.org/10.70593/978-93-49910-80-5_2

21

specialized hardware designed for devices that have pre-defined functions. Their

Software enables the realization of auxiliary tasks inserted for coordination of the diverse

system functionalities. With just a few exceptions, Smart Medical Devices are digital

Electronics composed of Analog and Digital Processing Circuits connected to

Microcontrollers or Microprocessors (Mathew, 2018; Liu et al., 2019).

2.1.1. Definition and Importance

From the very beginning, the design of embedded systems has accompanied man on his

journey of technological evolution. The need to carry on monotonous, or dangerous tasks

at a distance, led to the creation of machines that, by mimicking the cognition and

behavior of a human being, could fill those gaps.

Fig 2.1: Fundamentals of Embedded Systems for the Design of Smart Medical

Equipment.

These machines were created to work for a long time, with incredible precision, were

able to withstand adverse environmental variations, and were often used outside the

22

facilities in companies or laboratories. In this sense, machines had a specific function to

perform, with cycles that required to be repeated with high degree of regularity,

following a programmed sequence. However, the passage of time, with an ever

increasing demand for complexity and variability of the tasks to be performed, led to the

need to broaden the range of capabilities of the machines used in preemption of human

work. This led to the evolution from the original industrial automation, achieved through

the use of fixed or programmable machines performing specific operations, to the

formation of flexible or smart production systems or cells. Such systems and cells are

able to combine the advantages of industrial automation with the need for diversity,

variability and intelligence in the product performed.

The term 'embedded system' is commonly used to indicate special purpose computers

designed to carry out specific tasks. In a more precise definition, it can be considered

that an embedded system is a computer-based system designed to perform a dedicated

function or functions within a larger mechanical or electrical system. According to this

definition, embedded systems have, typically, the following three characteristics: - They

are not programmable by the user, meaning that the internal programming is done at the

time of manufacturing, - They perform only one dedicated function, with possible

variations in function due to variations in input data; - They are not stand-alone systems,

in that they must interact with other physical systems from which they normally receive

their input information.

2.1.2. Historical Context

The term Embedded Systems used in the context of the title specifically applies to

computerized control systems that are part of a larger system, such as a medical device.

When this text refers to medical devices it could refer to diagnostic, monitoring, or

therapeutic devices used in treatment of medical conditions. Computerized control

systems have been in existence for a long time. Simple analog control systems were

present in the 18th century when a steam engine that used a flyball governor to control

the engine speed was developed.

The word computer however has a more specific meaning and is associated with a device

that is able to perform arithmetic/logarithmic computations very quickly and can handle

large amounts of data. The first computers were discussed by a pioneer who proposed

an early computing engine. While this engine was not actually built, the first working

computers were developed and rebuilt during the Second World War by various

individuals. Medical devices were probably the earliest application of computing

systems. Early computers were used to develop atomic bomb simulations during World

War II, and radiation treatment plans were developed for patients that received radiation

treatment for nose cancer. The first computers were large, heavy, expensive, and used a

23

lot of power. In spite of these problems, the speed and accuracy with which computers

were able to perform tasks meant that when they were used for various applications, the

cost of the systems was actually far less than when these tasks were performed manually.

2.2. Core Components of Embedded Systems

For designing dedicated systems something that is commonly used is Embedded

Systems. Embedded systems deliver, very often, the best performance at the lowest cost,

size and power consumption thanks to the high level of integration achieved with the

integration of a computer with other digital or engine components like sensors and

actuators. Embedded systems are a highly-integrated mix of electronic and firmware

components including hardware, software, middleware, and operating systems that are

developed to work in electronically-controlled devices. Embedded system applications

often require to deal precisely with events happening outside the physical

implementation of the systems and, very often, inside the device, at a very high speed

and at a very low cost. Although highly flexible embedded systems offer best design

tradeoffs for many consumer, industrial, and medical applications, they are not always

the best solution possible from an overall performance perspective.

Microcontrollers

Traditionally, Embedded Systems were built with classical and stand-alone sensors

interfaced to classical computer circuits. Their intelligence comes only from the

processing elements available in the computer. The development of Embedded Systems

has accelerated with the invention of microcontrollers that are basically integrated

circuits that provide a digital computer and one or more appropriate sensors/actuators

interfacing circuitry on one silicon chip. Microcontrollers have all the features of a

computer, such as CPU, memory, and input/output capability and include processing

elements targeted at the specific applications, such as read-only memories for storage of

microprograms unique to the individual microcontrollers.

Sensors and Actuators

Sensors are transducers that convert physical signals of interest into electrical signals.

They have become very powerful components of embedded systems, providing the

systems with awareness of the external environment. They can measure several natural

phenomena such as temperature, pressure, motion, and velocity. Actuators sense the

existence and characteristics of information in other systems and use the information to

control the other systems. The existing actuators include electromagnetic, thermal, light,

liquid pressure, and piezoelectric actuators.

Power Management

24

Power management sections have started appearing in embedded systems due to a

combination of applications and design methodologies. Five trends that influence design

methodologies are the establishment of more diverse cores inside SoCs, the introduction

of new packages with more cores and advanced thermal management techniques,

support for more diverse application presenters to help different application

performances, involvement of more process technologies, and the high cost in power for

applications in badge technology.

2.2.1. Microcontrollers

Microcontrollers have become increasingly important in today's technological world.

They are the core embedded systems responsible for the collection of data from the

external environment, processing it for further actions, and finally commanding external

devices to take actions. Microcontrollers are utilized in automatic feedback systems that

have helped in taking over boring works. They have advantages over chips or FPGAs,

being mid-level integrated circuits. They provide more on-chip integration of functions,

which can replace many chips, while allowing non-reconfigurable software

programming as compared to chips.

Microcontrollers consist of many elements, such as processors, memories, I/O

peripherals, etc. A microcontroller consists of embedded CPU and on-chip memory and

peripherals. In simpler words, microcontrollers can be defined as a single-chip computer,

with a CPU, memory, and I/O peripheral devices integrated within it. Microcontrollers

are continuously evolving to become chip solutions. Present-day microcontrollers are

integrated solutions for specific market requirements. They help in reducing overall

system costs and offer real-time performance by overcoming the bottlenecks of general-

purpose microcontroller-based systems. Although additional functions like Bluetooth

interface and Wi-Fi are included in the present-day microcontrollers, most of them still

require custom hardware for various power management requirements. Low-power

applications still require important solutions for logic voltage levels, which are not

provided by general-purpose microcontrollers, but fabricated as specific solutions for a

particular design.

Standard workhorse microcontrollers do not provide for low power requirements. They

have become increasingly important in today’s advanced semiconductor technology

with the capability of maintaining higher speed while dealing with very low voltages.

They have become competitive not only in terms of their price but also in performance

with special purpose standard microcontrollers.

25

2.2.2. Sensors and Actuators

Sensors play a crucial role in the interaction between embedded systems and the physical

world. They are critical components that allow embedded systems to obtain data from

the environment; in sensor networks, sensor nodes are capable of capturing and

processing data from the environment and transmitting it to remote servers for further

analysis or data fusion. A typical smart medical system incorporates multiple sensors to

monitor different variables, including physiological sensors to monitor vital signs,

pressure sensors to detect ventilation and assessment of sleep disorders, temperature

sensors to monitor pathological variations, gas sensors for the detection and diagnosis of

diseases, glucose sensors to control diabetes mellitus, and acceleration sensors for

location-based diagnosis. For these reasons, sensors will be introduced in detail in this

section. Actuators, which are parts of embedded systems capable of translating

commands into physical actions, are essential components of embedded systems that

interact with the world. The output processed by the embedded system generates

reactions in the physical world through actuators. The most common external actions

generated by actuators can be the infusion of prescribed drugs, the electric stimulation

of biological tissues, and the generation of mechanical movements to react to physical

events. The types of motors can vary according to the need, and might be DC motors,

step-controlled motors, linear motors, or solenoids. These motors are usually paired with

relays and brake drivers. In the case of intricate or precise movements, hydraulic or

pneumatic actuators can be used. For some specific applications, the combination of

heaters, LED lights, and loudspeakers can also be used to stimulate a reaction from the

physical world.

2.2.3. Power Management

To cope with their limited energy storage capacity, smart medical equipment running on

embedded systems require power management. Possible design flows to achieve this

objective are presented in this section, ranging from hardware components to operating

system techniques, combined or not.

There are basically three design options. The first one is to spend money and time at the

design cycle to make the hardware as efficient as possible. This strategy is commonly

required when the device is expected to reach its end of life without maintenance. The

second option is to use specially developed components that allow us to harvest energy

from the environment. This option is still in the early stages of development but there

are expectations of an interesting progress. Energy harvesting can create a dedicated

power supply for the device and allows its batteries to be slowly charged, prolonging the

natural battery life. The third strategy is to spend a considerable time during the

embedded operating system design and choice, addressing power management features

26

in a flexible and efficient way. The more common power saving strategies for hardware

are reducing voltage levels and clock frequencies. At the OS level, the major options are

transferring to a sleep state, suspending or shutting-off specific components, changing

the execution frequency of an incoming signal processing algorithm, and defining

dynamic rules to take these actions. Hardware features can be mixed and let the OS make

use of them according to intended objectives.

Power management has to be accounted for in the whole system design, not only in the

embedded OS. Avoiding or deliberately inserting specific operations, especially during

the system boot process, can save a considerable amount of energy when not accounted

for. Special functions at a determined frequency may demand to increase the component

working frequencies and so the costs.

2.3. Software Development for Embedded Systems

Embedded systems comprise not only hardware but also firmware to yield a complete

functional system. In many development cycles, only one hardware prototype is

manufactured. Once the system specification is outlined and hardware is designed,

engineers create firmware that is tested and verified on the single hardware prototype.

After testing, the production system will use the primary hardware, but the firmware will

change whenever software upgrades are necessary. Such programming is usually created

in high-level languages. However, in cases where high performance and stringent

resource utilization is a requirement, firmware is coded in assembly language. Even in

high-level languages such as C or C++, chips that are not too complicated are

programmed using assembly. This is because C is originally not a system programming

language and is neutral to hardware configurations. In the case of C++, as a result of its

features of objects, dynamic binding, and virtual functions, C++ has not been fully

accepted as a programming language for embedded systems.

Nevertheless, the trend continues. Embedded systems manufacture is a process

dominated by small companies and firms. But large companies have also begun to

participate in the embedded market. These corporations offer a complete product line

that covers the major domains of embedded systems. In addition, many offers are

expansion kits that allow developers to create their own product using the complete

package. The development software includes library functions that control the hardwired

circuit. The functions facilitate easy and rapid implementation. Many embedded systems

found in smart medical equipment, especially in low-cost and popular devices, are also

developed with the help of expansion kits and supporting software.

27

2.3.1. Programming Languages

Introduction Various programming languages are available to build software for

embedded systems. These languages are categorized based on their suitability for

specific applications and audiences. Choosing an optimal language is crucial for the

software project's efficiency, maintainability, and performance, and understanding the

language's properties is a prerequisite for making the decision. Factors such as execution

speed, memory footprint, portability, performance monitoring, and cost affect the choice

of language. The development team also influences the development time, flexibility,

and maintainability of the final product. Assembly Languages Mandated by resource

limitations, assembly languages remain the optimal choice for embedded system

application. The Achilles’ heel of assembly languages lies in the delicate design flow

and lack of testing and verification capabilities. Therefore, reliability-sensitive

embedded applications cannot be developed with assembly languages. Nevertheless, the

unique advantages of assembly languages lead to the development of embedded

applications requiring fine-tuning on the engineering floor. For lifetime- and safety-

critical systems, these applications reach production level and are validated with

dedicated testing tools. Notably, assembly boards can be marketed. These boards are

validated by embedded product software developers who write application programs in

C, VHDL, Verilog, or PLM, in conjunction with analog and digital designers managing

the hardware boards. However, industry experts warn that utilization of assembly

language should be confined to commercial boards with no close competitors and well-

defined market niches, such as application specific integrated circuits or complex

programmable logic devices. In other cases, the investment in timing and debugging

tools for board fabrication does not return any dividend. C and C++ C and C++ have

multiple advantages including wide availability on multiple embedded platforms, ease

of interfacing with hardware, pre-defined external libraries, and relative ease of

debugging. They are therefore the primary languages for embedded development, and

most commercial boards come with development tools to read and write in C or C++.

With the current prevalence of field-programmable gate arrays on embedded boards,

languages for hardware description come into play in coprocessor design. Hardware

implementation refines and speeds up core functionalities of the embedded application

and transfers the other functions to the possible software layers.

2.3.2. Development Environments

In principle, development environments are tools that help implement systems using

only the programming and assembly languages available. However, the major advantage

of development environments is that they help a lot in the most complex phase of an

embedded software project, when no code at all has been written, using a concept in

28

software engineering: the concept of a software model. The idea is that drawing in a

graphical way pieces of software will generate most of the code of the software project,

including the code of the part of the project that is the most complex to implement and

that has no code at all yet.

Development environments can be divided into five categories according to the support

they provide: simple code writer tools for specialized embedded software; Integrated

Development Environments; Graphic Interface Design Environments; Software Model

Development Environments; Hardware Description Language Development

Environments. Simple code writer tools for specialized embedded software are code

editors for specific software implementation tools, such as cross assemblers, linkers, and

loaders; but, those tools may have the advantage of being mini compilers based upon the

model presented below as an example so as to allow us to visualize their simplified

implementation.

Integrated Development Environments are a code editor for specific software

implementation tools, such as cross compilers, assemblers, linkers, loaders, and

debuggers, all together to facilitate the embedded software development, debugging, and

maintenance phases. Graphic Interface Design Environments are IDEs for developing

only the part of the code related to the Graphic User Interface. Software Model

Development Environments implement on embedded systems the software model

concept in software engineering, that is, sections of the embedded software can have

their code generated by the tool just by drawing structures in a graphical way, as if they

were flowcharts, making use of a software block library that is specific for the embedded

software in development.

2.3.3. Debugging Techniques

A number of different methodologies are employed for effectively isolating logic errors

in program code when debugging an embedded CPU and a user-developed application

program. The methods fall into two general categories, hardware and software. The

hardware-oriented methods rely to a great degree on the use of special tools, while the

software-oriented methods depend mainly on the application program code. Of course,

combinations of these different techniques are most often used in practice.

Consequently, each programmer develops their own set of preferred debugging methods.

Typically, users begin with trial-and-error techniques and then move onto more effective

methods.

Hardware-oriented techniques are so called because they involve interacting with the

CPU hardware while the application program is being executed. In general, the more

sophisticated the external debugging tool, the less intrusive it is to the actual CPU

29

operation. Simple hardware-oriented debugging methods involve the use of displays to

report variable values or program execution state. A series of predefined state or status

values are usually stored in memory, as opposed to real time computation as a method

of reducing timing overhead.

A more sophisticated hardware debugging technique involves the use of external debug

timers which use hardware interrupts to automatically monitor the operation of the CPU

while the program is running. These tools are useful for monitoring program execution

state for all instruction cycles, or a specific set or range of instruction cycles. Timing

analysis is essential for timing-critical tasks or when interacting with timing-sensitive

peripherals. Simultaneous interaction with external peripheral devices via I/O lines while

the program is being executed enables useful debugging information to be developed.

2.4. Design Principles for Medical Equipment

At its heart, the design of medical equipment seeks to restore or maintain health and

improve safety and quality of life to the patient. Although it seems that nothing should

be simpler than to design an efficient piece of hardware like a container or a vacuum,

this task is made significantly more complex as the throughput capability increases to

handle more patients, for example during surgery. Additionally, the need for sterilization

hampers the use of commonly used materials like plastics, stainless steel or aluminum.

The design also needs to take into consideration that a possible failure of any equipment

in the OR may result in drastic consequences, for example by stressing a patient’s

cardiovascular system at an inappropriate time during surgery. Thanks to previous

experiences both in the OR and in an environment closely related to medicine, for

example aerospace, the following design principles have been defined and have been

successfully integrated in medical devices.

User-Centric Design

Health professionals and surgeons strive to improve medical service quality and patient

safety. As experts in the field, they offer high potential input into the equipment design

and thus mold user-centric devices. However, often their busy hospital schedules do not

allow time-consuming interactions with developers during long design and testing

cycles. We propose to shorten these cycles, especially in the early phases of

development, by assisting product designers with high-level user feedback early and

often. Using a combination of sketching, physical mockups, and low-cost technology,

fledgling products can gain direction quickly and implement iteratively in short cycles

to yield devices that will see use and ultimately benefit both the healthcare team and the

patients.

30

Safety and Compliance

The overwhelming need to prevent injuries to patients, care-givers and medical

personnel ultimately comes from painful past experiences. Patients’ misfortune by

undergoing an unnecessary second surgery, parents grieving a loss of their child by a

medical error, and the public outrage caught by journalists when the health system

collapses are some incentives for medical equipment manufacturers to abide by the

safety standard which governs the design of practically all medical devices used.

Fig 2.2 : Design Principles for Medical Equipment.

2.4.1. User-Centric Design

User-centric (or user-centered) design (UCD) is a design philosophy that aims to

improve user experience (UX) and increase the usability of machines for the intended

end user. This is accomplished by paying close attention to end-user needs and

preferences during the design process, allowing them to evaluate prototypes, and making

iterative changes to arrive at a final design. In particular, for medical equipment that has

a direct effect on the well-being of patients and is operated by medical practitioners, a

31

UCD approach is vital to the successful design and deployment of the technology. User-

centric design has many positive effects, such as increasing user happiness, leading to

fewer user errors, and decreasing learning time; for medical equipment, this results in

increased practitioner efficiency, reduced operating costs, and improved patient safety.

The concept of user-centric design has parallels with human factors engineering (HFE),

user experience design, usability engineering, participatory design, and interaction

design. However, UCD generally has a specific philosophy and process centered around

the user and user feedback, while all the other concepts mentioned focus on specific

aspects of design or specific ways of incorporating the user. UCD is also predicated on

the understanding that design is an iterative process and not a linear path, as is normally

emphasized in nominal engineering design processes. HFE and UX emphasize the

psychological aspects of the user experience and are usually not part of the engineering

design process. Because of its increased focus on the user, UCD makes use of extensive

user input during the design process, typically with testing and feedback; many other

concepts take that feedback and input as an assumption during the design process, using

other validation or design methods. Therefore, it is important to use UCD at the very

beginning of the design process, and work with it through subsequent revisions or

iterations of that design.

2.4.2. Safety and Compliance

A medical device must meet a great plurality of requirements given the intentional

medical purpose. Although some devices provide only diagnostic information or simply

collect data, many will provide a diagnosis, or more importantly, lead to a medical action

that will influence a person’s health and degree of wellness. As a consequence, the role

of a medical device within the ecosystem of care delivery is central. This will impose a

huge number of constraints that a medical device must respond to. Most medical devices

work together in a coordinated manner toward an overall purpose of enhancing the

quality of the care delivered, while seeking to avoid iatrogenic consequences, and

constantly aiming for the prevention of disease, delivery of treatment, and even cure.

This involves another contradictory design principle – the company’s commercial

initiative linked to Engineering for the Delivery of Medical Solutions must be

harmonized with economics.

The unintended consequences of a medical device being unsafe or effecting an

unfavorable iatrogenic consequence can be severe. This was amplified in recent years

by the large use of software-based approaches, increasing the complexity of embedded

systems in medical devices. As a consequence, the requirements driven by Safety

Assurance and Compliance become some of the most critical for the Design outfit of the

embedded system, and also for the validation of its behavior and performance prediction.

32

This becomes even more challenging when we take into consideration that Safety, highly

abstract and unintuitive cannot be designated into concrete architectural rules, but

instead must be demonstrated at every level of the Safety Assurance and Validation

process.

2.5. Communication Protocols in Medical Devices

Communication between devices, equipment, and systems can be both wired and

wireless. Typically, equipment that is not portable or is in a controlled environment is

connected with cables that can also provide power to the equipment. However,

equipment that is portable or within free movement or the patient is connected through

cableless protocols. The cables that are used in wired protocols should be insulated and

covered to avoid exposure and damage. The same risk is not present in wireless

protocols. However, careful consideration should be provided to security and privacy

policies when implementing readily available wireless communication protocols in

embedded systems of medical equipment.

Wired Protocols

General equipment interfaces implemented by wired communication protocols include

Universal Serial Bus and RS-232 protocols. USB is used mainly for connecting portable

data storage devices, but many data transferable medical devices connect using USB.

For example, USB is used in digital microscopes. Serial Communication Protocol is

present in a wide range of medical devices, especially less advanced diagnostic and

therapeutic devices. Other wired interfaces include FireWire, Serial Peripheral Interface,

Inter-Integrated Circuit, and Ethernet. With ever-advancing technology in low-power

models, Ethernet connections have been implemented in portable medical devices too.

Ethernet is the most common LAN and is implemented in computer networks in

hospitals.

Wireless Protocols

There are many wireless communication protocols available, including Wi-Fi Direct,

Bluetooth, Near Field Communication, Zigbee, Z-Wave, Insteon, WI-Sun, and ANT and

RFID. There are quite a few health-related applications using Bluetooth and Zigbee

embedded in mobile phones, tablets, and computers for health care. NFC is gaining

popularity in the area of medical devices as it is a short-range communication system

with an automatic connection approach.

33

2.5.1. Wired Protocols

This chapter introduces the main communication protocols used in medical systems,

focusing on the wired industrial protocols applied in smart medical devices. The

communication protocols presented are addressed in their usage in medical systems, the

abstract model of execution and data flow, their basic frame structure, and the data types

supported. After the protocol description, pertinent considerations are included to

address relevant aspects such as energy efficiency, security, fault tolerance, and safety.

Although medical systems may make use of common wired and wireless communication

protocols, such as RS-232, RS-485, Ethernet, IP, MQTT, WebSocket, and HTTP, the

smart medical devices must use specific industrial protocols. In this chapter, the data

link protocols are discussed. These specific protocols have been developed based on

strict requirements, defined in standards. The industrial protocols guarantee

deterministic execution and data transfer on time, security against external attacks, fault

tolerance through redundancy of commands and data, safety by verifying the integrity

of data communication, support for different data types, low processing overhead with

possible use in low-cost smart medical devices, and low power consumption using sleep

mode, allowing the device to operate for several years with a small battery. Due to the

mentioned aspects, smart devices used in medical systems must use industrial wired

protocols. Wireless protocols do not exhibit one or more of these properties, making

them incapable of being safely used in medical applications.

2.5.2. Wireless Protocols

Wireless communications offer physical advantages in such applications as the data

collection from capsules, sensors in the body, and distant non-immersible sensors. The

proprietary protocols in use often incur difficulties in connecting to received nodes, and

their range and data rate are inferior to the standards. Their use was justified due to their

insurance of safety, low power (for the periodic waking up of nodes), and a small number

of associated nodes. Most of the proposed wireless infrastructure use the standards:

Bluetooth, Zigbee, and Wireless Fidelity. Their quality and cost of a transceiver is small

enough to be used in Body Area Networks, and moved to a similar low-power and low

data rate on-the-radio frequency for Wireless Personal Area Networks standard. The

standard, adopted in 2003, is the bottom MAC level of the higher standards with off-the-

shelf transceivers at low power and cost. It is an order of an elongation in the type of

both the order frames and beacons for three levels of the priority traffic and a 2 ms wake

up in each 100 ms are possibly issued. The protocol is an adaptation to infrastructures as

Networks Medical Association and Open Systems Foundation Communication Protocol.

ZigBee is a multilevel standard based on and proposes several security mechanisms

when coexisting with standards to monitor and secure the other channels. Medical

34

implants usually have the following restrictions: low area, long battery life (usually on

the order of years), and periodic use (ms). They use ISM channels below 1 GHz: MICS,

402–405 MHz, near the RFID: 13.56 MHz, and 860–960 MHz frequency-modulated, at

2.4 GHz: ZigBee, and at 5.8 GHz.

2.5.3. Data Security and Privacy

With wireless and Internet-enabled medical devices rapidly expanding, data security and

privacy have taken a serious step forward. These are no longer simply technical niceties;

they are now part of the regulatory requirements for the sale of devices in many larger

markets and are often demanded by clinicians in charge of patients’ care.

The two widely known compromises against user privacy are interception and misuse of

the information transmitted from a medical device, for instance, a heart rate monitor, and

injection of misleading information into the end-users’ data streams. The challenges

faced by manufacturers of commercial off-the-shelf medical devices operating on

commercial platforms differ from those in other fields. The affordability, direct

engagement with end users, access to substantial aggregate data, competitive forces, and

regulatory requirements often underlying quality solutions with sufficient scrutiny

mitigate against security challenges.

There are four cybersecurity goals for the production and deployment of medical

devices: confidentiality to ensure that sensitive patient information is not disclosed

inappropriately; integrity to allow the authorized party to control medical device data so

that it is not modified inappropriately; availability to guarantee that a medical device can

perform its intended function reliably; and authenticity to protect against unauthorized

access that would permit compromise of confidentiality, integrity, or availability.

A typical critique of a specific medical device is use of an insecure communication

protocol in a device that uses or transmits patient-facing data that are both sensitive and

potentially injurious to that patient, and that is critical to the health of the patient.

2.6. Real-Time Operating Systems (RTOS)

Real-time systems are those that respond to events within a time that is determined

according to the behavior of the system, that is, the response time must be as low as

required. In some cases, even if the system is not in real-time, its response should happen

as quickly as possible, for example, when the user is waiting. The important thing is that

these deadlines are defined according to the user’s requirement and must always be

satisfied, especially in critical systems. Critical systems are those in which the absence

35

of a response, an erroneous response, or an untimely response creates some damage to

their users. A well-known example of critical users is the airbag system, which needs to

respond instantly so that it does not cause further damage. A non-critical system example

is a printer connected to a computer.

Embedded systems are present in most smart devices currently developed, as the name

implies, either to perform some ancillary function, which may be critical or non-critical

according to the user’s criteria. Given the great variety of applications (critical and

noncritical), the description of these systems is quite broad. However, the

characterization of real-time embedded system presents some specific requirements,

some combine several features, such as: These systems have strict temporal

requirements; They have a continuous, repetitive, periodic operation; Most of them

require a predictable behavior; In general, they require deadline management; They often

have more critical tasks than non-critical tasks; Generally, they require low-cost, small

processors and low-power consumption; These systems present difficulties in changing

the data and programs in the field; and Most are dedicated and reusable, but there are

some non-dedicated.

Fig : Medical Equipment of Fundamentals of Embedded Systems for the Design of

Smart Medical Equipment.

There are embedded systems that do not require real-time characteristics, but given the

answer time of these devices, we have a temporal response that we can consider as real

time. An example is the electronic game console of endless games that can be produced

and launched on the market. The need for a real-time response and the only reliability of

36

the system defines real-time systems. These deadlines have a physical form, such as the

fact that the system must be effective for the display of a film. These characteristics

presented above describe the strict real-time embedded system, which is the focus of this

study.

2.6.1. RTOS Characteristics

Real-time operating systems (RTOS) are specialized software systems designed for

embedded computing applications where the computing demands of a real-time process

must be coordinated by the RTOS together with other embedded computing tasks.

Unlike general-purpose operating systems (GPOS), where no deadline is imposed on the

executing task of an application, an RTOS assures that for each periodic or aperiodic

executable task its computations are completed within the specified worst-case response

time. This is of extreme importance in critical embedded systems such as smart medical

equipment, avionics control, financial banking, etc. Suppose the duty of a certain

application task is to sample an analog sensor input every n seconds, filter the raw data,

and publish it for use by other tasks. In that case, if the task takes much longer than n

seconds to execute, the system will announce incorrect information, which is often fatal

in smart medical applications.

By having control of scheduling of all the executing tasks according to specific timing

regulations, RTOS can manage to meet the real-time deadlines of embedded

applications. Therefore there are some particular technical features that distinguish

RTOS from GPOS. The following are the more essential RTOS characteristics utilized

in current-day embedded applications: (1) Guaranteed response time: for periodic tasks,

response time can be predicted and specified. (2) Minimal interrupt latencies. (3)

Minimal jitter: disturbance in the periodic task response time. (4) Multithreading

support: while one application may be a sequential one requiring only a single task to

react to a periodic event, more and more applications consist of many periodic segments

requiring multithreading support. (5) Priority CDC: Embedded applications often

predefine the sequence of executing application tasks. Therefore, efficient priority

scheduling support is of utmost importance. (6) Kernel: A small kernel, often including

just a thread management function, a scheduler function, and combinatorial functions

for thread waiting, is adopted.

2.6.2. Scheduling Algorithms

In a real-time system, it is often necessary to execute jobs according to a defined

temporal order and with a specific timing constraint. The latter can be either hard or soft.

When a timing constraint needs to be met strictly, missing it means the job is said to be

37

tardy or missed and the system is considered to be in error, even if such tardiness does

not affect the remaining jobs of the system. Hard real-time systems usually find

application domains in safety-critical processes, such as the brake control system of

automotive equipment. On the contrary, for some applications in specific domains,

missing the timing deadline of some jobs may be acceptable, provided that the timing

limitations of other jobs are satisfied. Besides, the system integrity is not at risk at all for

those missing jobs. In that case, the system is considered to be soft real-time. Soft real-

time systems are often used in non-critical applications, such as multimedia ones.

In this section, we will overview the scheduling algorithms used in hard and soft real-

time systems. Some of the scheduling algorithms need to ensure that the timing

constraints for all the jobs are satisfied. Other scheduling algorithms do not need to

ensure that all the timing constraints are met. Such scheduling algorithms enable the

system administrator to allocate a higher priority for defining the timing constraints of

some jobs than others. For soft real-time systems, some scheduling algorithms will allow

the missed jobs within certain limits, but ensure that the timing constraints for the other

jobs in the job pool are satisfied. These scheduling algorithms are also known as best-

effort algorithms. We assume that every task is a periodic task if there is no special

mention. Task scheduling can be divided into two classes. These are periodic task

scheduling and aperiodic task scheduling.

2.7. Integration of IoT in Medical Equipment

The adoption of the Internet of Things paradigm has opened even more opportunities in

several domains, including the one for monitoring medical parameters, as what will be

discussed in this chapter. Captain Medical has realized a spirometer instrument that aims

to solve the use problem of spirometric measures in hospitals and clinics. The matrix

from which this device arose represents a larger idea, focused on integrated medical

devices capable of allowing telehealth in any situation. They are intended, first of all, for

patients with chronic respiratory diseases, who need to evaluate their condition at home

daily.

The advantage of the new design regards not only the ability to perform the

measurements independently and the portability but also the remote control of the

devices, making them easy to use and able to give early warnings in adverse situations.

Yet this new device is not only a function for a smart spirometer. It is a platform to which

it is easy to connect other medical devices targeted to the most disparate needs and

parameters, during the possible exit of the patient from the monitoring with the logistic

supervision of the clinic or authorized structure. In this phase, medical embedded IOT,

also called e-IOT, enters in action. Considering this large new world of devices, we need

38

to understand if we can apply to them the known paradigms for conventional IoT, or if

we need to modify them or adopt entirely new ones.

Therefore, we need to adopt a healthcare IoT or m-health IoT (where m stands for

medical). To this aim, we review the three classic component segments for an IoT

architecture: perception, transport, and application segments. The perception segment is

responsible for acquiring environmental parameters and the object set of interest, and

acting locally on the same object, using sensors, actuators, and microcontrollers. The

transport segment transmits the information classified about the object of interest from

the perception segment to the application segment. The application segment receives the

information, processes them, and possibly sends back new instructions to the object of

interest.

2.7.1. IoT Architecture

The integration of the Internet of Things (IoT) into various industries has made systems

smarter and simpler. The IoT business is primarily focused on unifying all of the required

devices under one umbrella and providing users with useful data to assist in making

intelligent decisions. An IoT architecture is a conceptual structure that describes the

organization of how IoT devices communicate with one another and with the cloud.

Different devices are utilized across different IoT applications, and there are various

ways in which devices can be integrated. Regardless of the type of devices being utilized,

each IoT solution comprises hardware, connectivity, and software. Software, in addition

to hardware, is what drives the recognition of an IoT solution. The core function of any

IoT solution is data processing and analysis.

A simple IoT solution consists of four layers: perception, network, edge, and application.

The perception layer possesses the devices that sense environment information; the

network layer transports information between layers; the edge layer provides storage and

computing service; and the application layer offers business functions to users. Smart

cities, industries, and other checked areas make up an IoT application. The IoT

perception layer consists of smart sensors, RFID tags, big/ultra HD cameras, and other

sensing devices, which are capable of obtaining important status parameters from

surrounding areas. Their abilities determine the coverage of the IoT system. The network

layer consists of wireless networks, including cellular networks, Wi-Fi networks,

LPWANs, and other modern communication techniques. Different data traffic,

coverage, and latency requirements/preferences from users’ applications cause a multi-

tier and hybrid structure of the networking layer in most IoT applications, resulting in

the challenges of data transmission for both reliability and latency requirements.

39

2.7.2. Data Analytics and Cloud Computing

The integration of smart medical equipment with data analytics and cloud computing

permits the analysis of patients' health status, thus increasing quality achievement and

assuring healthcare assistance costs' reduction and optimization, and their effectiveness.

Data is transported to the cloud from the gateways, being processed through powerful

Data Analytics frameworks allowing the coupling between processed medical data and

patient information coming from the Electronic Health Records. Being deeply exploited,

coupled, and correctly discussed by doctors, the listed health parameters allow

personalized patient monitoring and allow their manual or automatic hospital services

requesting or triggering alarm systems.

The data processing and analysis allow the detection of the specific patients' illnesses

through pathology patterning, discovering depression by measuring the social avoidance

level through phone log data and extracting behavioral patterns, and the promotion of

connected health through the digital therapeutic.

2.8. Conclusion

Embedded systems have acquired a new dimension by allowing objects to be

programmed, communicating, and historical data to be stored. Unprecedented amounts

of computational power and memory, available at attractive prices, permit the

implementation of features that were previously considered science fiction. Future

products will be equipped with modular embedded systems with unique and innovative

features. This abundance of hardware and embedded software offers tremendous

opportunities to the developer. However, hardware and software have to be very

carefully designed: they are at the same time system enablers and system obstacles:

mistakes in the design of the system can make impossible to control costs or to optimize

the reliability and the speed of the design process. Furthermore, possible errors in the

design of the embedded software are at the same time very costly in terms of human

resources and time and could trigger legal consequences due to the unintended action of

the device. European and national regulations in the field of devices have been

implemented or are in the process of being implemented in order to specify the

requirements that a device has to satisfy, and to promote a uniform approach to the

market throughout Europe in the field of certification.

The increase in the number of smart medical devices that are available on the market

raises the problem of choosing one of the many available systems, as well as raises the

requirements from the user. As technology becomes ubiquitous, additional layers of

support and new functionalities are expected to be offered with new designs of embedded

systems, fulfilling the specific needs of smart medical devices. The design of the system

40

should support the pack around the user, and the new wave of devices for every

application, every age and every need, with.

2.8.1. Future Trends

Rising healthcare costs combined with technological advances have paved the way for

provider and consumer interest in smart medical devices for health monitoring and

patient record-keeping. Consumers, through their increasing access to health data online,

are becoming more engaged in their own medical decisions and are communicating their

needs and wants to physicians and other care providers. These changes have driven

market demand for smart medical devices. Recent survey results indicate that health

applications are the second most common functionality people want on their smartphone

or tablet. For many, the smartphone is the preferred computing platform for health

applications. Efforts are currently under way to enable the smartphone and the tablet as

the preferred monitoring platforms for many smart medical devices. Advantages for

using smartphones and tablets as smart medical device monitoring platforms include 1)

ubiquity of the smartphone, 2) portability of the smartphone, 3) diverse sensor

applications already built into the smartphone, 4) display functionality for alerts and

graphics, 5) telecommunication capabilities, and 6) Web connectivity. Some of the many

examples of smartphone platform development include blood-glucose sensor systems,

electrocardiograms, and ultrasound imaging.

The smart medical device development effort must also pay attention to regulatory

requirements. Although mobile-health applications must provide consumers with the

data and information needed to make informed healthcare decisions and enable

consumers to fulfill those decisions, consumers must also be assured of the reliability

and functionality of the applications. The best way to provide consumers with this

confidence is to develop smart medical devices that meet regulatory requirements.

Fortunately, some capital-intensive device applications may have relatively low-volume

produced systems, mainly because of the high costs associated with regulatory

requirement compliance.

References

Firouzi, F., Farahani, B., & Marinšek, A. (2022). The convergence and interplay of edge, fog,

and cloud in the AI-driven Internet of Things (IoT). Information Systems, 107, 101840.

SpringerOpen

Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., et al. (2019). A novel cloud-

based framework for the elderly healthcare services using digital twins. IEEE Access, 7,

49088–101. SpringerOpen

41

Ahmed, M. R., Mahmud, S. H., Hossin, M. A., Jahan, H., & Noori, S. R. H. (2018). A cloud

based four-tier architecture for early detection of heart disease with machine learning

algorithms. In 2018 IEEE 4th International Conference on Computer and Communications

(ICCC) (pp. 1951–1955). IEEE. SpringerOpen

Mathew, P. (2018). Applications of IoT in healthcare. In Cognitive Computing for Big Data

Systems Over IoT (pp. 263–288). Springer. SpringerLink

Jagadeeswari, V. (2018). A study on the medical Internet of Things and big data in the

personalized healthcare system. Health Information Science and Systems, 6(14).

SpringerLink

	Chapter 2: Fundamentals of embedded systems for the design of smart medical equipment
	2.1. Introduction to Embedded Systems
	2.2. Core Components of Embedded Systems
	2.3. Software Development for Embedded Systems
	2.4. Design Principles for Medical Equipment
	2.5. Communication Protocols in Medical Devices
	2.6. Real-Time Operating Systems (RTOS)
	2.7. Integration of IoT in Medical Equipment
	2.8. Conclusion
	References

