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Chapter 11: Building data engineering 
pipelines for payment processing and 
risk analysis 

11.1. Introduction 

As long as financial transactions are recorded and exchanged, it has always been 
unavoidable that irresponsible actors, or risk factors, engage in various acts of fraud to 
gain wealth unethically. Such unauthorized transactions include stealing of payment 
method information, creating unauthorized accounts for receiving gain from illegal 
activities such as money laundering, creating unauthorized merchant accounts to trick 
customers into fraudulent transactions, and phishing to swindle customers. Payment 
processing companies should detect such behaviors to protect legitimate users and save 
their companies from losing a considerable amount of money (Ghemawat et al., 2003; 
Kimball & Ross, 2013; Akidau et al., 2015). Growing up in an internet-enriched 
environment, millennials and Generation Z are the largest active user segment. They are 
highly sensitive to payment transaction efficiencies and prone to try new payment 
methods compared to Generation X and Baby Boomers. These new trends require 
payment service providers to design novel transaction processing systems to 
accommodate different payment methods, account users, and merchants, while keeping 
real-time fraud detection at tolerable costs. Acquiring, storing, and processing the 
intensive data streams generated by users during payment transactions are core 
challenges for payment processing services. Streaming data engineering is the 
cornerstone for building such payment processing and risk analysis pipelines. Data such 
as transactions, partner systems, and payment gateways are collected to a data lake from 
internal and external sources. Thereafter, the collected data are processed using batch or 
streaming pipelines to provide real-time transactional and risk insights for the payment 
operations organizations and partners. Those insights are then ingested into dashboards 
for tracking transaction activity and risk detection performance (Sadoghi & Jacobsen, 
2011; Zhang & Xu, 2020). 
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11.2. Understanding Payment Processing 

Processing consumer transactions is a critical infrastructure operation executed by 
payment systems that directly impacts most, if not all, enterprises in the world and is a 
required functionality in most enterprise applications. Businesses must provide 
consumers with a secure mechanism to pay for products or services purchased from those 
enterprises.  

 

Fig 11.1: Data Pipeline Architecture 

Merchants must accept forms of payments that consumers are comfortable with. 
Payment processing is the operation that actually moves a consumer’s money from their 

bank accounts to the merchant’s bank account. While payment processing appears to be 

a straightforward operation, underlying restrictions, intricacies, and operating protocols 
must be adhered to by the parties involved in the transaction. This is no different from 
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businesses involved in contract negotiations and trades. This chapter explores payments 
systems and payment processing. We also cover the supporting infrastructure that 
enables payment processing at the core and examines why risk analysis algorithms must 
accompany payment processing service implementations. 

Payments system is a shared infrastructure that facilitates the transmission of monetary 
value from one party to another. Payment processing refers to the act of moving 
monetary value from a consumer to the bank associated with the merchant in a 
transaction for goods or services purchased from the merchant. Interbanking setups such 
as systems have been in existence for many decades and enable deposits and withdrawals 
between bank accounts associated with deposits at other banks. Transaction types 
typically processed through these systems are direct deposits associated with payroll 
processing, vendor payments setups, consumer-to-consumer payments, and bank 
transfers. 

11.2.1. Overview of Payment Systems 

Payments are essential to how society and the economy function. They are the glue that 
holds the economy and society together, part of the fabric of commerce and social 
contracts. In the modern global economy, payments need to be efficient, safe, and secure. 
Naturally, we want cheaper, faster, easier, and better payments. We want consumer 
confidence that individuals as well as businesses will get what they are owed when they 
are owed it. Payment systems need to be available around the clock, with predictable 
and reasonable costs that are clear ahead of time. Nobody likes hidden fees. 

Critically, payments are a substantial revenue source for certain businesses such as banks 
and credit card processing companies, who often hold on to funds for several business 
days or longer. Payment-processing technology trends are towards pushing costs down 
and increasing the speed of payments. Instant payments are a now-a-reality with various 
instant credit transfer systems. Open banking standards that force banks to make account 
balances and transaction data available to any bank-accredited third party equally created 
instant payment competition. Blockchain-based solutions, especially cryptocurrencies, 
hold the promise of doing instant payments for free, directly person-to-person, and on a 
global scale. These technologies often get pointed at large banks and global credit card 
networks for price-gouging consumers. Yet, digital currencies can sometimes act like a 
digital gold in being slow, for people seeking a safe place to store wealth. 

In the meantime, electronic payment systems and processing have become essential 
infrastructure for the world’s economy. The world of payment processing certainly lives 

up to the hype of massive size, with more than $5 trillion in credit and debit card volume 
processed by merchant acquirers. 
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11.2.2. Key Players in Payment Processing 

Payment processing allows merchants to accept payments directly from their customers. 
This payment processing service can be provided by banks or financial technology 
companies, with a model called Payment Facilitator. In this model, payments from 
customers pass through the payment facilitator company acting as a merchant service 
provider and aggregating the customer’s transaction information, allowing merchants 

not to enter into bank contracts to accept transactions using different means, such as 
credit cards. Payment facilitation has reduced the burden of entering agreements to be 
able to accept payments, favoring the expansion of online business. 

Payment facilitators also handle the technical difficulties involved in acting as a 
merchant service for digital merchants. The transactions for digital merchants are not 
always direct sales with the end customer. The digital merchants may have 
collaborations with other merchants acting as suppliers of the items or services sold, 
commonly known as drop shipping, in which the facilitator acts as an intermediary for 
the transfer of money between the end user’s credit card and the supplier providing the 

products or services. The transfer of information about the transaction between the 
merchant and the digital merchant is needed in this case. The payment facilitator handles 
the different means used by customers to make transactions, providing integrated 
payment solution services for merchants, through which they can accept e-wallets, debit 
and credit card payments, and bank transfers. 

To facilitate and act as a merchant services provider in the payment transaction, payment 
facilitators need to interact with banks, card schemes, gateway processing companies, 
and other parties. The overall transaction flow passes through these companies to process 
and approve the transactions, which usually take only a few seconds. 

11.2.3. Transaction Flow in Payment Processing 

Discussions surrounding transaction flow in payment processing are often hindered by 
impracticality and ambiguity; impracticality because we dilute the usefulness of the 
supply chain by combining payment processing with other parts of society, such as 
consumer goods commerce. In this manner, for nearly every merchant, from a sole pizza 
vendor to an aircraft manufacturer, there exists a different payment transaction flow. The 
second issue is that payment processing is sandwiched between multiple other agents 
who have conflicting perspectives - the agent handling the payment often doesn’t know 

how they interact with the merchant, and hence their data cannot be trusted to reflect that 
reality correctly. Card networks and blockchains also have regulated fees associated with 
them, which incentivizes merchants to interact with them in a specific fashion distorting 
the nature of a payment processing transaction. 
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Notwithstanding these two difficulties we can interpret payment processing transactions 
as interactions between a web of agents mediated by Reserve Currency accounts. This 
interpretation works for all card network transaction flows, bank transfer systems, real 
time payment systems and crypto-based systems. The only system that doesn’t fit this 

pattern, are card networks during market opening times, especially, who settle 
transactions in traditional payment currency banks during non-business hours by credit 
to a merchant’s account, debit to the consumer’s accounts. However, more and more, 

card networks are mimicking crypto behavior by issuing reserve currency wallets to 
merchants and consumers and authorizing transactions directly on-chain. They have also 
rolled out settlement processing on-chain. 

11.3. Risk Analysis in Payment Processing 

The fraud detection and prevention framework used by different parts of the payment 
processing ecosystem defines the economy's impression of risk. The risk perception can 
lead to adoption inertia: alternative, higher-risk systems may be unacceptable to 
customers who know the potential consequences when a risk does get acted upon. 
Alternatively, if a system is deemed fully secure against all known risks, growth will 
expand rapidly, creating joint action and coordination problems. The goal of risk analysis 
is to balance risk and optimal payment utility. To avoid these extremes is a delicate 
business. 

Payments systems face many types of risk, including fraud, settlement, settlement delay, 
liquidity, credit, operational, legal, damage and volatility. The goals of payment systems 
risk management is to remove, mitigate and/or allocate as many payment risk elements 
as possible. Credit risk is often a large differentiator in the payment systems business 
model. Fraud risk, intrinsic to digital payments, is the difference between the system's 
initial design and projected actual state after taking mitigating actions in an asset 
liquidation window that is often dependent on the type of processing party who is 
victimized. Party victimization during certain periods by certain payment methods is 
also known to the industry. For these parties, fraud risk is the applicable legal doctrine 
and the system's projected patching speed compared with the industry liquidity insurance 
costs for the period. 

11.3.1. Types of Risks in Payment Systems 

Risk analysis in payment processing is aimed at reducing those events that would impair 
the integrity, reliability, and availability of payment systems. Risks may arise from the 
inadequate or failed internal processes, people and systems, or from external events. 
Considering the types of events that cause harm, there are two types of risks in payment 
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systems. The first type is process risk that is caused by internal factors. The second type 
is enterprise risk that is caused by external factors. The basic building blocks for both 
types of risks are discussed below, with enterprise risk being a broader aggregation of 
process risk. 

Process Risks Payment processing activities include authorization, clearing, payment, 
currency settlement or liquidity management, or settlement finality or reconciliation. 
There are four major types of process risks associated with these functions – operational 
risk, applicability or design risk, implementation risk, and latent risk. Operational risk is 
the risk associated with the action of employees. An excessive, inherent, irreversible, 
unjustified risk associated with the performance of action of employees in one or another 
payment processing category causes losses. For example, security risks during the 
process of verification of identity of a customer, verification of the availability of funds, 
analysis of information technology risk, etc. In fact, the concept of risk appetite is 
originated from operational risk, describing the circumstances in which outsized 
operational losses should be viewed as acceptable. The action of the employees in 
payment processing activities is concentrated in two areas – approval and risk 
assessment at the customer level, approval of identity transactions and risk assessment 
at the identity transaction level. 

In many instances, actions at both levels are automated. However, at the customer level, 
it is also critical to decide the level of risk associated with different types of customers, 
types of expected payment transactions and types of expected payment sources and 
routes, and the degree of automation. The general principle is that the higher the risk 
associated with a specific employee action within a payment processing activity, the 
more stringent should be the rules assessing risk and requiring verification. 

11.3.2. Risk Assessment Frameworks 

Fraud risk assessment is typically performed on a qualitative basis or a combination of 
qualitative and quantitative basis using methods such as heuristic assessments, the use 
of scoring models or predictive models, and a combination of all three. The assessment 
is either a stand-alone periodic review or a component of other assessments conducted 
for a financial institution or a payment processor. A risk framework outlines the financial 
institution’s business strategy, products and services, financial condition, and the 
complexity of its operations which when combined with the operational internal control 
environment typically forms the broad basis for the qualitative component of a fraud risk 
assessment. The risk framework may also target areas or indicators that tie business 
characteristics to fraud risk. These indicators may include geographical location of 
customers, industry type and characteristics, KYC process, business model expenditures, 
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volume and velocity, abnormal changes over time, transaction attributes, historical 
exception reporting, customer complaints, statistical analyses, and transaction endpoints. 

The qualitative assessment is usually conducted at the payment system, payment type, 
and payment channel level with the output of the qualitative assessment being a risk 
ranking of the fraud risk. The quantification of the qualitative assessment serves to 
validate that the risk ranking aligns with the actual fraud loss experience. The 
quantitative component can also provide an early warning indicator. Empirical 
estimations of fraud risk can be obtained through a number of statistical and econometric 
techniques using data from the internal and external sources. The quantitative methods 
use historical loss data to predict fraud risk via either contagion, descriptive, limited 
dependent variable, or time series models. Data mining, extreme value theory, loss 
distribution convolution, or predictive analytics can be applied to transaction data to 
estimate the fraud distributions or fraud indicators. 

11.3.3. Impact of Fraud on Payment Systems 

Frad stands as one of the most serious problems that payment systems deal with today. 
The networks that transfer funds during the payment process take the presence of fraud 
on high volumes and large values of transactions with low margins that are 
characteristics of the payment domain. In this domain, it is often argued that the 
existence of fraud in high levels reduces the value of all participants in a payment system, 
and it is up to the responsibility of payment system stakeholders to devise ways to 
contain it and ultimately reduce it to levels considered manageable. 

Payment systems need to question the purpose of high value for low margin payments 
that are often done by citizens or business entities that cannot afford losing even a small 
part of their wealth. If not deterred by a risk analysis framework, the payment systems 
will easily become an environment fertile for misconduct and illicit actions. The outcome 
will be unpredictability and instability and this will be felt by the economy. Payment 
systems are enablers of other economic systems: those of goods, services, securities and 
currencies. Uncertainty caused by the inability of reducing fraud volumes and rates on 
the payment system will spill over to those inbound systems and will be costly in terms 
of monetary displacements, not to mention the intangible costs associated with economic 
growth mismatches that are possible predictions or even consequences of channeling 
large volumes of payments with high risk of fraud through the payment system. 
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11.4. Data Engineering Fundamentals 

Data engineering is the 'engineering' side of data science. It is what makes the more 
experimental phase of data science actualizable and scalable for the real world in order 
to deliver tangible products and services. Data engineering typically consists of the 
creation, management, and orchestration of 'data pipelines.' Data pipelines, in turn, are a 
special case of a generic software pipeline, which is a specific orchestration of discrete 
data processing units (called 'steps' or 'tasks'), which may run sequentially or 
concurrently, and which are designed to transform data from one state to another. As 
such, each data transformation pipeline is built up through the careful selection and 
organization of data task units, defining the specific form of 'data flow' in 'data 
processing' mode. 

Data pipelines can be classified based on their function and based on their 
implementation. Based on their function, data pipelines can be classified as: (1) Data 
ingestion pipelines, which transfer data from source to target systems; (2) Data 
transformation pipelines, which perform transformation operations on data; (3) Data 
preparation pipelines, which are responsible for supplying 'data ready for use' to analytic 
or other applications; (4) Data quality pipelines, which check and certify that the data 
are indeed of 'good quality'; (5) Data orchestration pipelines, which coordinate the 
execution of the aforementioned specialized pipelines and therefore have a supervisory 
role in the entire data pipeline environment; and (6) Data monitoring pipelines, which 
are responsible for continuously checking the status of production data pipelines and the 
quality of their output data. 

11.4.1. Introduction to Data Engineering 

Data engineering enables organizations to make data-informed decisions that are often 
based on machine learning algorithms that directly benefit the organization. Data 
engineering refers to the processes involving the design and development of systems that 
allow the collection, storage, and analysis of data that generates actionable insights and 
advice, often through interactive dashboards, constrained dimensional queries, or 
advanced visualization techniques. Such support for data-informed, real-time decisions 
often require the data systems to be fast, responsive, resilient and available. The guidance 
often involves running what-if scenarios, simulations, and other adjacent data activities 
that may be done outside the critical day-to-day operations. In fact, the tools that involve 
using the core data systems mainly from a secondary operational perspective are known 
as data management tools. Such tools provide governance, control, and aid in the ingest 
processes to allow data scientists to build their machine learning models on reliable and 
clean data. 
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While there may be some overlap between data science and data engineering, they are 
distinct disciplines. While data scientists will often design and build one-off systems for 
exploratory analysis or specific predictions, data engineers will often design systems that 
work at scale, and that have high reliability and long lifetimes. While data scientists 
should understand and appreciate the tools and methods used by data engineers, most of 
their work will be with the data that is produced and made available by data engineers. 
There may be some cases where data scientists will sink to the level of pipelines and 
middleware and get their hands dirty with the engineering side of the problem when their 
tasks are time-critical. 

11.4.2. Data Pipelines: Concepts and Components 

Data Pipelines: Concepts and Components Although the term data pipeline is often used 
generically, without clear distinctions, there is a clear and definitive definition of what 
data pipelines are. Data pipelines are a means of obtaining, storing, and processing 
dynamic or streaming data. They are used to automate the flow of data from sources to 
destinations. Data pipelines ingest data from sources, prepare it for analysis by 
validating, cleansing, and converting data formats, and publish the data to central storage 
repositories or other endpoints for further processing, analysis, or visualization. Out-of-
the-box data pipelines are easy to deploy and configure, and require minimal 
management and maintenance. They are reliable, secure, and do not require 
programming or technical expertise to design and deploy. 

These capabilities distinguish data pipelines from simple data ingestion and movement 
tools like traditional data extract, transfer, load tools and commercial enterprise service 
bus solutions. ETL tools and ESB solutions can only extract data from source systems, 
validate it for errors, and send data to single destination systems. Unlike data pipelines, 
ETL tools and ESB solutions do not provide data cleansing, transformation, and 
publishing capabilities. Because ETL tools and ESB solutions can only work with 
"batch" or static data obtained from relational databases, they do not support data 
"publishing." This is the key difference between traditional ETL tools and data pipelines 
that can transport, process, and distribute streaming data in more varied formats. 

11.4.3. ETL vs. ELT: Understanding the Differences 

ELT and ETL are two very similar strategies for performing data ingestion, guaranteeing 
data availability, and making it pipelined for further data analysis and experiments. In 
many situations, data ingestion and storage are the only things done with the data. Only 
for more advanced or demanding tasks is processing performed using one of the data 
processing engines. Therefore, for simplicity, speed, and productivity, in many 
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instances, we can perform the ingestion, storage, and data availability using one strategy, 
which can be many times a simpler variation of any of the higher-level data pipeline 
strategies. Specifically, ETL is the traditional and state-of-the-art strategy for ingesting, 
transforming, and loading data for data analysis, while ELT is a new rival to ETL and 
newer data processing pipelines, involving a decision to first ingest and copy the data to 
the storage, and only later on demand or periodically into availability or visualization. 
At a high level, the fundamental difference between ETL and ELT is that the latter is a 
simpler strategy, where the loading phase is made the most important step of the entire 
end-to-end data pipeline, performed in the background and constantly updating the data 
for further processing. ETL focuses on transforming data before it enters data storage, 
and can achieve better preprocessing power, but in so doing, it makes only one loading 
step of the data pipelines. In contrast, ELT lets simple raw data copies circulate, but it 
has the flexibility of many periodic data availability steps and allows better processing 
and availability of data from multiple sources. 

11.5. Designing Data Pipelines for Payment Processing 

Every financial transaction generates observable transient metadata, such as timestamps, 
sending and receiving institutions, or addresses. Analyzing this transaction metadata can 
uncover rich information about the nature of the entities involved, how they conduct 
business, in what volumes, and how funds flow between them. Payment networks 
connect a large number of users and institutions and act as intermediaries in execution 
and settlement of transactions, typically exchanging value in fiat currencies. They keep 
specific data collected from users and institutions connected to their network to process 
and clear instant settlements, and from all market participants for at least as long as 
required by local laws, regulations, or policies. Thus, these networks create, store, and 
transit rich transaction metadata and are potentially susceptible to external risks or 
involved in crisis situations. 

Payment processing metadata facilitates the actual clearing of financial transactions. 
Missing payment processing metadata can severely delay transaction settlements, which 
are now conducted instantaneously on payment networks. Payments with visible 
metadata enable empirical research to determine the relationships between payment 
institutions interacting with users. The microscopic and partially visible universe of 
payment flows provides the financial context – who pays what to whom? – for 
investigating how interactions between payment flows and other data sources 
reciprocally affect each other’s dynamics and whether some of them may become sudden 

crisis triggers. Modern payment networks must adhere to each jurisdiction’s rules and 

standards, as well as Data Protection regulations in place. Payment metadata disclosures 
thus generate reputational and legal risks for these payment processing companies 
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because they would be helping regulators – and therefore, the government – access user 
data. 

11.5.1. Defining Requirements for Payment Data Pipelines 

The requirements for payment pipelines can differ significantly from those for other 
types of data pipelines. In this case, support for payment workflows is paramount. 
Payment processing needs to be executed optimally at every stage of the transaction 
lifecycle. Furthermore, payment events should take priority and be handled as fast as 
possible. However, creating solutions for real-time payments presents their own set of 
challenges. Payment transactions are different from other kinds of events because they 
are often irreversible. Payment transactions introduce multiple technical and business 
complexities due to an absence of transactional guarantees; they may not conform to 
properties. Merchants therefore need access to their transaction data as fast as possible. 
Making this data available to various merchant solutions and ensuring it is accurate is 
one of the primary goals of payment systems. Consequently, requirements for payment 
pipelines are specific and may diverge from other data pipelines. 

Payment systems usually need to capture payment events with zero loss, with the highest 
degree of accuracy, and with minimal impact on payment processing customers. Any 
transaction that is not captured or that contains errors could have dire business 
implications since payments are directly tied to the financial health of the merchant 
conducting them. Additionally, understanding transaction data is one of the most 
challenging but important responsibilities for payment teams. Payment data must be as 
detailed and specific as possible to be of benefit to people and applications interpreting 
the payment data. Depending on the payment channels utilized, transaction data could 
be extensive and time-consuming to replicate across payment systems and pipelines, 
reducing its utility within analytical systems. 

11.5.2. Choosing the Right Technologies 

In order to process large volumes of payment data quickly and reliably, payment data 
pipelines typically rely on powerful distributed systems. Cloud computing has made 
such systems and storage solutions easily accessible, allowing decision-makers to focus 
on how to design the data pipelines, rather than which technologies to use. As a 
consequence, the landscape of available technologies is exciting, and this ease of access 
has fueled explosive innovation. Short development cycles of cloud-based services are 
creating new options for payment pipelines and updating existing services with new 
features. However, the speed of such innovation can also be confusing and 
overwhelming. If you are involved in building a payment data pipeline, clear guidance 
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on how to make technology choice is essential. In this section, we outline considerations 
for the choice of technology in building modern payment pipelines. 

Since the earliest days of big data, there has been a dichotomy between batch and real-
time processing. Initially, large-scale data processing was relegated to batch jobs that 
ran on a cadence dictated by end-user reporting and algorithm needs. Core batch-space 
technologies were architected for data-intensive jobs with large input footprints and 
large realizations. The introduction of more complex data systems enabled better 
accessibility for business users. However, data remained static between batch runs, 
resulting in stale data, which was typically unacceptable for any time-critical application. 
With the advent of stream processing technologies, the landscape of capabilities began 
to evolve rapidly, and the pivot to near-real-time enabled a broader spectrum of possible 
applications. 

11.5.3. Data Ingestion Methods 

Ingestion of physical payment data from different resources, services, and platforms is 
one of the most delicate parts of designing and building the data pipeline. Information 
about payments is usually divided into different payments systems based on payment 
methods such as debit or credit cards, wire transfers, etc. Payment data related to wire 
transfers is either moved to the database or stored directly into the database to which the 
client has provided access. Other types of payments data, like card payments, are usually 
transferred using APIs provided by the payment method provider, namely vendors like 
PayPal, Stripe, Authorize.net, or payment gateways as payment processors. Each of 
these payment vendors has provided their methods to process the data for payments 
properly. The GraphQL API by Stripe provides a strong frictionless approach to payment 
processing data ingestion but increases the complexity of tech stack due to different 
implementation languages being supported. Each of these payment method's payment 
processing APIs is not built the same way with all available features. 

Another kind of ingestion infrastructure is built to bulk ingestion of data from data dump 
files which are being generated and maintained in external warehouses accessible via 
FTP or SFTP. For wire transfer transactions, there usually exists a set of files every day 
to process. These files are being generated from the banks after applying batch jobs to 
create a list of payments containing data about sender and recipient bank accounts with 
transfer-sent timestamps, references, amounts, etc. Like processing wire transfer 
transactions, bulk processing other types of payments is also tedious. Because of these 
challenges, planning voice and data pipelines for data ingestion from banks and payment 
transcription vendors becomes an overwhelming task, although the importance of 
building high-scale and low-latency systems is needed to maintain trust and relationships 
with payment transaction clients. 
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11.5.4. Data Storage Solutions 

Choosing a data storage solution to store payment data depends on two factors, as 
follows: • What type of data do you want to store? Payment processing can generate 

several bulk and transactional data sets. Bulk datasets can be transactions, where each 
row in the data corresponds to a transaction, but transactional datasets can be for any 
level of granularity like user, account, and merchant level. These datasets can be in the 
form of raw files or in a database server. Other associated datasets can be merchants, 
products, order, invoice, and partnership where the same charge for the same purpose 
goes to different companies. Data associated with merchants and partners can often 
contain sensitive data. Also there are products which for example in an e-commerce 
setting can go from it being purchased to later returning it. • What type of data query 

patterns do you anticipate? For example, payment processing generates payment calls 
consisting of payment amount and merchant ID which will happen several hundred to 
thousands of times per hour for each merchant. At the same time it generates refunds of 
the charge where after some duration of the charge refunds may it be denied or accepted 
(a merchant can also file for a chargeback about a charge he/she/they refuses to accept). 
Reports and quality of service system can indirectly generate query patterns that may 
analyze/aggregate the charge data on weekly or monthly basis which would be heavily 
consolidated. The number of concurrent users may be large during some instances such 
as happy hours, daily work hours, weekends, holidays, festival or holiday sales, and 
concurrent users could all put a call to the same product as application servers can write 
but database servers may all attempt to read from the same dataset. 

11.6. Building Pipelines for Risk Analysis 

Risk analysis is a unique processing step still left out of common data engineering 
documentation. Even though it’s considered a subset of feature engineering for risk 

models, it should still be treated as a specialized data engineering stage because it’s so 
critical to the model development and deployment lifecycle and because of its unique 
data, independence, structure, and techniques. For risk, the data used is different than 
that used for scorecard development or backtesting, users may or may not be the same 
and support factors, such as rank and recency, are often not applied. Unfortunately, most 
discussions around transaction data engineering processes omit fraud and AML. 

A full cycle risk analysis pipeline could take data from multiple product data marts, filter 
and augment relevant transactions with geo and behavioral data, merge with credit 
application data, apply historical modeling logic to classify relevant segments, and 
augment transaction details at scale. The final transformed data is intended to help 
linoleum a model to predict future penalties for the suspicious transactions, audit from 
the terminal/country/merchant level for countries with low/no penalties. The advantage 
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of a high dimensional sparse dataset like this is that at the transaction level, 
generalization is not so an issue and it results in the auditor being able to gloss over tons 
of low risk transactions from tourists and missing merchants and terminals. 

Fig 11.2: Data Engineering Pipeline 

For AML and Fraud, the raw transaction/withdrawal data is neither 100% nor 0% 
fraud/AML/blacklist classified normally. The parameters and logic tied to risk segments 
and weights would be a business secret and change on a case-by-case basis. Periodic 
reruns of the data engineering segment would normally expose these changes while the 
different flows/models followed could be compressed to template files with the 
parameters stored elsewhere for speed of cycling. 
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11.6.1. Data Sources for Risk Analysis 

Risk analysis is one of the most important items of business logic in every detection 
pipeline. To be able to calculate risks, risk analytics should have all the precise and 
historical information about user behaviors. Therefore, all the data sources that can be 
used for building detection pipelines will also be very useful for risk analytics purposes. 
With very low compute power costs, risk analysts can benefit from highly processed data 
at very low latency based on planned batch runs. 

Another type of risk analytics is real-time anomaly detection. While similar to some 
types of detection pipelines, this quickly evolving and changing domain requires special 
attention to the data sources and specifics of risk analytics. Disparate data sources, such 
as the close connections of the user with external parties like clients and vendors, credit 
rating scores, behavioral info, income flow, and other business drivers quickly drift over 
time, and these models tend to get outdated after a while. While the detection models 
won’t be the same as for risk analytics, we can create their versions, relying often on the 

same data sources, creating efficient models, and using them in unison. 

11.6.2. Data Transformation Techniques 

Once we received the event data, in the pipeline for risk modeling, we usually execute 
some data transformations to make the information better suited for the models that we 
are going to train. Typical transformations include categorical encoding and time-
window aggregations. For breach detection, we use time-window aggregations to 
measure the amount of requests over the last hour to the same target and incoming from 
the same user/foreign IP pair. For the detection of payments with manipulated 
information for verification, we apply categorical encoding to the issued country of the 
card and the foreign IP. Such encodings allow using gradient boosting trees for breach 
detection and classical neural network architectures for information manipulation 
detection. They also increase training efficiency. Note that the number of transactions to 
the same target is an important factor in anomaly detection in general. For example, in 
domain knowledge, it is stated that the number of image requests to be sold on a 
marketplace must contain redundancy within one hour. Any attempt to sell such an 
image must generate a large number of view requests to be considered a potential breach. 
Algorithms of supervised learning for anomaly detection usually judge a transaction to 
be a breach when it is the only one that had been issued for a target within the past hour 
or 90% of the transactions to that target in the past hour are breaches. 
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11.6.3. Real-time vs. Batch Processing 

Real-time data processing and batch data processing has their respective advantages and 
disadvantages, and hence which type to use depend on the use case and system 
specifications. Real-time processing delivers instantaneous results. However, the latency 
to produce outputs in batch processing can be minutes, hours, or even months. The 
number of events that invoke pipeline invocation requests varies—one request or two 
requests per second for an online payment platform that generates huge amounts of 
payment data, and around a few requests per day for a cryptoexchange platform with 
different volume fluctuations throughout the day. The time gap between subsequent 
requests for certain payment processing services is so small that the service requesters 
for the payment processing service are charged overage fees if an API Gateway for these 
transactions is used. These considerations can make the choice lean toward processing 
the transactions in batch. However, for users to receive their refunds faster, real-time 
processing may be the only way to go with. 

For attacking the transaction risk analysis pipeline, it is then important to keep the table 
of common attributes for both types of analyses updated as often as possible; otherwise 
the existing tables for risk analysis can get stale and outdated over time, and be 
conducive for fraudulent activities. To achieve that for the batch analysis table, the 
transactions involved in a previous day's game should ideally either be ingested into the 
batch analysis table or an updated version of the batch analysis table should be generated 
by triggering a batch ETL job for the game after it has ended. For the real-time analysis 
table, users may want to purchase their tickets for a day’s game after observing the ticket 

prices for the game designated by the user through subscriptions to ticket exchange 
platforms, for one with a good enough price drop. For such analyses in real-time, it is 
important to have the data in the pipelines in real-time to satisfy the requirements for 
alerting the users, emails, and/or mobile notifications. 

11.7. Integration of Payment Processing and Risk Analysis 

One of the greatest contributions of data engineering to business is the ability to integrate 
multiple data processing tasks to achieve synergy across functions. Often, pipelines are 
developed in different groups or by different individuals, with no focus on end-to-end 
enablement, limiting the value that can be derived. This is particularly true in the case of 
the integration of financial risk analysis into payment processing. The two activities are 
tied together by having the same data. The twin challenges are that the speed of payment 
processing is necessary due to the immediate business need to either accept a transaction 
or reject it, while risk detection is mainly a situation of batch processing done at varying 
intervals. An added complexity is that the outcome of the batch processing can be used 
to inform future payment processing. For example, if a customer is determined to be a 



  

278 
 

high risk for fraud or chargebacks, the payment processing pipeline may choose to 
implement a more stringent transaction validation step for this customer in future 
transactions. Recent advances in the use of techniques in enabling near real-time risk 
detection augment the capability further. 

This chapter will break down the process of integrated pipeline implementation into 
manageable steps, showing that combining risk detection into the payment processing 
pipeline may be less daunting than it seems. The chapter will discuss use cases to 
illustrate the points covered. It provides generic, implementation-agnostic examples that 
can be translated into specific implementation details by data engineers for any type of 
payment processing business. The chapter will not provide implementation details that 
are overly specific to one class of business because these details become rapidly 
outdated. The focus of the chapter is on integrated end-to-end pipelines and not on 
specific modules, which may have been implemented differently within different 
payment processing companies. 

11.7.1. Combining Data Streams 

Data for payment processing and risk analysis activities originate from distinct processes 
that run in parallel. Payment processing is responsible for making sure customers can 
pay, and fund transfer is correctly executed, whereas risk analysis is responsible for 
recommending actions to protect the company from losses. However, there is a need to 
combine the data streams generated by these two activities and integrate information in 
the same data schema, for example a document. The reason is that many regulations 
require risk detectors to be associated with the action triggered and associated 
parameters. In fact, event data pipelines for risk analysis take two data streams as input: 
payment processing events and risk analysis events. The output schema is a merged 
record that stores the information contained in both streams. However, the functions that 
generate the respective events for each process run on different timescales, that can have 
different latencies, depending on internal or external factors. Data for payment 
processing is becoming mature when it requires little processing/validation and can’t be 

modified anymore, but data for risk analysis might take longer to generate. 

This means that, in general, it is not possible to merge these data streams into a single 
one. Instead, we build two separate event streams at different speeds, one for payment 
processing and one for risk analysis. The architecture of the integration module is 
reasonably simple. It reads payment processing events from one stream, waits for the 
associated data to be available in the other stream, adopts the associated parameters, and 
writes the integrated events into an output stream, that can then be consumed by a 
machine learning algorithm. This module is written as a simple stream application, a 
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simple job, using the built-in connectors, and possibly a small amount of pipelines for 
any necessary transformations. 

11.7.2. Implementing Machine Learning for Risk Detection 

As discussed earlier in this chapter, risk analysis can be enriched by many different 
internal data streams. Once we start analyzing data that come from a different source 
than the transaction itself, internal data, we usually become less dependent on automated 
scripts and rules who have to monitor transactions in real time. Automated algorithms 
are great, but exhausting a high level of false positive or false negative would affect 
customers’ trust or business profitability. It happens often that both numbers don’t reach 

the desired level of accuracy and in order to do that we have to inspect a larger amount 
of data tied to the fraud risk. A pure parameterization of a score coming from a model 
usually does not exceed a certain level of accuracy, thus making highly invasive 
techniques unavoidable. Some companies had to stop relying only on big data techniques 
working on users’ digital traces to build profiles against which transactions have to be 

validated and started embedding rules based on the knowledge of fraud patterns shared 
by all players in the systems that rejected genuine transactions, even if those patterns 
were explainable only in a limited number of circumstances defined a priori. 

As a consequence, a valid proposition to reduce the dependency on business rules and 
heuristic work is the use of predictive algorithms trained on large user behavioral models 
built using both internal and external data known. By pushing fraud prevention up in the 
transaction monitoring funnel, and estimating the risk before a transaction enters its last 
stages at a payment gateway level, we actually free payment gateways from operations 
looking for legitimate payment going through and yet to be validated. This way they can 
absorb a much larger traffic load without putting at risk merchants’ revenues and 

customers’ buying experience, or even better, guarantee an even faster approval but this 

time backed up by a sound analysis of the risk. 

11.7.3. Case Studies of Integrated Pipelines 

This work contains two applied studies of data pipelines for integrated payment 
processing and risk analysis. The first uses a substantial set of real payment transaction 
data for learning and modeling transaction amount distributions. This study requires the 
development of a demand pipeline – a data pipeline that extracts demand signals from 
social media – that is scheduled to execute essentially concurrently with the transaction 
pipeline. The fact that both pipelines are required to execute essentially concurrently 
means that there are complex integration issues arising from the fact that the 
computational load on the demand pipeline may exceed available capacity for extended 
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periods, so that the transaction pipeline must be allowed to operate at reduced capacity. 
We establish demand period templates based on analysis of past peaks, and describe data 
architecture, data flows, and algorithms for demand prediction during demand pipeline 
allocation. 

The second applied study relies on an actual set of real transactions that have been tagged 
by transaction type, and applies machine learning techniques for fraud detection based 
on transaction history. Again, this study presents challenges from the need for very low-
latency response times, particularly for several coalition demand application areas that 
most of us experience daily – the groupbuying promo code, the e-commerce shopping 
cart abandonment, and the online payment rejection. We conclude this work by 
discussing some requirements and future directions on the integration of payment 
processing and risk analysis, and what we feel will be directions for research. 

11.8. Monitoring and Maintenance of Data Pipelines 

Developing data engineering pipelines is just the beginning. Once your system is in 
production you need to monitor the various components for failure, performance 
bottlenecks, or data quality issues, so that you can quickly take action. As with your 
system design, monitoring should ideally be automated in order to not create 
unnecessary overhead but still notify you in time for issues that require human 
intervention. Monitoring should help detect the failures across various components in 
the data pipeline execution. The services you are connecting to might experience some 
downtime due to various issues, such as being overloaded or going through maintenance. 
The data transforms can also fail due to changes in the input data such as the arrival of 
values in non-nullable fields or any change in schema. You will need to set up 
appropriate alerts and notifications based on how critical the failure is. Monitoring tools 
can be used to track the keyword and search requests as part of run. Tracking the jobs 
running durations can help you detect performance bottlenecks. A manual check might 
be required for low-priority jobs that take longer, but performance degradation for 
critical hourly runs can require immediate action, which could range from running a 
retrain based on updated data to adjusting the load in production. 

11.8.1. Setting Up Monitoring Tools 

To ensure a smooth operation, we need to set up monitoring. The first thing we need to 
install is the web server, which provides several useful features that already cover a vast 
number of jobs’ typical needs. There are many parameters that can be monitored, and 
each one of the displayed jobs can have its corresponding parameter configured through 
several means, either directly in the DAG, as an environment variable or in the job 
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creation web form. These dependencies specific to the job displayed in the web server 
can be checked using the ’DAG Runs’ window in the UI. It is also possible to monitor 

whether or not the jobs have failed. In the ’Graph View’ of the web server, those jobs 
that failed are colored in red. We can also add notifications whenever a job fails. Another 
great feature is that the web interface provides a log feature. By going to the log 
corresponding to each task inside the specific DAG, the system will automatically log 
the output of both the standard output and error output when the job ran. Besides that, it 
is also possible to integrate other platforms to have more visibility regarding our jobs. 

Other monitoring tools can be integrated with the system to send alerts. There are other 
need-to-have monitoring features not integrated by default that can be easily solved by 
integrating third-party tools. If we want to monitor data quality issues, certain 
integrations are recommended. On the other hand, we can implement monitoring tools 
with an operator, or for monitoring data summary metrics using the subject’s content. It 

is also possible to use a built-in job service for monitoring our predictions. 

11.8.2. Performance Optimization Techniques 

It is important to clarify that we are only focusing on high-throughput and low-latency 
data pipelines. There are more examples that delve into optimizations for very low-
latency pipelines feeding ML systems that require sub-second data processing cycles. 
These types of pipelines serve primarily as input streaming layers for high-performance 
ML systems. 

Data flow systems, given their goal of performing optimizations that are sound and 
transparent, will perform more conservative optimizations than manually managing a 
data pipeline. Using some well-known data pipeline technologies, we can make certain 
guidelines to follow in order to make the best possible optimizations. It is also important 
to mention here that the optimizations for pulled and pushed batch processing modes 
will differ. For files that are being pulled from a static source, it is better to perform 
optimizations that focus on high parallelism. However, for files that are pushed and may 
be used by various source nodes, or files that are used for fast batch iterations at low 
scale or random, minimizing overhead and maximizing low latency may be more 
important optimizations. 

11.8.3. Handling Data Quality Issues 

As discussed earlier, performing general data quality checks is essential, particularly if 
you are dependent on third-party providers or other systems for your data source. In the 
normalized relational storage, it’s fairly easy to check data size for tables storing orders, 
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refunds, chargebacks, and risk processing events to check for discrepancies, as you have 
already identified the relationships among these systems during the modeling step that 
responds to business requirements. If you stop receiving data, this indicates a temporary 
outage in either the source system transformation or the ingestion pipeline. Once the new 
data ingestion resumes, you need to check your previous data storage and historical data 
to see if the pipeline is functional and delivering the same volume of data, as well as 
verify the accuracy of the data. More importantly, to make sure there was no loss of data, 
you will need to implement compensating mechanisms that can report these events and 
can be retried, such as failed data grab workflows or failed inserts into the data 
warehouse. 

In a data pipeline that is responsible for storing order transactions in a financial 
institution, outlier detection checks can be implemented to check if the recent data size 
is more than or less than the previous time frame data size. This will also depend 
significantly upon the business being processed and the data movement volume. Having 
weekly monitoring to check if the latest First-in, First Out row for a data table type is 
still within the expected volume, say within two standard deviations of the three-month 
average, could be sufficient in detecting bad data on a real-time basis. During setup time, 
this check could be performed daily and increased to weekly once the activity has 
stabilized. 

11.9. Compliance and Security Considerations 

When designing and building any payment processing pipelines that collect or manage 
PII or PHI data, there are certain key compliance and security considerations to follow. 
Payment processing has garnered recent increased scrutiny from both government actors 
and the general public. Government actors have argued that certain payment processing 
companies are not doing enough to protect against the monetization of COVID-19 
related data. In response to the push by government actors, officials stated that 
“Cybersecurity is critical to economic security, and economic crime is a national security 
priority.” Public complaints have also risen largely in recent months. It has been reported 

that certain payment processing companies have been leveraging COVID-19 related data 
for monetization purposes, and many consumers want assurances that protections will 
be enforced against these activities. 

Any payment processing workflow should be built with security first in mind. Payment 
processing by nature involves the collection or management of sensitive data, and this 
means getting it right the first time is of the utmost importance. By ignoring security 
risks upfront, organizations risk being forced to spend more in the future fixing potential 
leverage points even after security best practices are implemented, resulting in payment 
processing workflows that will be sub-optimal from a performance perspective. This 
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applies to both the organization building the data engineering pipeline and the 
organizations leveraging the data. 

11.9.1. Regulatory Requirements in Payment Processing 

In payment processing and analysis use cases, the volume of sensitive financial data that 
is captured and processed—credit card account numbers, Social Security numbers, bank 
account information, and debit/credit transaction details—warrants strict adherence to 
regulatory compliance requirements. Sensitive financial data is a lucrative target for bad 
actors, and to protect consumer trust in financial institutions, governments worldwide 
have imposed legal requirements for marrying superb customer experience with 
adequate security practice. In the US, regulatory bodies mandate that financial 
institutions become compliant with the requirements of the applicable regulations in the 
industry. 

Both retail and eCommerce merchants are subject to PCI DSS, which is the most 
comprehensive data protection program that sets the global standard for protecting 
sensitive financial data. Merchants processing more than 6 million credit card 
transactions a year will be assigned the Level 1 risk category and must undergo an annual 
on-site assessment conducted by a qualified security assessor. PCI DSS requires 
merchants to meet compliance checklists covering all aspects of their operations, from 
the physical security in their offices and data storage facilities, to their internal 
technology and information security policies, to policies for their vendors. Each aspect 
of the company's operations must be assessed to ensure that every data security practice 
ensures the privacy of data traffic between consumers, banks, payment processing 
platforms, and credit card companies. 

Like PCI DSS, the Healthcare Insurance Portability and Accountability Act also imposes 
strict compliance requirements for enterprises operating in the healthcare sector to 
protect sensitive consumer data. However, in addition to HIPAA, organizations involved 
in the payment processing and risk analysis of health insurance also must comply with a 
host of laws related to data security and privacy. Consent and breach notification laws, 
data protection laws, and consumer protection laws also exist at the state level. 
Additionally, international laws also govern payment processing in these regions. 

11.9.2. Data Privacy and Security Best Practices 

Data storage is a common characteristic of data engineering pipelines. In payment 
processing and risk analysis, data encryption is strongly encouraged for storage of 
sensitive data such as payment information and personally identifiable information (PII). 
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It is best to encrypt sensitive data before it is transmitted to the target and at the target 
using both client-side and server-side encryption, respectively. A Content Management 
Interoperability Services (CMIS)-like approach is highly recommended to ensure that 
sensitive information (e.g., PII) can be optionally decrypted for authorized third-party 
access only. Access to sensitive information should be dealt as carefully as database 
access control. External third-party access to sensitive information should be logged, 
especially when sensitive information is decrypted through a CMIS-like workflow. 

It is of utmost importance that data security is in place throughout the entire data life 
cycle, including data transmission, storage, and deletion. Sensitive information has to be 
deleted securely after its designated retention mandates expire. Laser or degausser has 
to be used to destroy unused sensitive data in hard disk (HDD) type mass storage devices 
due to its high sensitivity to physical destructing devices. Even after routines like 
“formatting” or “distributed data destruction”, the data on the HDD can be maliciously 
retrieved, and secure data deletion procedures for HDDs have been proposed. All the 
data are permanently “erased”, i.e., written with zeroes and ones alternately, using at 

least one of the above procedures. For magnetic tape (MT) mass storage, overwriting 
with new data or zeroing with degausser are common secure deletion procedures. Utilize 
safe and secure data management software for any safe and secure storage, deletion, and 
transfer of sensitive data. 

11.9.3. Risk Mitigation Strategies 

In order to mitigate the various risks discussed in the previous sections, transactions 
should be processed in real time, meaning at the point-of-sale or on the e-commerce 
platform. This allows validation against a number of parameters. First, the transacting 
account should be compared with the historical risk pattern derived from machine 
learning models or heuristic methods. For online transactions, IP geolocation should 
correlate with the account’s historical data. A large distance from the country where the 
card is usually used can generate a flag or a score. Other real-time factors such as velocity 
checks can further enrich the monitoring. For online e-commerce websites, do-not-serve 
lists of both black and white, previously known-to-be-good merchants can be used to 
further reduce risks. For others, lists of recently served merchants through a previously 
served account can be an indication of merchant engagement. All these are used as a risk 
response mechanism that can be completely automated, signaling either a successful 
authorization or the opposite either for soft decline or manual review. 

Traditional machine learning classification models can be used to validate the 
conditional transaction score or the risk assessment. In practice, a combination of rules 
and models, where the model triggers a score only for certain conflictive transactions 
but where the majority flagging is done by thresholds, have been proven useful. 
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Successful automation where a good percentage of transactions are either accepted or on 
the other side flagged/soft-declined can save hours of manual review. Both the traffic 
volume and the service quality—and how quickly the system flags a conflictive 
transaction are important operational KPIs for the business. Manual review is necessary, 
but its cost must be considered when designing fraud strategy. 

11.10. Future Trends in Payment Processing and Risk Analysis 

Historically, innovation in payment systems has been sporadic. Periods characterized by 
little change are punctuated only by the introduction of new channels to existing payment 
methods but no real change in the payment processing itself, prompting people to ask. 
However, recent years have seen an explosion of effort in new payment processing 
technologies, and life is no longer so quiet for payments as it once was. Technology is 
transforming both the systems used to facilitate payment and the consumer experience 
of the transfer — but, while exciting, these hostile takeovers have created a swirling 
center of gravity. Merchant apps, shopping carts, loyalty programs, and resellers are 
delivering payments via off-line, online/direct, and mobile channels. Digital wallets can 
hold different payment types, but nobody yet knows which protocol might emerge, or if 
the space is so fragmented as to ensure that somebody only ever makes money off of 
fees. 

Many parts of the world remain underbanked. As a result, payment processing will likely 
continue to evolve towards solutions that require little to no banking: id-based methods 
or credit-based methods. These methods will rely on systems that operate outside of the 
existing features of major banking protocols, or innovate slightly at their border, until 
some intern pulls the plug on various functionality once used by popular apps, but now 
discovered lying fallow. 

As more payment can be processed instantaneously, allowing micro-transactions to leap 
from niche to widespread usage, some businesses will break down services and products 
into their atomic parts, charging people for exactly how much of a resource they consume 
on a much more immediate basis. While much of this phenomenon will be enabled by 
greater speed or lower friction, some might also be driven by social expectations around 
fairness. 

11.10.1. Emerging Technologies in Payment Systems 

The global payment industry is currently in the throes of a transformative phase, 
characterized by seismic shifts in operational foundations and infrastructural 
architectures – volatile forces of evolution resulting in the disruption and 
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disintermediation of players who have previously maintained well-defined positions 
within static ecosystems. Natural ascribees to this description include providers of 
services relating to foreign exchange, processing, acquiring, card issuing as well as 
OEMs, High Street banks, primary card schemes, neobanks, and – perhaps most 
spectacularly – established players from outside the financial services industry such as 
payment facilitators, credit agencies, vendors and various companies. So, too, are 
payments industry stakeholders. It is perhaps inevitable that these technologies shape-
shift into innovative revenue and earnings models. The extrapolation may well serve to 
set the path for the payment industry and, by extension, its payments solutions providers, 
for the next three decades. In opposite parallel, two other technological currents 
exemplify major challenges and serve to shape this new world order – those concerning 
quantum computing and artificial intelligence, as well as blockchain technology and 
cryptocurrency. 

Specific details of the innovations shaping this evolution cycle are clear. Generally, 
however, some caution is warranted as the rate of technological churn currently 
underway would appear to indicate. At one extreme, the view is expressed that some 
technologies, such as APIs, mobile wallets, open banking, and cryptocurrency, are 
nearing the end of their evolution cycles. At the same time, the news coverage on other 
technologies appears to reflect technologies returning from a long dormancy. So, too, do 
partnership models, such as Banking-as-a-Service and Banking Relationships-as-a-
Service, emerge as models focusing on inter-organizational cooperation with regard to 
technology investment risk sharing, in contrast to traditional financial services which 
rely on both scale and scope to achieve cost structures suited to optimizing externally 
identified organizational niche targeting. 

11.10.2. The Role of AI and Machine Learning 

Over the past few years, AI and machine learning have changed from buzzword to 
application. With growing amounts of historical data available around risk, fraud, and 
customer experience in the financial world, coupled with improvements in algorithms 
and processing power, AI/ML is seeing deployment maybe inappropriately at scale. 
However, deep application of AI and ML in risk management, payment processing, fraud 
detection, and customer experience prediction is still being rolled out. The historical core 
systems in these businesses are cautious to embrace dependence on these new 
technologies. But the experimental pockets of painful learning architectures and events 
are scaling to enterprise-level applications. The regulatory environment has contributed 
to the caution. Yet at the same time, regtech is sweeping into this space with both AI 
methods and automation. Scalable automation is an absolute requirement to meet the 
increasing expectations businesses face globally from regulators, customers, and 
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partners in the area of compliance around AML, KYC information delivery, and 
transaction monitoring. As a result, there is a tension between experimentation with 
AI/ML in risk management in payments and the immediate regulatory requirements that 
need to be satisfied by these businesses. Increasingly, the regtech vendors are using 
AI/ML in these applications to facilitate compliance with automation and speed. At the 
same time, the core industry players are working on AI solutions for frictionless 
experience improvement around payment for their consumer branches. 

 

Fig : Manufacturing process data analysis pipelines 

11.10.3. Predictions for the Future Landscape 

Advances in secure digital payment technologies are likely to increase the inclusion of 
underserved classes into the payment processing universe. Blockchain payments aim to 
replace banks in the function of transaction intermediaries. Direct transactions between 
consumers, merchants, and financial product offerings have the potential to limit the 
profit share of banks and credit card companies while facilitating transactions of people 
in locations with poor access to bank facilities. 

Banks are pursuing digital wallets and partnerships around using their services, such as 
creating bank accounts and lines of credit for underbanked customers. Traditional credit 
card companies respond to Blockchain payment offerings with speed and fraud reduction 
innovation. They are also developing digital wallets that give customers access to 
rewards programs as well as better transaction experience. 

AI-enabled risk management innovation is expected to rely on deep data—propagating 
historical patterns of transactions that have detected fraudulent activities in the past—
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along with contextual analysis. This contextual analysis includes considering the unique 
profile of the store where the transaction is taking place, or AI's real-time understanding 
of the context under which it is happening. It recognizes users in the immediate vicinity 
of the place where the transaction is taking place and considers their recent transaction 
profiles. Risk management innovation further relies on technology that reduces the costs 
of fake accounts, which is a requirement for implementing any of the various predictive 
models that rely on historical data patterns. It also strives to maximize the use of AI for 
source detection and risk scoring of third-parties involved in any transaction. 

11.11. Conclusion 

Due to the rapid growth of online payment processing and increasing compliance 
requirements in the finance domain, we have created a novel data engineering pipeline 
that onboards data quickly, processes many data sources, and handles large amounts of 
transactional data. Our industrial pipeline uses a large-scale data hub model that 
efficiently addresses data lake and data warehouse anti-patterns. We have demonstrated 
our capabilities by sharing real-world examples of how data is collected and joined in 
our data hub model centered on payments data, how pipelines are designed for agile 
onboarding of large amounts of raw data, how different sources of merchant 
nontransactional data are handled, the creative ways we use to detect spatial outliers in 
merchant activity payouts, and our automated ticketing for merchant accounts' hard and 
soft inquiries that issue alerts about risk or fraud. Additionally, we emphasize the 
importance of creating performant pipelines by combining heavy data engineering loads 
with modular analytic and machine learning cores that serve multiple projects within an 
organization. Technology has drastically changed how people buy and sell goods. 
Instead of shopping in a physical store, people now make their purchases online, at any 
day, and at any time. To support this, payment processors take on the role of 
intermediaries between buyers and sellers by offering merchant accounts. Payment 
processors accept digital transactions made with credit cards, debit cards, or mobile 
wallets. They pay the merchants and collect a service fee for their work from the 
merchant's bank account. These payments from payment processors to merchants 
generate millions of records every day, but not everyone lives happily ever after. 
Merchants can be tempted to commit tax evasion, money laundering, or fraudulent 
charges. What do payment processors do to help merchants when something goes 
wrong? They have a team of risk analysts, data scientists, and investigators helping to 
ascertain the legitimacy of merchant transactions. But how do these analysts get the data 
they need to investigate? 
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