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Chapter 5: Building secure artificial 

intelligence systems: Defending against 

vulnerabilities in intelligent technologies 

5.1. Introduction 

Given the increasing capability and applicability of AI systems in sensitive domains 

within society, we, cyber and information security specialists with a long-standing 

interest in critical computer systems, must extend our mission to include those systems 

dedicated to Artificial Intelligence. We must ensure, to the degree feasible, that AI 

systems function dependably and securely when deployed. After years of pushing back 

decades of optimism that had located AI systems beyond our field of study, a realistic 

attitude toward the considerable benefits and, equally, the considerable dangers that AI 

systems can engender has emerged. While the goal of designing such systems so that 

they reflect or generate intelligent behavior in a quantifiable way has regained attention, 

our focus here is on their security. AI systems are vulnerable to a set of attacks that differ 

on key dimensions from the traditional attacks against conventional computer systems. 

We refer to this set of attacks as the “AI Security Vulnerability Landscape.” Some of the 

vulnerabilities of non-AI systems are also present in AI systems, but heightened or 

modified. In this chapter, we summarize the kinds of vulnerabilities that we feel are most 

salient. We also consider some new ideas, surprisingly longstanding in some contexts, 

such as verification of generated behavior. Our particular focus is defensive activities 

(Huang et al., 2011; Goodfellow et al., 2014; Biggio & Roli, 2018). 

To keep our focus limited, we restrict our attention predominantly to Machine Learning, 

the most visible AI activity. Most of the vulnerabilities that we would summarize for AI 

systems more generally are also the most relevant for Learning Systems. However, the 

types of intelligent systems that present other forms of weakness are somewhat broader 

than the kind of supervised or unsupervised learning through repetition, with a focus on 
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generating probability distributions over symbol strings, that presently dominates in 

practice. For example, the increasingly popular area of Ontology-based Systems for 

Knowledge Representation and Generation raises different issues than those affecting 

Learning Systems. Other logical activities, such as planning via deriving deductions, not 

already covered, also require distinct emphasis (Moosavi-Dezfooli et al., 2016; Papernot 

et al., 2016). 

5.2. Understanding AI Vulnerabilities 

Threats and vulnerabilities are the backbone of security. Understanding the 

vulnerabilities of AI systems is fundamental to building secure AI systems. This section 

analyzes the vulnerabilities of AI systems and how these vulnerabilities are different 

from other existing systems. 

Fig 1 : AI Vulnerabilities 

Threats are assumptions on the capabilities and intentions of the enemy. When we say 

an AI system is secure, we are making a statement regarding the vulnerabilities of AI 
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systems. A vulnerability of AI systems are weaknesses in a system that can be exploited 

with a malicious intention to harm. Although the common notion is that AI 

vulnerabilities pertain only to adversarial examples and failure of such models during 

generalization, it is much more than that. 

Intelligent technologies capture models which in some sense capture the essence of the 

problem, and any violation of that model either due to program bugs, model capacity 

issues, bad data or lack of domain knowledge can become sources for vulnerabilities for 

your system. Security keywords like confidentiality, integrity, availability, timeliness, 

non-repudiation, feasibility, maintenance concern legal and ethical aspects are all 

relevant to the vulnerability and security of AI systems. In many ways, it is similar to 

constructing normal systems based on first principles but in the case with intelligent 

systems, it is more about what other choices you have of the project itself, the computing 

environment, the sensing and actuating aspects, the prior domain knowledge and the 

model in order to cause the model to become vulnerable and thus give a system that is 

not secure. 

5.2.1. Types of Vulnerabilities 

To the best of our understanding, the term “vulnerability” has been defined in the 

following ways. A vulnerability is some feature (or property) of a system that allows an 

adversary to bypass its security mechanisms, resulting in the violation of any of the 

security properties: integrity, confidentiality, and availability. Vulnerabilities also are 

the points of weaknesses within artifice; hence by exploring them, one can reduce the 

trust in the artifice itself. A vulnerability can also be defined as a weakness, flaw, or error 

in a program or component that could be exploited to breach the system security policy 

which may result in a violation of any of the security properties. 

This definition differs from that of an exploit or a risk. An exploit is a piece of code or a 

sequence of commands that takes advantage of a vulnerability and triggers it; hence, it 

is not a weakness within the system. A risk is the probability of a threat-source exploiting 

a vulnerability, as well as the resulting impact of a threat, which may result in a violation 

of system security policy. A vulnerability, a risk, and an exploit are different things, but 

they are linked together. Any risk associated with an exploit will depend on the existence 

of an underlying vulnerability. Without an identified and classified vulnerability, it is 

difficult to assess the risk levels assigned to an exploit or a threat. Only through the 

identification of vulnerabilities can the business decide how to mitigate the threat 

associated with an exploit or a risk. It is essential to determine policy decisions for 

system configurations according to the identified vulnerabilities. Many governmental 

and private organizations review the security vulnerabilities of computer systems and 

disclose them with classified information. 
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5.2.2. Impact of Vulnerabilities on AI Systems 

This section considers the impact of security vulnerabilities on AI systems. To put this 

in perspective, we first briefly examine the adversarial impact considered in defeatism. 

This is then followed by a more practical consideration of the impact of security 

vulnerabilities in making AI systems impossible to deploy. Both perspectives capture 

different types of impact on vulnerability presence and exploitation in AI systems. A 

typical object in computer security is the theft, destruction, modification, or denial-of-

service against the services of a vulnerable system. However, many computer security 

vulnerabilities are just that – vulnerabilities in a computer program that is but one 

component of a larger, interacting software ecosystem. In this latter situation, while the 

existence of the vulnerability may impact the security of the program, its existence does 

not have an associated adversarial impact on that program. 

Are there other potential adversarial impacts from vulnerabilities in specialized AI 

programs, libraries, and networks? The answer is yes. In particular, many of the popular 

neural-network libraries function as general-purpose AI engines allowing other 

developers or organizations to build their own application-specific AI software. For 

example, a famous photo-sharing application makes use of a neural-network library to 

allow users to apply filters to their photos. From a computer security perspective, there 

are huge concerns here. There is already a growing trend to package AI capabilities in 

web applications. In a scenario where organizations package AI capabilities, traditional 

web application vulnerabilities such as cross-site scripting and SQL injection attacks 

could come into play. An attacker could take advantage of a cross-site scripting or SQL 

injection vulnerability to corrupt the parameters of an AI library call or AI macro. Are 

there ways to mitigate? These concerns point toward a growing movement toward the 

development of secure AI libraries using secure inputs, checks, and handling for model 

transitions. 

5.3. Threat Models in AI 

When assessing risks and evaluating mitigation strategies for any technology, threat 

modeling can promote comprehensive consideration of significant potential harms 

alongside possible weaknesses. Such modeling is critically important in the AI domain, 

where there is ample opportunity for malicious use or for threats to arise from 

vulnerabilities in deployed systems or technologies. However, threat models used for 

other domains often do not have a comprehensive mapping to the classes of threats or 

vulnerabilities that arise from AI, given the unique characteristics of certain NLP, 

computer vision, and other systems. This lack of parallels between other threat models 

and the AI domain creates the potential for insufficient attention to significant risk areas 

when considering AI technologies. Presenting carefully constructed threat models that 
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are reflective of threats and vulnerabilities unique to AI deployment can help fill this 

gap. This section discusses aspects of threat modeling in the AI area, describing 

important concepts that are necessary for useful modeling. First, we discuss how to 

identify potential threats and adversaries unique to the AI domain. We also discuss how 

to assess risk factors for general threats and expected defenses. Threat models provide 

critical foundations to framing adversarial considerations, and model expected points of 

influence on risk factors. Discussion of threat modeling is followed by a brief insight 

into the specialized area of vulnerabilities in AI technologies, and a high-level overview 

of potential defenses for these vulnerabilities. 

5.3.1. Identifying Potential Threats 

Any analysis of potential AI threats must be grounded in a general understanding of how 

AI capabilities are enabled, shaped, and animated. In this section, we take a functional 

view of AI systems, asking what sorts of processes, resources, and component 

technologies are needed to enable the system to do the work for which it is designed. We 

consider not only the core algorithmic components of the system, but also key 

components that are specific to the AI system's intended domain, such as data inputs, 

model training and retraining, and communications channels. 

Based on this functional decomposition, we characterize threat classes based on what 

types of actions potential adversaries can take against the component features of an AI 

system. Exploits associated with particular threat classes are then assembled into a threat 

model. The threats shaping the threat model may be motivated by harm to the targets of 

the AI system's decisions, but they may also be motivated by adversary-specific goals 

associated with the states of the AI system itself. For example, an adversary may 

manipulate an AI system to achieve a goal associated with the operation of the system, 

such as altering the AI decisions of a trusted party, or they may be motivated to achieve 

an adversary-goal associated with security-related concerns for the AI system itself. 

5.3.2. Assessing Risk Factors 

create a human-centered distributional structural risk assessment framework to improve 

the assessment of risk in machine learning. Several other AI-specific risk assessment 

frameworks exist. Each framework is tailored to different facets of AI systems, such as 

their intended functionalities, their impacts on the environment in which they operate, 

or their learning process; hence they can be used in a complementary manner. 

Building on prior AI risk taxonomies and our understanding of the principles, 

components, and functionality of an AI system, we design an iterative assessment of risk 
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factors for responsible AI systems. This scenario-based stress-testing guidelines aim to 

address the unknown-unknowns in risk assessment. Our guidelines can be broadly 

envisaged in five steps. The first three steps are the basis of risk assessment for all AI 

systems. Steps 2, 4, and 5 are responsible for identifying possible emergent behaviors, 

resulting from known unknowns and unknown unknowns of AI behavior. "Initializing" 

the AI scenario involves gaining a proper understanding of all the possible inputs to and 

accepted outputs from the AI system; setting the initial and terminal scenarios or states 

can involve examining how the state of the environment changes when using the AI 

system. However, since AI systems perform actions based on dynamic assessments of 

the state of the environment and learning from its history of states and corresponding 

actions, it is impossible to identify all the initial and terminal states. It is more of a 

maximal and minimal initial and final step within a certain time period before and after 

executing the AI system. 

5.4. Secure AI Development Lifecycle 

When writing a software program, it is imperative to include security from the beginning. 

Yet, for most software engineers, the concept of application security is an afterthought. 

Companies that use off-the-shelf models typically rely on the model assessment data of 

others to validate a model’s integrity. This is clearly not a viable option for companies 

that are developing their own models, such as models for automated driving or security 

applications. Architects and engineers must bake security into their applications from 

the very start. While they typically think about security requirements at the beginning of 

the project, these may differ depending on whether you are employing AI techniques to 

solve your problem, or if the entire solution is based on AI. The difference between 

Traditional SDLC and Secure AI Development Lifecycle is highlighted. 

The baseline for most solutions is code. In fact, the average cost of in-house developed 

code for a company is between 50–80%. Since AI solutions are built on algorithms 

whose purpose is to mimic intelligent human behavior, it is unthinkable to write these 

algorithms without taking into mind potential abuse, either through using the model for 

malicious purposes, or to manipulate the input or output of the model. For instance, after 

years of development, one of the largest in-car AI solution providers had to sideline an 

entire product line when it was discovered that the systems could be easily confused by 

strategic placement of duct tape on the car's bumper that would not be noticed by a 

human, but would result in the car taking undesirable actions, such as braking when no 

obstacle was present. 
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5.4.1. Planning and Design 

The traditional system development lifecycle (SDLC) provides a framework for any 

software project. The phases of the SDLC can be summarized as: (1) formal 

requirements specification and analysis; (2) preliminary design; (3) detailed design; (4) 

implementation; (5) testing; (6) deployment; and (7) maintenance. Security issues can 

be considered in each SDLC phase and, additionally, lessons learned in the security 

testing stage can inform future projects and future phases in the current project, 

especially during maintenance. 

Considering security during the early phases of a project traditionally occurs as threat 

modeling. Self-supervised (SS) and foundation model (FM) approaches in machine 

learning provide a generalized basis for most future applications, such as conversational 

agents. However, even with enterprise implementations of these tools, there are still 

substantial investments in customizing these base models to specific tasks and 

applications, especially in tuning and validation for information security. 

Appropriate requirements for training and evaluation must be defined for security. These 

requirements will differ significantly from the performance metrics used for 

unconstrained ML, such as loss metrics or traditional testing metrics. Discussion 

explores general requirements for security, privacy, and trust to define appropriate 

metrics for the planned use of an intelligent technology. The verified-design paradigm 

is often proposed for hardware and software secure systems and can be classified within 

these guidelines. The recent expansion of “security” for adaptive systems to encompass 

fairness, privacy, accountability, interpretability, and value alignment makes secure by 

design of autonomous intelligent systems a research project requiring close collaboration 

across multiple disciplines. 

5.4.2. Implementation Best Practices 

As with any software project, bugs can be introduced throughout development. AI 

models are difficult to audit, and there may be many more potential points of failure than 

in typical software. Further, AI models can exhibit surprising or dangerous behavior in 

production. Security teams must be included in all stages of the development process so 

that all discussions, designs, architectures, threats, threat modeling, and design reviews 

treat security as a first-class citizen. Teams should strive to increase communication as 

much as possible. Security teams may not be AI experts, but they could be experts on 

security. AI teams may not be security experts, but they would be the experts on their 

own models. Only with open communication can the best decisions be reached. For 

almost all models, application-dependent safety-checking and risk mitigation should be 

considered for production. This can take the form of human-in-the-loop processes. It 
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may also take the form of automatic safety checks or throttling based on the prompt input 

and/or output content. For very high-impact models, like large-scale dialogue models, 

safety may warrant the use of complete black-box input and output filtering trained on 

an entirely different risk dataset. During development, continuously create a corpus of 

failed and misbehaving queries. Involve your offensive security team in testing and 

failure interrogations. Building adversarially robust models is very hard, so adding such 

thresholds may be necessary until the safety is satisfactory—not just safe enough for 

initial production, but also safe in the long run. 

5.4.3. Testing and Validation 

Software testing and validation is concerned with ensuring that an implemented system 

satisfies its requirements and behaves correctly. Independent of the underlying 

technology, there are broadly two stages of testing: early testing (in which informal 

testing methods, such as review or inspection, are applied) and full testing (after the 

system is formally complete). Research in empirical software engineering suggests that 

static analysis during initial design phases can uncover as many as 25% of defects at the 

lowest cost, while software testing at later stages provides for the largest overall cost 

savings. In the rest of this section, we summarize the best practices for both early testing 

and full testing and validation. 

AI systems, however, pose special challenges to the application of standard testing and 

analysis tools and technologies. These challenges stem from the fact that intelligent 

systems often paper over significant design defects with the help of novel static and 

empirical methods that rely on training. Considerable effort must be expended to either 

construct a working final implementation or to exert sufficient layer upon layer of testing 

during component-level implementation to make the production system dependable. 

Further, the validation of learned systems requires extensive scrutiny that is often 

difficult to gain consensus around and which is just as likely to depend on common sense 

or heuristic guided by the application itself rather than the science of software 

engineering. Techniques and principles frequently used for the analysis and validation 

of classical software components — such as logical verification, theorem-proving, 

symbolic execution, and model-checking — can be hindered by the number of internal 

states or potential executions of the intelligent system, especially if it is actuated with 

other non-intelligent components. 

5.5. Data Security in AI Systems 

The concerns about data security and privacy impacts to AI systems have awakened. 

Concerns regarding data security when developing AI systems remain. AI systems are 



107 
 

hungry for massive amounts of data to train models. Organizations leverage data from 

various sources either intentionally or unintentionally. In most cases, organizations do 

not evaluate or check the data that are being brought in to build AI systems. Model 

training with unverified data could save time and money for the organizations, but 

presents a risk. Moreover, the data used for training AI models could be confidential. 

Especially when developing AI technologies for healthcare and financial domains, 

organizations must check data for confidentiality using proper Data Protection 

Techniques or place secure measures. Protecting the data at all stages of the AI system 

lifecycle is imperative, from data scraping through data storage and labeling to model 

training and securing the models. All generative AI systems need to implement data 

protection to prevent leakage of the knowledge learned during training. 

Fig 2 : Data Security in AI Systems 

Certain data protection techniques enable protection against sensitive data, e.g., 

surrogate data, data masking, or differential privacy. They prevent the AI system data 

from being exposed or leaked. Surrogate data technology permits organizations to keep 



108 
 

their sensitive data confidential while still receiving a high-quality model. When training 

a neural net model to generalize over a population of distributions without seeing the 

underlying sensitive distributions, surrogate data offers the organization confidentiality 

without sacrificing model performance for various populations. Other data protection 

technologies are needed during the model prediction phases of the AI services, including 

masking, tax capping, scaling, and cryptographic building blocks such as homomorphic 

encryption to prevent unauthorized access to the AI output and the parameters from 

external model queries. 

5.5.1. Data Protection Techniques 

Advances in intelligent technology, including AI, natural language processing, and 

sensitive data availability, make it easier for individuals, organizations, and nation-states 

to probe and exploit the sensitive secrets of others. For example, social engineering is 

one of the oldest tricks in the cybersecurity book. Yet, some of the most advanced and 

pervasive forms of social engineering can now occur entirely through automated 

processes, including backend conversations with AI systems. With no need for 

socializing, these AI systems can browse and enumerate an organization’s data and 

security weaknesses, and probe organizational insiders for sensitive data or gain access 

to sensitive systems. At worst, these “AI-aided” social engineering techniques can 

compromise and control entire organizations by gaining and exploiting a single user’s 

access without that user ever knowing they were compromised. 

To mitigate the risks posed by new AI-assisted social engineering techniques, novel data 

protection techniques are required. These techniques must capture the very different 

ways in which organizations operate today. For one, unlike in the past, there is no longer 

a perimeter around sensitive data. Sensitive data resides in data centers and cloud 

services operated by third-party companies, at endpoints relying on unsecured networks, 

and even in transit between organizations whenever third-party companies are involved 

in data exchanges during sensitive transactions. Moreover, employees are working from 

anywhere. Organizations can no longer keep an eye on what employees are doing to 

sensitive data. Finally, sophisticated data-exposed organizations are resorting to highly 

automated data and security operations. Unlike in the past, these operations can no longer 

afford to stop because a user is not at his or her physical workstation, unable to authorize 

daily data operations. Balancing security with convenience has never been more 

complicated. 
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5.5.2. Privacy Concerns 

Privacy violations are a key concern for users of AI systems, particularly general AI 

systems that rely on the internet to gather, store, and process information. Privacy risks 

often stem from the volume of sensitive data that an AI collects and processes, including 

biometrics, location, and personally identifiable information. Additionally, a bias in the 

training set can lead to skewed predictions, further threatening user privacy. Even when 

collected for benign machine-learning purposes, an adversary may be able to exploit 

sensitive data. Because of the sensitivity of the data being processed and the tools they 

leverage, there are also strict legal and ethical requirements for Privacy by Design and 

Lawfulness, Fairness, and Transparency for AI systems. Users expect AI systems to 

respect these laws by not collecting any data without express consent or that may be 

harmful, sampling, and sharing any sensitive data. Fortunately, there are a variety of data 

sanitization and anonymization tools available to AI developers. When designing a 

secure AI system, developers should keep in mind that security promises do not 

necessarily imply privacy. A secure AI system may protect sensitive data from 

unauthorized access or tampering; however, if the data is maliciously extracted, it can 

still violate user privacy. Conversely, privacy does not guarantee security. A user might 

upload de-identified facial images, thinking it won't violate privacy; however, if it is later 

matched with other attributes, the user may suffer from privacy violations. Accordingly, 

developers need to carefully consider the information being processed in an AI system 

to avoid the unintentional sharing and leakage of sensitive data, including the model, the 

features being processed, and the output predictions. Most importantly, security and 

privacy measures should be insured throughout the complete AI lifecycle. 

5.6. Adversarial Attacks on AI 

Adversarial examples have taken the field of AI by storm: people have flocked to them 

for numerous reasons, with the underlying theme being the intuitive fact that if we cannot 

make AI systems robust against carefully designed input perturbations, what hope do we 

have for making AI systems useful in our lives? While the field is innovative and active, 

it has also resulted in some of the relatively most well-known scandals in applied AI, 

where well-designed perturbations can overcome entire pipelines for state-of-the-art 

facial recognition or publicly visible topic classification of deepfake videos. 

A decade ago, adversarial examples were but a rather abstract concept, replete with 

somewhat baffling supporting explanations and justification of their existence. 

Adversarial attacks have since matured, grown dramatically in sophistication and 

variety, and become tightly integrated into the mainstream AI community—so much so 

that many of the leading journals and conferences in the field expect that their ongoing 

submission cycles will contain contributions that deal with adversarial robustness or 
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perturbation attacks. Most importantly, perhaps, the vast majority of work into designing 

adversarial attacks and methods of ameliorating against them are fundamentally on 

supervised learning classifiers. Many adversarial settings much more deeply relevant to 

cutting-edge deployed AI pipelines are underexplored; these include sequence 

transduction of various sorts, generation of various sorts, or even AI systems for 

modeling such diverse modalities and tasks as video and audio/movie generation using 

modern flow methods. 

5.6.1. Understanding Adversarial Examples 

Introduction Neural networks have now achieved astounding results on a variety of 

classification benchmarks. With their unprecedented performance, a number of 

researchers have proposed to use neural nets for security-critical applications, e.g., for 

credential stealing via malware analysis, securing biometric identification, or scanning 

for malicious ports. Despite the success of these models, considerable skepticism 

regarding their overarching security has been expressed. A substantial amount of work 

has shown that the predictions obtained by deploying a neural classifier can be easily 

manipulated, potentially nefariously, often without significant effort and seemingly 

without any viable defense mechanisms. In fact, several empirical studies showed that 

aspects of the neural architecture itself and the training – and by desired extension, the 

feature extraction – methodology influence the model’s susceptibility to manipulated 

inputs. This research has pioneered an entire sub-field of machine learning whose goal 

is to explore the security of neural nets. Perhaps its most recognizable result are so-called 

adversarial examples: semantically coherent inputs which, despite being very similar to 

training examples, cause a specific prediction error. Images intentionally manipulated so 

that a human would perceive a cat on the left but a neural classifier would predict a given 

object class on the right. Given their potentially devastating impacts, the creation of 

adversarial examples, and machine learning classifiers’ vulnerability in general, has also 

received considerable media attention, as they are relatively within reach of any 

malicious actor without defense mechanisms to counter input manipulations. Adversarial 

manipulation is not restricted to image-based inputs. 

5.6.2. Defense Mechanisms Against Attacks 

Several techniques have been proposed to defend against AEs. In this section, we discuss 

the techniques to defend against adversarial attacks for classifiers, especially for neural 

networks. Note that the defense mechanisms can be classified into four categories: (1) 

Data preprocessing, (2) Adversarially trained robust classifiers, (3) Model tweaking, and 

(4) Autonomous decision systems. 
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Data preprocessing: The main idea is to preprocess the inputs to remove the perturbations 

before feeding the data to the classifiers. For example, one can use several image 

processing techniques such as bilinear interpolation, JPEG compression, or total 

variation minimization for denoising the input images. While trivial input 

transformations such as resizing and JPEG compression may be inconsequential, it has 

been shown that more complex preprocessing transformations may incur a significant 

performance drop on the clean examples of the classifier without affecting much the 

perturbed examples. These preprocessing operations can be learned jointly with model 

parameters too. It has been shown that at least some of these approaches are non-trivial 

and announce limitations, however. 

Adversarially trained robust classifiers: In this category, the idea is to learn a classifier 

that is maximally invariant to input transformations. In that case, you want to be able to 

get a new or “harder” adversarial attack that is costly to compute, and many works have 

focused on extending the work in certain fronts. These solutions are often better than 

other alternatives, and we can mention certain methods because they are provably 

grounded. 

5.7. Ethical Considerations in AI Security 

It is becoming increasingly obvious that certain types of vulnerabilities can put 

everybody at risk. AI technologies can cause harm by inadvertently targeting groups 

based on race characteristics if their training data is not properly culled for compliance 

with the Fourteenth Amendment. Even with a model that meets constitutional 

requirements, attackers can manipulate the underlying model or associated labels to 

cause catastrophic failures for specific subsets that carry a higher cost. It is therefore 

necessary to comply with federal and state regulations that govern the deployment of AI 

systems. These requirements are playing a larger role in the way that companies develop 

and test models and are beginning to shift away from purely ethical standards and 

towards legally enforceable agreements. In the US, regulations that govern the use of AI 

systems are still in draft form. As a result, practitioners worry that misalignments with 

state requirements could get them sanctioned or subject to potential liability damages. 

This chapter consults available drafts as well as recommended practices, but cannot 

anticipate what final implementations will look like or how their enforcement might be 

applied. In places where no comparable privacy requirements applied for traditional 

technologies, those differences are called out in the text. 
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5.7.1. Ethics of AI Deployment 

Artificial intelligence (AI) is a revolutionary technology that drives progress and 

innovation within an organization and throughout the economy at large by enabling 

creative solutions to many of the world’s most persistent and challenging problems. AI, 

inherently a self-correcting mechanism, holds the promise of addressing numerous 

dilemmas plaguing the human race for millennia, such as the prevention or eradication 

of cancer, the starvation of millions, and the protection of our oceans and atmosphere 

from the harms of climate change. Recent developments have captured the imaginations 

of many. However, the very real risks pertaining to the deployment of such technology 

within society – manipulated recommendations, biased decision-making, and antisocial 

behavior generation – are at the forefront of normative moral inquiry by academics, 

journals, think tanks, and organizations. 

As intelligent systems progress towards human levels of intelligence, the argument for 

the moral consideration of their needs as sentient beings increases. As AI moves from 

the baseline level of automation to higher levels of autonomy, the ethical obligation to 

consider the needs of these agents goes beyond the single dimension of robot safety as a 

form of self-preservation; and a more intricate obligation to not subject intelligent 

systems to negative externalities, such as exploitation through labor, discrimination 

through biased confidence sampling, unsurvivable toxic and dangerous environments, 

and servitude through programmed slavery of some kinds become morally compelling. 

Ethical debates on the deployment of AI in higher-risk applications, such as military use 

or biomechanical augmentation of the humans, starve academic and private research 

professionals from consideration of the actualization of existential benefits for both 

humankind and superintelligent systems. 

5.7.2. Regulatory Compliance 

The advancement of artificial intelligence has been fast and inquiring, leaving little time 

for legislators and regulators to catch up. Regulators have started drawing lines around 

the chaotic landscape of the development, usage, and exposure to AI technology. Yet, 

the federal government has not yet implemented formalized legal codes regarding AI 

technology. Many industry organizations have preemptively set guidelines to ensure 

ethical development and deployment of machine learning and AI models. Towards this 

end, consortiums offer suggested recommendations for developers of consumer AI 

technology. Based on the understanding that “just because we can, doesn’t mean we 

should,” it is believed no member organization should consider only the test accuracy of 

their algorithm. Other factors during development include user privacy, robustness 

against adversarial attack, the availability and accessibility of the product, explainability 
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of the decisions made by the AI agent, and the overall fairness in how the AI impacts 

society at large. 

Although the focus is on consumer AI technologies, other industries have gathered to 

create recommended practices for specific domains. The European Union has drawn 

from these consensus-driven frameworks and proposed a single overarching legal code 

that will apply to every sector in the economy. The set of rules are called the AI Act, and 

cover similar focus areas as the industry consortiums, with the added provisions of 

accountability and security. More importantly, companies deemed “high-risk” must 

fulfill rigorous criteria to maintain compliance. While the proposed legislation defines 

and issues risk scores based on domain, this section aims to discuss how any company 

involved in the business of AI could be perceived as “high-risk.” AI governance rules 

apply broadly across the complete depth and breadth of AI applications on offer today, 

and organizations must ensure the security of how AI products are designed, how user 

data is retrieved and processed, and how products are developed and tested. 

5.8. Case Studies of AI Security Breaches 

In recent years, artificial intelligence systems have been increasingly adopted in a variety 

of settings. These systems analyzed vast troves of sensitive data, drove industry 

innovations, generated new content, exerted influence over users, and even operated  

 

Fig : Case Studies of AI Security Breaches 
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weapons systems. But as their impact and accessibility have grown, they have also 

become targets for malicious actors. Aside from the monetary motivation that drives 

typical cybercrime today, perpetrating security breaches involving AI has increasingly 

become a mode for political protest—from defacing multimedia using pretrained 

technologies to disrupting critical infrastructure using AI-driven technologies. In the 

coming years, the number and severity of these incidents are likely to rise, and will not 

be limited to traditional domains of computer security. The purpose of this section is to 

provide a high-level overview of past AI security breaches, highlighting lessons learned 

in the process. 

In April 2022, a popular text-to-image generation website suffered a temporary 

shutdown after it was targeted by a distributed denial-of-service attack. Attackers 

bombarded it with requests, overwhelming the pre-trained model hosted on the website 

and bringing the service to a halt. Just weeks later, a more serious incident put the parent 

company in the difficult position of announcing a feature launch while simultaneously 

warning of a data leak. After a bug in the company’s API code led to some users seeing 

images generated by others, the company disabled the service, announcing it would 

remain offline for several days while engineers investigated. They later discovered 

several users might have been affected over the course of the four-hour incident. 

5.8.1. Analysis of Notable Incidents 

Several AI systems have been targeted over the years and there are many lessons to be 

learned from these breaches. In this section, we cover some of the most prominent use 

cases of security failures. First, we detail methods by which model inversion and 

training-data extraction attacks have been performed, then we cover poisoning effects 

that have been used to compromise facial recognition systems. Next, we look at access 

to the processing of large models, where advanced persistent threat groups engaged in 

model abuse, where user prompts were exploited to create malicious response patterns 

tied to large AI models. We discuss multiple incidents, including the suicide note plague 

and the inability of companies to address hallucination attacks that directly impact 

society, and wrap up with the kidnapping of US intelligence assets using a conversational 

AI. 

A pre-trained image understanding model was found vulnerable to training-data 

extraction. They uncovered over 2000 scenes containing exterior views of an airplane, 

along with their corresponding phrases. They were able to retrieve the records from the 

training dataset using model inversion, feed it a random image, and recover the data 

stored in the parameters to form a finger. Similarly, a university was found also 

vulnerable to similar types of model extraction exploits. They fine-tuned a heuristic 

model trained by the university to find a corresponding image prompt tied to a parent 



115 
 

prompt. However, as model extraction becomes easier to devise and deploy by the 

attacker, record attack security on sensitive data remains, while also preventing the 

model from seeing and filling in gaps from the starting prompt. 

5.8.2. Lessons Learned 

We see two important lessons from our case studies of breaches affecting AI systems. 

First, the software security lessons learned initially from other software systems over the 

course of decades are just as relevant to intelligent technologies. Researchers and 

developers should study historical exploits in other system domains – including input 

flaws, injection attacks, memory corruption vulnerabilities, denial of service attacks, and 

collateral damage – when designing and building intelligent technology. We can, for 

example, see both statistical bias and numerical instability in AI systems such as CNNs 

by using appropriate test data, and so confirm that such issues can be both bugs and 

vulnerabilities. 

Intelligent technologies don’t need to invent new threat categories. For example, 

improvements in AI prediction quality can encourage adversaries to switch from 

spraying their phishing emails to AI-powered, spear-phishing attacks against individual 

victims. Similarly, other systems do not operate in a vacuum. Therefore, lessons learned 

in the AI domain can inform the security of other domains as AI moves from supporting 

subcomponent roles to driving entire systems. We can expect these threat categories to 

be used in all sorts of attacks against AI systems as they gain power: computer vision 

systems interpreting your face in a security camera; speech systems responding to you 

at your home or blending in with your surroundings in augmented reality; and 

recommending software steering your choices. Defending those systems to continue 

making good decisions after being deployed will not make them totally secure, but will 

help them to avoid catastrophic failure when attacked. 

5.9. Future Trends in AI Security 

Advances in intelligent system technology continue to offer transformative opportunities 

and challenges, fueling the desire for their wider adoption. Some of these opportunities 

are novel, while others are evolutions of existing technologies or functions applied in 

new ways and/or at a larger scale. AI security must both vigilantly confront these 

evolutions and adapt to enable the proliferation of new capabilities. We outline a number 

of evolving technology developments, briefly summarize the drivers behind their 

adoption, highlight their potential risk vectors, and comment on the types of defenses 

which AI security experts might develop, and which those experts might enable others 

to implement. 
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As with other cyber technologies throughout the IT revolution since the 1970s, the 

emergence and adoption of these intelligent capabilities will be accompanied by 

exposure to an expanded attack surface, increased risk and incidents of security failures, 

a growing ecosystem of tool vendors in the position to benefit from the trend, and of 

course a more demanding regulatory environment. Making this an especially vexing 

challenge for dedicated AI security defenders is the need to move rapidly, as the 

technology itself has already become a key enabler of other cyber technology trends, 

such as the evolving nature and functionality of cybersecurity tools and the exacerbation 

of the dark supply chain. 

5.9.1. Emerging Technologies 

New families of technology are making their way into our lives: advanced robotics, 

miniature embedded computers, biotechnology, and wireless sensor/input networks, all 

driven by techniques in artificial intelligence. These technologies will lead to significant 

transformations in diverse industries: manufacturing, agriculture, finance, energy, 

transportation, medicine, and communications. These so-called “emerging 

technologies” will vastly improve productivity; lower the cost of products and services; 

and reduce the amount of capital, raw materials, and energy required in processes and 

supply chains. They will also change the way in which products and services are 

delivered. Emerging technologies are generally associated with science or engineering 

advances, and with the popular forms of technological architecture and expression that 

provide the key features and capabilities. While advanced robotics and sophisticated 

applications of artificial intelligence generate the majority of press in this area, the 

emerging technology areas are much broader and highly diverse. They are the result of 

significant and broadly based investments in devices, processes, and systems. Together, 

they utilize such a remarkable set of tools as nanotechnology, biotechnology, advanced 

materials, high-performance networking/communication, wireless, visualization, and 

intelligent systems. The capabilities of interconnections; of systems that are more 

flexible, more adaptable, and easier to manage; that are more intelligent, more capable, 

and easier to interface with; will all be improvements fraught with implication. 

5.9.2. Predictions for AI Security Landscape 

The threats described in this chapter will continue to evolve, and we can make 

predictions about the specific manifestations of future threat actors and their attacks. 

Although threat actors today focus on narrow domains, targeting only a subset of the 

types of assets encompassed in the security properties of interest, future threat actors will 

adopt AI technology to create general-purpose attack software that requires little 
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customization, allowing them to broaden their scope at low cost. The work of actors will 

increasingly be done through skilled intermediaries, who provide sophisticated tools to 

unskilled users. Future model-as-a-service operations will likely raise the cyber-

libertarian nightmare wherein global threat actor syndicates upload sophisticated zero-

day exploit projects to the black market and fee-sharing exploit facilitator networks 

advertise on crime forums, with profits funneled into related activities like propagating 

disinformation. At the same time, AI systems will become part of an increasing number 

of targets. 

Surveillance will deepen, allowing malicious actors to observe, analyze, and exploit 

target populations on larger scales. For those who can pay, such targeted harassment will 

become even more cheap and easy, further degrading safety nets. Beijing is open about 

its goal of becoming the world leader in harnessing AI for surveillance. Political bots 

will sharpen the tools of propaganda, targeting persuadable individuals with messaging 

tailored by tech lords at various companies responding to state incentives rather than 

ethical principles. Cybersecurity toolmakers will need to keep up. Existing civil 

obligations to promptly make available vulnerability disclosures and patch 

vulnerabilities will need to be updated. AI researchers won't just be liable for the use of 

their contributions; liability will need to extend to the AI security offerings from 

businesses that fail to carefully evaluate how their business offerings will be used. 

5.10. Conclusion 

In intelligent systems, machine learning has become an increasingly important tool for 

handling difficult problems. Unfortunately, the underlying properties of current machine 

learning techniques lead to a wide variety of exploitable vulnerabilities. From an 

operational perspective, intelligent systems are fundamentally dependent on maintaining 

the fidelity of their inputs and outputs. Attackers can conceivably manipulate inputs or 

outputs, and in so doing can reprogram the decision-making process of some intelligent 

systems. While the exploits discussed may be countered in some way, it has been shown 

empirically that the naive countermeasures are as easy to bypass or penetrate as they are 

easy to implement and deploy. Furthermore, research indicates that for a chosen usage 

model, some countermeasures might be easy to defeat or circumvent. So, the caution is 

merely not to overgeneralize based on anecdotal or empirical evidence. The relationship 

of several attack vectors within and across spaces in the input-output process has also 

been pointed out. Countermeasure development has been discussed, and in some cases, 

factors influencing cost and effectiveness have been identified. The bottom line is that 

intelligent systems and machine learning generally are becoming widely adopted, and 

will soon be integrated into most services and products we use every day, for better or 

for worse. 
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Vulnerability space is shrinking. To some degree, this is a consequence of success or 

failure of countermeasures against likely attack vectors. Also, the reduction in 

vulnerability is not uniform, and some sources of continuing vulnerability have been 

indicated. Finally, much of the research has been focused solely on a limited range of 

intelligence systems, data types, problem domain areas, exploitation methods, and 

development stages. Many big questions remain unexplored — for instance, the status 

and significance of different attack strategies; important applications, security, and 

countermeasure problems; domain-independent design principles; and the status of 

current defender/detector models. These gaps and big questions can be filled by 

continued research. It is clear from the current body of research that work in intelligent 

system security benefits everyone. 
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