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Preface

This is not a cut and paste book. In view of the voluminous literature on the subject
of gravitation, that would be pointless. The book does not pretend to claim that dif-
ficult concepts can be made easily accessible to babies, dogs, etc., and does not feign
to demystify relativity, or anything else. It neither reads Newton’s mind nor displays
Einstein’s confusion.

These are all gimmicks that detract from the real purpose, other than personal gain,
of writing a book on gravitation or, for that matter, any scientific book. Other books
claim to explain reality for not what it appears to be, or to shine light on what is hidden
in plain sight. While other popular books try to lull the reader to sleep by singing black
hole blues, or jazzing up physics, or explaining gravitation in ‘quirky’ banana analogies.
These should be, really, considered as insults to the lay reader’s intelligence.

No one really knows what gravity is, neither the engineers at the LIGO and VIRGO
facilities, nor themavens in general relativity that cashed in on the Nobel Prize. This re-
minds me of my mentor’s Nobel Prize on dissipative structures, which has all been but
forgotten. What is certain is that numerical relativity, upon which LIGO and VIRGO
draw their spectra, is reducing what they believe to be ‘general’ relativity to a Le Sage-
type theory that is easily refutable.

This book continues where its predecessor, Seeing Gravity, also self-published for obvi-
ous reasons, left off. The readermay find it repetitive in some sections, and concepts are
used which are developed more fully in parts of the book. As such, it vaguely similar
to a book that Clerk-Maxwell or Lord Rayleigh would write where different concepts
are separated by numeration, without intending any strict continuity. However, these
small points shouldn’t be a cause of concern.

The references are given by titles because there is no need to cite the journals when the
articles are easily retrievable on the internet. This is one good thing that technology
has achieved; to rid the shackles of getting papers accepted to peer-reviewed journals.
But, now another mafia has arisen in its place, Cornell’s arXiv staff who are nothing
other than a bunch of computer technicians that profess expertise in all that is submit-
ted to their repository, while clearly demonstrating their complete lack of knowledge
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of scientific m atters. They filter out what  the establishment tells them  to. Science is 
not determined by a consensus among majority; there is no democracy in science.

Committees don’t crown scientific achievements, and peer-consensus doesn’t make 
theories right. There is no stamp of purity in science, and there is no final world. That 
is something left for future generations to determine, not those in the midst of the 
turmoil. Scientific theories must be left to age like good wine before their full-flavor 
has been reached. The same opinion was echoed by Max Planck when he said that 
scientific revolutions don’t occur by upheavals, rather, they occur when one generation 
dies out, and is replaced by a new generation that is ignorant of old prejudices. So it 
was with the quantum revolution, and, so too, will it be with a theory of gravitation. 
There is no ’final’ theory, or  theory of  ’e verything.’ As  we  keep progressing we  will 
always keep learning. That’s the beauty of science as opposed to religion.

Parenthetically I would add that my first book, Thermodynamics of Irreversible Processes 
was written almost half a century ago on an IBM ball electric typewriter. The original 
manuscript had to be sent from Napoli by surface mail to the publisher in Basingstoke. 
At the time, I was out of work for having criticized a Nobel Laureate who happened 
to be my thesis advisor. But this did not dissuade my editor, H Holt, at Macmillan 
Press, from publishing—and even advertising my book on the opposite page of the 
review of Prigogine & Glansdorf‘s Thermodynamic Theory of Structure, Stability, and 
Fluctuations.

Half a century later, the typewriter is gone, being replaced by a PC with an overleaf 
template, the post has been replaced by email, and the publisher has been superseded 
by independent publishing. And the subject of the Nobel prize has fallen into relative 
obscurity. Now, I’m retired, but still critical of Nobel Laureates, and their cohorts. But, 
thank heavens, science knows of no age!

Bernard Lavenda
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1 Introduction

Of all the branches of physics, the theory of gravity has made negative progress. This
is much like the negative energy that is stored in the gravitational field in contrast to
the positive energy stored in the electrodynamic field.

Newton was content to describe gravity by the falling apple; Einstein was not com-
pletely content with the statement that gravity is geometry. Gone is the apple, and the
force that makes the apple fall to the ground. In its place there is a trampoline which
indent when mass is placed on it like in Fig. (1.1). The rub, however, is that what is
pulling the mass down is still the force of gravity. Whether we treat a falling apple or
a sagging mass, its all the same.

Over the centuries, gravity has succeeded in evading an explanation of what it really
is and how fast it propagates, so Newton contented himself with a mere description of
what it is. Einstein, on the other hand, buried its properties in a metric of spacetime.
The trite saying that gravity is geometry void of meaning because the fabric of space-
time bends and distorts even without mass. That’s like saying there is an electrostatic
field even in the absence of charge.

Gravitational energy poses a problem that was appreciated by James Clerk-Maxwell
himself. Having placed the crown on his field equations of electromagnetism, he pro-
ceeded to extend such a field interpretation to gravity. However, unlike electromag-

Figure 1.1: Pictorial way of showing how mass indents space and time. Yet, what indents the
fabric of space-time if not the downward pull of the gravitational force?
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Chapter 1. Introduction

netic energy that can be stored in the field, Maxwell was stopped in his tracks to find
that the field stores negative energy. And unlike electromagnetic interactions which
can be both positive and negative, gravitational interactions are always positive until
it was found that it could become repulsive at high velocities. But, no one was able to
harness such energy let alone observe it.

Einstein’s field theory equates geometry to physics. The geometry is in the form of
Riemann’s tensor, and the physics is in the form of an energy-stress tensor. Although
the geometry accounts for gravitational interactions, the energy-stresses which cause
them must be devoid of gravitational energy. Yet, the energy-stress tensor contains
mass, the source of gravity so as to render the separation meaningless.

Gravity is reserved for a pseudo-tensor which can be made to disappear through a
judicious choice of the coordinates. Gone was his dream of creating a covariant theory,
one that would be valid for what ever coordinates were chosen. So as not to abandon
all hope, Einstein considered the possibility of the vanishing of the pseudo-tensor be
a statement of his principle of equivalence. Just as acceleration can be annulled by
free-falling elevators, the pseudo-tensor can be made to vanish by a mere change in
the coordinates. Yet, the former is a dynamic balancing of opposing forces whereas
the latter is a mere change in coordinates.

Rather than looking at the cracks in the theory, focus on the results it has borne fruit
to. Yet, all the classic tests of general relativity could be obtained by considering grav-
ity as an optically active diffraction medium. This was known to Eddington in the
early twenties, who also realized the catastrophic effects that would occur if gravita-
tion propagated at a finite speed. In particular, it would throw off kilter the orbits of
the planets in the solar system, since it would take a finite amount of time for the grav-
itational force to arrive at a planet, so that the planet would not be at the same place
as when the force was emitted.

Eddington1 explains this very well using Fig. (1.2). If the sun attracts Jupiter to its
present position J and Jupiter attracts the sun at S, the two forces will be along the
same line and balance each other. But, if the sun attracts Jupiter at its previous position,
J ′, because it takes time for the force of propagation to reach Jupiter, and so, too, Jupiter

1A S Eddington, Space, Time and Gravitation, 1920, p. 94.
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Chapter 1. Introduction

Figure 1.2: The attraction between the sun and Jupiter will not create a couple only when the
force that attracts Jupiter to the sun is on the same line as force which attracts the
sun to Jupiter.

will attract the sun at its previous position, S′, again because of the finite time to cross
the distance between them, a couple will be created that will throw Jupiter’s orbit off
kilter.

Eddington throws the argument out saying that if these were two electric charges
instead of planets, the force will be directed to its present position. We will discuss
this latter on in the book, but suffice it to say that it excludes acceleration, and can
apply only to uniform motion. The argument used to show that the force is directed
to the present position of the moving charge is to show that there is no aberration, but
this applies to bodies in uniform motion.

Eddington concludes that in “the theory given in this book, gravitation is propagated
with the speed of light, and there is no discordance with observation.”That was in 1920,
and certainly no observations were made on the speed of gravity. Even today, there is
still no observations on the speed of gravity, notwithstanding what LIGO claims.

3



Chapter 1. Introduction

If gravitational radiation is emitted with gravitational waves, it is difficult to see
how Einstein’s field equations account for such dissipative and dispersive properties.
Surely, Einstein’s condition for the vanishing of the 4-divergence of the Einstein ten-
sor necessarily implies the corresponding condition for the energy-stress tensor. Yet,
with the emission of gravitational waves, the conservation of energy and momentum
is destroyed.

According to Landau & Lifshitz2 dissipative processes like viscosity and thermal con-
duction can be appended onto the energy-stress tensor, and using the equations of
continuity convert the condition of the 4-divergence of the energy-stress tensor into
an expression for the 4-divergence of the entropy flux. So conservation has given way
to a type of Poynting vector where the 4-divergence is balanced by the processes that
lead to an increase entropy. But, even if were to acquiesce to the conversion of an
energy conservation condition into a law for the increase in the 4-divergence of the
entropy flux, it says nothing about gravitational radiation since the energy-stress ten-
sor excludes gravitational energy per se. And if all gravitational interactions lead to the
creation of gravitation radiation and the emission of gravitational waves there could
never be any stable orbits, for no matter how small the radiation may be its cumula-
tive effects would certainly be discernible of the aeons that the universe has been in
existence.

The emission of gravitational radiation any time two bodies interact gravitationally
rules out the possibility of stable orbits, orbits which we know exist! And there
is, perhaps even more important, the supposed finite propagation of the gravitation
force/waves. For if gravitational wave propagation would admit to a finite speed of
propagation, the delay caused by the travel time would raise havoc with the clock-
work behavior of the planetary orbits, and require phenomena related to diffraction,
and, evenmore important, aberration. Yet, no such phenomena has ever been observed,
and probably never will be.

There is no satisfactory way to define an energy density, or even the localization of
energy in general relativity. Flat Minkowski space is supposed to have zero energy,
yet it is said to be stable against small perturbations because the energy of linearized
gravitational waves is purported to be positive. There is even a positive energy theorem

2L D Landau & E M Lifshitz, Fluid Dynamics §127.
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Chapter 1. Introduction

that states the total energy of a pure gravitational field—in the absence of matter—is
always positive! That like talking about positive electromagnetic energy in the absence
of charges.

If the gravitational field is the analog of the electric field, what is the analog of the
magnetic field? And without a magnetic field how can you talk of the propagation of
waves carrying energy and momentum? The linearization of the Einstein equations
admits a whole host of indiscretions. One can define a gravitomagnetic vector field, as
analogous to a magnetic field, but is this any more than hand waiving? Mathematical
entities do not necessarily correspond to physical entities.

The attraction of general relatively is undoubtedly due to what the reader can inject
into the dubious, and often unintelligible, nature of the results that it proffers. From
the very start, we are told that gravity is geometry. Yet, as the Schwarzschild metric
bears testimony, geometry exists even without masses. Would electricity exist in the
absence of charges? However, it can be argued that the Schwarzschild metric does
possess a mass. Notwithstanding this, O’Neill3 claims that the central mass is taboo–
something off limits that is “not to be modelled.” Why then did the mass creep in, in
the first place? Through analogy in the weak-field limit where, somehow, geometry
morphs into physics: Newtonian gravitation must emerge in the weak-field limit of
general relativity, for otherwise, there would be no connection between the two. But
it is as if mass is coming out of the woodwork.

Even if wewere to accept the presence of a central mass, how can gravitational mass be
explained? You need two to tango. For that, the subterfuge of an imaginary ‘test’ mass
is brought in. We need another mass to create gravitational attraction. but the mass
does not attract anything. How can a central mass attract a peripheral mass without
the peripheral mass attracting the central mass?

Up until the sixties, physicists were happy to accept the two solutions that Karl
Schwarzschild obtained by solving the Einstein’s field equations one treating a point
central mass under the Einstein condition of ‘emptiness,’ and the other which treated
a diffuse mass density without the emptiness condition. Emptiness meant to Einstein
that his tensor had to vanish, which in an empty universe is equivalent to the vanish-

3B O’Neill, Semi-Riemann Geometry
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Chapter 1. Introduction

ing of the Ricci tensor. The eigenvalues of the Ricci tensor represent an average of the
sectional curvatures in any specified direction. This is not to say that all sectional cur-
vatures vanish, but, rather, their sum in any given direction should vanish. Yet, why
should the individual sectional curvatures exist, and their sum vanish? If there is no
mass, what creates the distortions that show up in the finite sectional curvatures?

Furthermore, if the geometry accounts for gravitational interactions, then setting the
divergence of the Einstein tensor equal to zero has nothing whatsoever to do with the
vanishing of the divergence of the energy-stress tensor. This is because gravitational
energy is not accounted for in the latter.

Yet, when it comes down to the nitty-gritty of the matter, Einstein found it necessary
to account for gravity in the form of ‘pseudo-tensor’, which unlike a real tensor, can
be made to vanish by a mere coordinate transformation. Einstein attributed this to
his equivalence principle between all forms of acceleration and gravity. Just like a
person in an elevator feels weightlessness due to the disappearance of gravity, so the
effects of gravity can be made to vanish by applying the equivalent acceleration in
compensation. This is fine in rectilinear motion, but what about a uniformly rotating
disc? There is nothing to compensate the uniform acceleration that an observer would
feel on the periphery of the rotating disc.4

And Einstein predicted that because of the uniform rotation, his watchwould go slower
than an observer placed at the center of the disc, which would constitute an inertial
frame of reference. However, Einstein’s intuition was not powerful enough to explain
why two observers located at different points on the disc cannot discriminate their
positions with their rulers and clocks. For, in fact, the rulers would shrink and time
would slow down as the inhabitants of the disc became smaller and smaller as they
approached the rim of the disc. This makes it all but impossible for the inhabitants to
figure out where they are on the disc. All positions on the disc are equivalent because
a uniformly rotating disc does not belong to our Euclidean world. It is an example of a
hyperbolic world that was discovered by Nicolas Lobachevski and Janos Bolyai, almost
a century earlier than the nascent relativity at the turn of the twentieth century.

Einstein’s theory of general relativity is concerned uniquely with geodesic motion;

4See, for example, A New Perspective on Relativity: An Odyssey in Non-Euclidean Geometries, Ch. 7.

6



Chapter 1. Introduction

that is, motion that is unaffected by acceleration. In general relativity, ‘proper’ accel-
eration is considered physical acceleration–that is, the acceleration that an accelerom-
eter would measure. Proper acceleration is the acceleration, in addition to free-fall,
that an observer would feel. A cardinal assumption of general relativity is that gravita-
tion does not cause proper accelerations. According to theWikipedia article on proper
acceleration:

Gravitation therefore does not cause proper acceleration, since gravity
acts upon the inertial observer that any proper acceleration must depart
from. A corollary is that all inertial observers always have a proper accel-
eration of zero.

Granted, all inertial observers have zero acceleration, but that is not when gravitational
forces are present. The distinction is made between proper acceleration and ‘coordi-
nate’ acceleration. Again, according to theWikipedia article, “[i]n the standard inertial
coordinates of special relativity, for unidirectional motion, proper acceleration is the
rate of change of proper velocity with respect to coordinate time.” However, special
relativity does not treat accelerations since all inertial systems have constant velocity.
And why make reference to the special theory insofar as

In an inertial frame in which the object is momentarily at rest, the proper
acceleration 3-vector, combined with a zero time-component, yields the
object’s four-acceleration, which makes proper-acceleration’s magnitude
Lorentz-invariant.

Constant velocity means zero acceleration full stop. Why bring a fourth component
of acceleration (which happens to be zero), and claim that the magnitude of proper-
acceleration is a Lorentz invariant. All this muddles things rather than adding clarity
to a picture which is already blemished by the fact that gravity cannot cause proper ac-
celerations. It can hardly be sustained that “the concept is useful: (i) with accelerated
coordinate systems, (ii) at relativistic speeds, and (iii) in curved spacetime.” Curved
spacetime is what Einstein attempted to fill the gap that was missing in his flat space-
time of special theory: the accountability of gravitational interactions!

The Wikipedia article is full of double talk. Take for instance the claim

7



Chapter 1. Introduction

the proper acceleration is the acceleration felt by the occupants [of a vehi-
cle], and which is described as g-force (which is not a force but rather an
acceleration; see that article for more discussion of proper acceleration)
delivered by the vehicle only.[2] The ”acceleration of gravity” (”force of
gravity”) never contributes to proper acceleration in any circumstances. . .

The reference is to Rindler’s Relativity which makes the opposite claim that

Proper acceleration is precisely the push we feel when sitting in an ac-
celerating rocket. Also, by the equivalence principle, the gravitational
field in our terrestrial lab is the negative of our proper acceleration, our
instantaneous rest-frame being an imagined Einstein cabin falling with
acceleration g.

The concept of a Lorentz invariant acceleration is also broached on the same page in
Rindler’s book where he says:

A case of particular interest is that of rectilinear motion with constant
proper acceleration α.[An involved procedure] yields the following equa-
tion for the motion:

x2 − c2t2 = c4/α2.

Thus, for obvious reasons, rectilinear motion with constant proper accel-
eration is called hyperbolic motion.

The left-hand side of the above equation is used to show that all inertial frames are
equivalent, not that the acceleration is a universal constant! What about light where
the left-hand side vanishes? Does that mean the acceleration is infinite? Acceleration
of what?

Why the test particle idea in the outer Schwarzschild solution has been able to dodge
all its critics is due to the fact that in Newtonian gravity, the equivalence of acceleration
and gravity depends only on the central, attracting mass; the mass which is attracted
to it cancels on both sides of Newton’s II.

8



Chapter 1. Introduction

Regge plots, fromwhich the Eddington and Chandrasekhar masses follow as particular
values. We again turn to ellipsoidal configurations to determine stability criteria.

In Chapter 6 we show that what are conics to planetary motion, Cassini ovals are
to binaries. Just as slices of a cone result in conic sections, slices of a torus given
Cassini ellipses. The similarity in images between Roche lobes and a lemniscate is
too good to be missed. The question then is what replaces Newton’s laws of conics
whose centers coincide with one of their foci. We show that the dual law [1, −2] for
planetary motions goes over into the dual law [−4, −7] for Cassini ovals. We then go
one to discuss central forces, and, in particular to Bertrand’s theorem underlying the
fact that the theorem pertains solely to circular orbits which excludes those obtained
by slicing up cones and tori. Moreover, we are able to associate the various physical
phenomena, like the advance of the perihelion and the deflection of light by a massive
body, with specific terms in the law of force. The force will therefore not be entirely a
central force, but, rather, consist of small correction terms whose physical effects are
clearly discernible.

Much ado has been made of the fact that the square of an ellipse is still an ellipse, just
displaced so that was the center of the conic section is displaced to its foci. Rather,
it is the geometric mean of the radial coordinate that is displaced when we consider
either one of the two element of the geometric mean. Moreover, we find a problem in
the apparent lack of ‘reversibility’ in the Bohlin-Kasner theorem. What is conserved
energy in one transform is not the same as in the reverse transform. This shows that
the ellipses are not the same, as we would expect. So it is not just a displacement we
get on squaring.

In Chapter 8 we continue our criticisms of general relativity’s condition of emptiness
in terms of sectional curvatures, and a new quantity, the Schwarzian derivative, or
Schwarzian for short, when the third derivative of the curve becomes important for
non-symmetrical curves. Stability conditions are shifted from Liapounov exponents
to the sign of the Schwarzian.

Hodographs require the notion of “jerk,” the time derivative of acceleration. Deviations
from Newton’s inverse-square law involve the concept of aberrancy. The relation be-
tween Kepler’s II and III is obtained through Newton’s revolving orbit theorem, and
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Chapter 1. Introduction

bring in sinus spirals into the discussion. Transforming the logarithmic spiral curve to
velocity space gives periodic orbits, and provides a new Hubble-type law that explains
the non-decay in the rotational curves of galaxies. The new Hubble relation, expressed
in terms of the ratio of the conservation of angular momentum in velocity and configu-
ration space, between acceleration and velocity reduces the decay of acceleration from
its Newtonian value of 1/r2 to 1/

√
r.

In Chapter 9 we conclude our discussion with the parallelisms between general rela-
tivistic concept of what a gravitational wave is and Le Sage’s shadow theory. Le Sage’s
“ultra-mundane” particles have been replaced by “gravitons,” which have in common,
among other things, that both have never been observed. The partial shielding of grav-
ity is related to the dynamical effect of the displacement of the mirrors in the LIGO
interferometer: No shielding, no displacement. We continue with Majorana’s experi-
mental results, and their seemingly non-reproducibility. The efficiency of gravitational
wave absorption is discussed in terms of the Poincaré ratio for the stability of rotating
and gravitating ellipsoids, and is shown to have nothing to do with efficiency.
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2 The Principia Revisited

2.1 A mere question of curvature

Newton’s derivation of the inverse-square law and the equation of an elliptical orbit
depends crucially on his expression for the radius of curvature. The expression he
derived in the early 1670’s was

ρ = r
(1 + z2)3/2

1 + z2 − z′ (2.1)

in polar coordinates, (r, θ), where z = (1/r)r′ is Newton’s slope, and the prime in-
dicates differentiation with respect to θ. The derivative of the slope can be expressed
as

z′ = r

2
d

dr
(1 + z2),

or (1/z)dz/dθ = (1/r)dz/dr.

The denominator of (2.1) will be particularly important since it will be proportional to
the product of the force times the square of the radial coordinate. The numerator is
essentially a correction factor due to the fact that the curve that Newton considered
was not unit speed.

The curvature (2.1) simplifies considerably by introducing u = 1/r in which case it
becomes

ρ = (1 + u′ 2/u2)3/2

u + u′′ . (2.2)

The complementary angle, θ, is related to the slope by

z = 1
r

dr

dθ
= tan θ. (2.3)

Thus, the factor appearing in the numerator of the radius of curvature, (2.1) is

(1 + z2)3/2 = sec3 θ,

1
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and if the denominator is to be constant, then

ρ cos3 θ = const. (2.4)

Yet, if we plug in (2.3) into the denominator of (2.1) we find 1 + tan2 θ − sec2 θ = 0.
J B Brackenridge,1 defines z = cot α = cot(π/2 − θ) = tan θ, undoubtedly not
realizing that this sends the radius of curvature to infinity, i.e, a straight line. And if
we are given the equation of the orbit as (2.3) why should we look further in order
to derive the equation of the orbit? In would be more constructive to consider conic
using intrinsic equations.

If we are given a curve, y = y(x), which is continuous and possesses at least a second
derivative, we set

y′ = tan θ, (2.5)

where the prime stands for differentiation with respect to x. The second derivative is

y′′ = sec2 θ θ′.

Now, introducing the arc length, s, and its relation to x = s cos θ, we get the second
derivative as

y′′ = sec2 θ
dθ

ds

ds

dx
= sec2 θ · 1

ρ
· 1

cos θ
,

and we obtain (2.4) if the second derivative is constant. This is certainly not true for
all conics, but it is true in Newton’s case.

By a special choice of axes, any conic can be written in the form

y2 = A + Bx + Cx2, (2.6)

with the x-axis being the axis of symmetry. The derivatives of (2.6) satisfy

yy′′ + y′ 2 = C. (2.7)

Taking the derivative again yields

yy′′′ + 3y′y′′ = 0,

1in “The critical role of curvature in Newton’s developing dynamics,” in The Investigation of Difficult Things
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Chapter 9. Stopping the Unstoppable

Given that all components depend on space and time only through the combination,
x − ct, the flux reduces to

t01 = c3

32πG

[
ḣ2

23 + 1
4

(
ḣ2

33 − ḣ2
22

)]
,

= c3

16

(
ω2

2πG

)[
h2

23 + h2
22

]
,

which is (9.1). To make any sense out of this formula, we have to define a density.
The energy density is t00 = ρc2, where ρ is the mass density of the body. Thus, the
energy density of the gravitational waves is simply the mass density of the body which
emits them and their energy is identified as the rest energy of the body. The pertinent
quantity is the ratio

t01/t00 = c

32

(
ω2

2πGρ

)
|a|2|cosθ|. (9.2)

Dyson considers the gravitational waves impinging on the surface of the earth for
which the inverse square of the Newtonian free-fall time is 2πGρ ∼ 1.25 × 10−6

sec−2. This together with the frequency of a gravitational wave with a 1-sec period,
ω = 2π sec−1, set the Poincaré ratio at

ω2

2πGρ
≈ 107.

Alternatively, considering a neutron star with mass density 1017 kg/m3, the square of
Newton’s free-fall time is of the order 10−7 so that the Poincaré ratio is 10−6. This
would give an energy flux some 13-orders of magnitude greater for the earth than a
neutron star! Clearly, Poincaré’s ratio has nothing to do with the energy flux emanat-
ing from stellar bodies.

Unfortunately, Marjorana’s experiments were never to be repeated, and other confir-
mations of gravitational shielding were hard to come by.6 The attribution of mechani-
cal and dynamic properties to gravitational waves should be foremost in the minds of
proponents of numerical relativity. For, it is numerical, and not general, relativity that
6M Edwards, Ed. Pusing Gravity
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Chapter 9. Stopping the Unstoppable

has insisted on these attributes. If gravitational waves are to be considered at all, we
must look to their dynamical properties, for what else would cause the mirrors to sep-
arate in the LIGO interferometer with the passage of a gravitational wave? However,
giving gravitational waves attributes like electromagnetic waves is definitely problem-
atical. Electromagnetic waves would be completely shielded from entering the tubes of
the interferometer, whereas gravitational waves would undergo only a partial shield-
ing, depending on their absorption coefficient, h. However, their absorption through
the tubes of the interferometer must be much greater than what Majorana proposes h
to be.

To get an idea of the shielding involved, the universal gravitation constant is expressed
in the form 7

G = nm

4π
v2h2,

wherem is themass of a single, Le Sage ultra-mundane particle, n their number density,
v their speed, and h their cross-sectional area for collisions, or, equivalently, their
universal absorption coefficient. Le Sage was cognisant of the fact that h had to be
small, for, otherwise, measurements made during a lunar eclipse of the sun would
result in a diminution in the gravitational attraction between earth and sun that would
make it measurable. By making h small enough, means increasing the number density
of particles proportionally, n, and also their velocities, v.

Laplace weighed in on Le Sage’s theory since it could be refutable. He reasoned that if
the heavenly bodies were moving through a sea of ultra-mundane particles then they
would be slowed down, i.e., experience a dragging force. The resistive force that they
would experience is

Fres = 4
3

M1hnmvu,

where M1 is the mass of the body whose velocity is u. The ratio of this resistive force
to gravitational attraction requires

Fres

Fatt
= u

v

r2

hM2
� 1, (9.3)

where M2 is the central mass in Newton’s law of attraction

Fatt = GM1M2
r2 .

7J Evans, “Gravity in a century of light, ” in Pushing Gravity
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Since the absorption coefficient is in the denominator of (9.3), the speed, v, of the
ultra-mundane particles must be very large. It is this conclusion that Laplace arrived
at when he said by imposing (9.3) “would imply in the gravific fluid a speed incom-
parably greater than that of light, and all the more considerable as the sun and earth
leave a freer passage to this fluid.” So a small absorption implies a large velocity for
these ultra-mundane particles. However, such large velocities would increase their
‘radiation pressure.’

On another occasion, Laplace reasoned that the speed of gravity must be at least a
million times greater than the speed of light. This he did by estimating the time of
collision of the earth and moon, based on a mistaken impression that the two were on
a collision course.

The partial absorption of gravitational waves would require a velocity well in excess
to that of light. So the same conclusion that repelled Laplace to Le Sage’s corpuscular
theory would also repel him to gravitational waves.

Undoubtedly, gravitation has resisted explanation due to its unusual properties. Its
effect on a body is independent of the affecting body. This is what has allowed general
relativity to turn a 2-body problem into an effective 1-body one. The gravitational
attraction of the central mass in Schwarzschild’s outer solution does not need an or-
biting mass. And if we listen to O’Neill, the central mass is off-limits, something that
is not to be modeled. So where does that leave us?

How fast bodies fall in a gravitational field is independent of their masses (Galileo).
This is contrary to the law of inertia whereby the greater the mass the greater will be
its momentum.

Gravity is able to accelerate bodies with equal ease no matter if they are bound or un-
bound. Electromagnetism uses electromagnetic waves, and their constituent photons,
to transmit their actions. Gravitational attraction, on the other hand, would occur by
blocking their elementary transmitters rather than emitting them.

The connection between Le Sage’s theory and general relativity hasn’t gone unno-
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ticed.8 Shielding in the direction of the body results in a decrease in pressure so that
any particle, or (electromagnetic) wave, would fall towards the body, or result in an
increase in wavelength, respectively. The pressure variations would be analogous to
the curvature of space (but not time). And the increase in wavelength would give the
otherwise gravitational field the attribute of another medium with a different index of
refraction.

Even Einstein had his doubts about the demise of the ether,

It would have been more correct if I had limited myself, in my earlier
publications, to emphasizing only the nonexistence of an ether velocity,
instead of arguing the total nonexistence of the ether, for I can see that
with the word ether we say nothing else than that space has to be viewed
as a carrier of physical qualities.

We have thus come full circuit without a satisfactory explanation of what gravity is
and how it operates.

So where do we stand with Le Sage’s theory and general relativity which attributes
both structural and mechanical properties to gravitational waves? In view of Fig. (9.1),
science has been successful in explaining the binding of atoms and molecules through
electromagnetic forces, even elementary particles through nuclear forces, but has come
no closer to explaining the attraction of gravity. Probably, it is for this reason, and no
other, that gravity has attracted so much attention!

8M R Edwards, “Le Sage’s theory of gravity: The revival by Kelvin and some later developments,” in Pushing Gravity
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Index

aberrancy, 24, 60, 335, 346
aberrancy, angle of, 3, 16, 334, 340
aberrancy, axis of, 335
aberrancy, radius of, 342, 343
aberration, 17, 29, 273
aberration, in a Keplerian ellipse, 106
aberration, quasi, 103
acnode, 272
adiabatic expansion, 199
Ampère law, 98
angle of parallelism, 311
angular momentum, in v-space, 341
anomaly, true, eccentric, 103
apsidal angle, 299
apsidal precession, 74
attractor, repellor, 331

bar instability, 248
Beltrami surface, 210
bending of light, 307
Bernoulli lemniscate, 70
Bertrand theorem, 262
Bianchi identity, 149
big crunch, big bounce, 200
binary stars, formation, 248
Binet equation, 7, 14, 109, 111
Binet equation, v-space, 342
Binet equation, in v-space, 342
black hole, Kerr, 237
black hole, Schwarzschild, 220
black-body radiation, 165
Bohlin-Kasner theorem, 264, 295
brachistochrone, 315
braking index, 156, 157, 165
braking index, modified, 158

cardioid, 71, 96, 97, 105

cardioid and light deflection, 68
Cassini ovals, 249
central forces, 268
centrifugal potential, 322
centripetal acceleration, 6
centrode, see Darboux vector, 54
Chandrasekhar point, 237
charge, active and passive, 184
collineation, 325
collision orbits, 153
collision time, 166
comet, Halley, 289
comets, hyperbolic, 288
complementary eccentricity, 90
complex welding, 276
composition, law of, 330
compressional forces, 321
contrapedal point, 263
cosmic censorship, 10
cosmological constant, 155
Cotes spiral, 13, 76, 226, 352, 355
Coulomb law, 142
cross-ratio, 191, 324, 332
cross-ratio, as invariant of a Möbius

transform, 330
cross-ratio, generalization, 218
Crudelli inequality, 245
curvature, 48
curvature, affine, 338, 340
curvature, average, see Ricci tensor,

150
curvature, extrinsic, 205, 207, 208
curvature, Gaussian, 189, 193, 197, 201,

202, 205, 216
curvature, geodesic, 331
curvature, intrinsic, 205
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Index Index

curvature, mean, 194, 201, 202, 209
curvature, principal, 201, 205, 209, 211,

216
curvature, radial, 144, 146, 150, 185, 197,

317, 320
curvature, scalar, 149, 150
curvature, sectional, 198, 200, 208
curvature, sectional, generalized, 330
curvature, spatial, 189
curvature, tangential, 144, 145, 148, 150,

185, 194, 201, 317
cycloid, 197, 318

Darboux vector, 54
Darboux vector, generator of Frenet

frame, 55
Darwin inequality, 233
Darwin instability, 233, 234, 236
Darwin radius, 233
deMoivre equation, see pedal equation,

58
deferent, 275
dipole moment, induced, 257, 258
dispersion energy, 287
dispersion equation, 173
dispersion forces, van der Waals, 259
Doppler shift, 30, 163, 363
Doppler shift, longitudinal, 107, 273
double refraction, 30
dual laws, 14, 26
dual laws, trinity, 31, 69
dynamic equilibrium, 56

eccentric anomaly, 28, 29, 88
eccentric circle, 103
eccentricity vector, 78, 88
eccentricity, as a relative velocity, 105

eccentricity, as a relative velocity vec-
tor, 28, 30

Eddington mass, 237
Eddington point, 237
effective potential, 284
Einstein equations, 141, 146, 149
Einstein equations, decomposition of,

207
Einstein modification, 27, 46, 112
electric field, radiative, 98
electric field, total, 117
ellipse, Heaviside, 84
ellipsoid, confocal, 131
ellipsoid, gravitational, 128
ellipsoid, Heaviside, 135
ellipsoid, Jacobi, 246
ellipsoid, Maclaurin, 132, 245
ellipticity, 128
energy flux tensor, 160
energy-stress tenor, 12
energy-stress tensor, 141, 171
energy-stress tensor, conservation of,

146
entropy, 331
epicycles, 226, 256, 257, 274, 339
epicycloid, 229
epispiral, 13
equilibrium, dynamic, 315
equilibrium, hydrodynamic, 234
equivalence principle, 203, 315
escape speed, 27, 282, 312
ether, 178
event horizon, 135
external potential, 323

fictitious time, 113
fictitious time, Levi-Civita, 26, 29
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Index Index

fictitious time, linear and quadratic, 30
first law of thermodynamics, 140
fission, 248
fission, Poincaré hypothesis, 248
force, harmonic oscillator, 288
force, inverse-fifth, 289, 290
free-surface, 120, 131, 134
Frenet frame, 48, 58
Frenet frames, generalized, 57
frenet-Serret equations, 51
Friedmann metric, 145, 147
Friedmann metric, constant curvature,

149
Friedmann model, 208, 213, 220, 333
fundamental theorem, 48, 57

Galileo theorem, 11
gauge, 182
Gauss law, 184
Gaussian curvature, 149, 151
Gaussian-normal coordinates, 208
geodesic deviation, 147, 331
geodesic deviation equation, see Jacobi

equation, 146
geodesic slicing, 208
geoid, 120, 124
Gerber equation, 303
Gerber force, 114
Gerber potential, 111
glome, 144
Grassmann force, 100, 137
Grassmann law, 98
gravitational absorption, 368
gravitational fine-structure constant,

115, 116, 272, 309
gravitational potential, 206
gravitational radiation, 156

gravitational slingshot, 288
gravitational wave, 165, 219
gravitational waves, plane, 169
gravitomagnetic field, 10
gravitomagnetic vector, 181
gravitomagnetism, 10
gravitons, 170, 172, 365, 368
gravity, repulsive, 91, 149, 320, 323

half-plane model, 217
harmonic condition, 172, 184
Heaviside force, generalized, 116
Heaviside formula, 82
helix, 57, 59
helix, circular, 59, 360, 361
helix, general, 59
helix, local, 55
helix, null circular, 60
helix, null hyperbolic, 59
Helmholtz equation, 156, 179, 219
hemisphere model, 192
hodograph, 56, 94, 96, 339
Hooke law, 14, 17, 19, 27, 41, 63, 244
horocycles, 210, 211, 219
Hubble parameter, 200, 357

impact parameter, 307
impressed forces, 117
induction, 91, 94, 98
induction, in v-space, 94
inductivity, 119
inertial induction, 91, 100
inflationary scenario, 151
inversion, 288

Jacobi equation, 139, 146, 149, 191, 330
Jacobi field, 145, 156
jerk, 48, 333, 340, 346, 361
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Joukowski transform, 279

Kepler equation, 29, 35, 75, 103, 271
Kepler equation, modified, 285
Kepler II, 6, 11, 29, 31, 105, 240, 266, 340
Kepler III, 14, 56, 112, 116, 133, 163–167,

185, 281, 284, 308, 314, 322,
352, 354, 355, 357

Kepler III, generalization, 282
Kepler III, modified, 369
Kepler III, relativistic, 284
Kepler problem, 333
Killing vector, 148
Klein-Gordon equation, 219
Kreutz sungrazers, 288
Kuiper belt, 289

Lagrangian point, 234, 236
Lancret theorem, 52, 57
Laplace equation, 152
Laplace-Beltrami operator, 218, 219
Laplace-Runge-Lenz vector, 34, 64, 94,

97
Laplace-Runge-Lenz vector, as a vector

eccentricity, 97
Laplace-Runge-Lenz vector, direction

of orbit, 64
lapse function, 206
Larmor formula, 159
Le Sage theory, 365
Legendre expansion, 122
lemniscate, 32, 34, 276
lemniscate, polynomial, 276
Lennard-Jones potential, 259, 285, 287
Lenz equation, 34
Liapunov exponent, 327
libration, 186
Lienard-Wiechert potential, 79, 111

Lobachevskian plane, hyperbolic plane,
210

log-concavity, 325
Lorentz force, 141, 184, 204

Möbius transform, 326, 331
Mach principle, 91
Majorana experiments, 368
Majorana law, 368
mass, Chandrasekhar, 237
mass, gravitational and inertial, 184
mass, reduced, 238
Maxwell angle of induction, 88, 98
Maxwell equations, 119, 181
Maxwell stress tensor, 141, 183, 203
Maxwell tensor, 142
mean anomaly, 28, 29
Mercury, advance of perihelion, 107
metric, Beltrami, 191
metric, doubly warped, 124, 125, 144,

147, 185, 200, 319
metric, Friedmann, 147, 192
metric, half-plane, 198
metric, hyperbolic, 214
metric, Poincaré, 211
metric, Robertson-Walker, 191
metric, Schwarzschild, exterior, 209
metric, singly warped, 194, 320
minimal surface, 194, 202, 209
Minkowski, 3D, 58
model, projective, or Klein, 333
moment of inertia, effective, 231
MOND, 356
Monge circle, 288
motional force, 117
moving frame, 326

Newton free-fall time, 27, 127, 216
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Newton II, 320
Newton III, 98
Newton slope, 20, 89
Newton theorem of revolving orbits,

296, 352
null curve, 60
numerical relativity, 203

Olber paradox, 154
Oort cloud, 288
orbit, collision, 289, 290
orbit, pendulum, 289
orbit, penetrating, 289
orbit, revolving, 283
oval, Cartesian, 71, 257
oval, Cassini, 71, 257, 276, 286
oval, Descartes, see Cartesian, 71

parallax, 107, 363
parallel transport, 205
Pascal limaçon, 71
pearoids, 248
pedal, 66
pedal equation, 22
pedal equation, drawback, 49
pedal, ellipse centered at origin, 63
pedal, point, 263
pedal, vector, 51
pentagram, 107
perihelion advance, 272
permittivities, 117
permittivity, reduction in direction of

motion, 118
Perseus cluster, 358
perspective transformation, 324
perspectivity, 324
Poincaré disc model, 211
Poincaré half-plane model, 319

Poincaré inequality, 133, 245
Poincaré metric, modified, 213
Poincaré model, 217
Poincaré point, 248
Poisson equation, 82, 148
Poisson equation, Einstein generaliza-

tion of, 146
Poisson kernel, 218
polarization, of gravitational waves,

175
post-Newtonian approximation, 171
potentials, internal, external, 321
power loss, 167
Poynting vector, 160, 361
pressure, 178
pressure, hydrostatic, 132, 140, 151, 197
pressure, negative, 151, 195, 198
pressure, zero, 222, 224
projective invariant, 332
pseudo-stress, source of gravitational

waves, 176
pseudo-tensor, 169, 184, 203
pseudo-tensor, vanishing of, 184
pulsar, characteristic age, 168
Pulsars, 156

quadrupole potential, 162
quadrupole, mass, 160

radiation fields, electric and magnetic,
156

radiation pressure, 165, 374
radiation, condition for non-existence,

101
radiation, electrodynamic, 86
radiation, gravitational, 159
radiation, magnetic-dipolar, 158
radiative force, 117
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radius of aberrancy, 24
radius of curvature, 1
Rayleigh scattering, 180
rectifying plane, 54
red novae, 236
reflection principle, 18, 19, 77
Regge calculus, 236
Regge law, 237
Regge plots, 236
retarded potential, 157
revolving orbits, 74
Ricci eigenvalues, 126, 200
Ricci scalar, 214
Ricci tensor, 18, 140, 144, 162, 315
Ricci tensor, linearization of, 189
Ricci tensor, modified, 155
Ricci tensor, vanishing of eigenvalues,

145
Ricci tensor,

lack of physical significance,
200

Riemann point, 248
Riemann tensor, 147
Robertson-Walker metric, see Fried-

mann metric, 147, 189
Roche limit, 234
Roche lobe, 234
Roche potential, 286
Roche problem, 229
rosette, 110
rosette motion, 76
rotatum, 348
Rydberg correction, 289

scattering, 92
Schwarzian, 61, 62, 326, 358
Schwarzian, as correction to cross-

ratio, 331
Schwarzian, negative, 329, 344
Schwarzian, positive, 329
Schwarzian, positive, log-convexity,

329
Schwarzian, relation to affinte curva-

ture, 339
Schwarzian, sign of, 326
Schwarzian, vanishing, 325
Schwarzschild metric, 319
semi-latus rectum, 15
shear, 178
shear modulus, 178
Siacci theorem, 24, 51
sinus spiral, 67, 259, 275
sinusoidal spiral, see sinus spiral, 268
Snell law, 20, 78, 93, 273, 319
Sommerfeld radiation condition, 178
speed of gravity, 175
spheroids, incompressible, 245
spiral, Archimedes, 45, 338
spiral, logarithmic, 23, 24, 230, 353
spiral, logarithmic, as optimal path, 56
star-shaped, 201
stress, rotational, 185
strong energy condition, 208
Sturm-Liouville, relation to Jacobi

equation, 331
surface, conical, 290
surface, minimal, criterion for, 202
surface, toric, 290

tensor vibration, 174
thrust, 355
tidal deformation, 121
tidal forces, 122, 126, 135, 137, 153, 185,

197, 198, 213, 236, 321
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tidal friction, 186
tidal potential, 123, 124, 134, 145
tidal torque, 186
time regularization, 153
time retardation, 27
time slicing, 202
torque, 163
torque function, 157
torque, on electric dipole, 159
torsion, 48, 51, 360, 361
torsion, pseudo, 58, 59, 62
torsion, pseudo, relation to curvature,

61
torsion, total, 49
torsion, zero, 49
transformation law, 30
trochoid, 224

Tully-Fisher law, 357

uncertainty principle, 370
uniform circular motion, 99, 275

vacuum, 178
velocity, 78
velocity space, Lobachevsky, 311
virial, 200
virial equation, 353

waves, longitudinal, 178
waves, shear, 178
waves, transverse, 178
Weber equation, 308
Weber force, 99, 111, 113, 117
Weber, condition, 99, 101
Weierstrass condition, 214
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Beyond General Relativity: Critical Perspectives 
on Gravitation, Curvature, and Wave 
Propagation in Modern Physics

Bernard Lavenda

What happens when you push a theory beyond its limits? You get a theory 
like general relativity. Although coined by Einstein, he would be hard pressed 
to recognize it. Einstein constructed a theory that would pertain to geodesic 
motion, or motion at constant velocity. Einstein �eld equations are 
equivalent to geometrical optics whose characteristic surfaces are those of 
electromagnetic, and not gravitational, radiation. In fact, gravitational 
energy is not included in the Einstein energy-stress tensor. As such it excludes 
catastrophic phenomena like the merger of black holes or neutron stars. In 
fact, black holes are what you get when you extend a non-Euclidean metric, 
like the Schwarzschild metric, beyond its domain of validity. Although there 
exists no solution to Einstein's �eld equations for two interacting mass 
points, its numerical counterpart vants at being able to describe binary black 
hole collisions. Such singularities were pernicious to Einstein's conception of 
the universe, and he built bridges to avoid them. Nonlinear equations like 
Einstein's cannot be approximated by their linearization over large portions 
of spacetime thus placing in doubt the propagation of gravitational waves. 
Any wave phenomenon traveling at a �nite velocity must show signs of 
aberration. No signs of such have ever been observed. The �eld equations do 
not possess a mechanism for the emission of gravitational waves, least of all 
for their attenuation.
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