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Chapter 11: Implementing robust 

security, privacy, and fail-safe 

mechanisms in artificial intelligence 

hardware environments  

11.1. Introduction 

Artificial intelligence (AI) systems have penetrated many aspects of human life. 

Encouraged by the evolution of deep learning algorithms and hardware, AI has achieved 

human-level performance on various application domains including computer vision, 

speech recognition, natural language processing, drug discovery, and financial 

prediction. Unfortunately, the widespread use of AI systems also poses serious security 

and privacy risks. For instance, in terms of general security, AI may be exploited in 

various forms such as adversarial attacks that target the integrity of AI hardware as well 

as the safety of autonomous systems. Moreover, AI as a service may lead to serious 

privacy leakage, e.g., inadvertent leakage of sensitive learning data, misappropriation of 

trained weights, and extraction of business logic. 

Different from traditional IT systems, AI systems typically employ a unique technology 

stack that involves application-oriented data structures, AI operators, and tensor 

processing architectures. Traditional security and privacy solutions designed for general 

IT systems, e.g., secure multi-party computations for Privacy-Preserving Machine 

Learning (PPML), compatibility with General-Purpose Processors (GPPs), etc., usually 

become ineffective or suffer significant performance penalties due to their high 

overhead. In this case, designing robust security, privacy, and fail-safe mechanisms that 

can cope with new attack edges while being embedded into the native processing flow 

of AI hardware is crucial for the trustworthy development, deployment, and management 

of the emerging AI hardware environments. Towards this end, trusted execution 
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environment (TEE)-based techniques can be developed to facilitate secure PPML 

without CPU modification using customized AI accelerators. 

Nevertheless, accelerating AI hardware can also suffer new attack scenarios including 

illegal data/extraction interference with hardware and software prying, which calls for 

hardware-rooted security. In this case, to ensure effective trustworthiness without 

modification of widely adopted AI accelerators, it is necessary to investigate innovative 

ways to provide robust security using two-tier trust design, which anchors 

trustworthiness on secure GPPs while leveraging native privilege mechanisms of AI 

accelerators to prevent ill-intended interference by GPPs. At preparation time, the GPP 

assigns security keys to the hardware security engine to establish initial trust, while at 

runtime, it guarantees the authenticity of the executing AI application and the integrity 

of security keys through a remote attestation technique. As a result, the security engine 

can effectively monitor AI operations and detect anomalies to ensure the trustworthiness 

of the AI hardware environments (Elbtity et al., 2023; Jouppi et al., 2023; Nvidia, 2025a, 

2025b, 2025c). 

 

Fig 11.1: Data security in AI  Hardware systems. 

11.1.1. Background And Significance 

Artificial Intelligence (AI) has attracted great attention nowadays owing to its ability to 

derive sophisticated behavior automatically by capturing knowledge from data. It opens 

up a world of exciting use cases in different application domains, such as computer 

vision, natural language processing, autonomous driving, and healthcare. Machine 
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learning (ML) is a key component of AI, which builds models based on the training 

datasets. To capture the knowledge of the data, large and deep models are formed, which 

are computationally expensive and storage consuming. As a result, many original 

companies offload their trained models to public clouds to benefit from the high-

performance inference services. However, offloading the models/datasets to untrusted 

clouds brings challenges in security and privacy. 

In view of the requirements of efficient privacy-preserving machine learning on AI 

accelerators, this work formulates the security, privacy, and fail-safe mechanisms and 

proposes detailed designs. The proposal is applied on a small FPGA accelerator and 

verified by a cloud-side demo, efficiently achieving the balance of security, privacy, and 

efficiency. Security and privacy are two orthogonal but inner-correlated threats against 

machine learning on hardware accelerators. Security threats refer to the malicious attacks 

by fraudsters with an attempt to recover sensitive model parameters or training data. 

Privacy threats refer to the unintentional disclosure of sensitive model parameters or 

training data due to malware attack or software/hardware malfunction. An illustrative 

example against security and privacy threats caused by hardware backdoors is 

elucidated. Security and privacy mechanisms are formulated and discussed in the context 

of AI accelerators. The fail-safe mechanism is proposed to ensure graceful degradation 

against malfunction. The feasibility and implementation challenges of hardware-based 

solutions are discussed. 

11.2. Overview of AI Hardware 

Over the last couple of decades, AI hardware such as VLSI/DSP/FPGA ASIC are 

emerging as second generation AI accelerators. Based on specific matrix calculation, 

they can efficiently implement machine learning algorithms based on SNNs or DNNs 

for training and inference. Many of them have even been commercialized and widely 

used for edge computing applications, autonomous driving etc. Currently, the main 

challenge for hardware accelerators is implementing parallel and scalable architectures 

for deeper nets and larger models. Another challenge lies in the fact that due to the fierce 

competition for AI objects in the AI hardware accelerated market, companies are facing 

risks of adversarial attacks in ML models, inference results, potential leakages of 

proprietary models and data. It is highly demanded that robust security, privacy and fail-

safe mechanisms have to be implemented on AI hardware environments as well. 

In this talk, a detailed survey on the fundamental and customized security/privacy 

mechanisms in AI hardware environments will be first reported and presented, which 

consists of system-level designs for robust physical security; fail-hard mechanisms to 

guarantee function safety specifications; and hardware-customizable schemes for further 

enhancing security and privacy performance. Moreover, a holistic design flow for 
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supporting hardware-software co-design of trusted AI acceleration systems will be 

discussed.  

11.2.1. Research And Design 

The rapid increase in the application domains of AI-based chips whose design needs to 

incorporate the latest knowledge and evolve into more complexity requires new 

benchmarks to evaluate their robustness, security, and privacy. The AI hardware design 

requires an unnecessary increased lead time and is vulnerable to several attacks due to 

its intricate design. The AI-based chips can be attacked at the component, functionality, 

and model levels. As the chip design is usually composed of heat shields and metal walls 

to protect it from further failures and attacks, it is advised to measure the heat signature 

and electromagnetic signatures that these chips output. Attacks from other social-

engineering techniques also target the hardware, as the AI hardware design is deeply 

related to its software and intellectual properties, which require to be protected 

confidentially. Recent attacks also exploit the behavioral aspects of the hardware using 

anomalous outputs to reverse-engineer the network arithmetics and derive the model 

weights. Finally, as the algorithms behind AI are proprietary and yet applied to much 

critical data, using AI methodologies such as differential privacy to protect it is advised. 

Security and privacy benchmarking frameworks for efficient hardware solutions. 

Benchmarks are separately proposed for all three-grade chip designs: block-level netlists 

of hardware security/fail-safe mechanisms. These benchmarks can quantify different 

metrics and evaluate the pros and cons of respective methods. Guidelines and directions 

for future developments are also proposed to realize a robust AI hardware design that is 

resistant to security, privacy, and fail-safe attacks and can also be tested in the digital 

realm.  

11.3. Security Challenges in AI Hardware 

An AI application is likely to be dependent on cloud or fog-based services. In this case, 

an attack against the service is likely to attack the data and/or training procedures of 

machine learning algorithms. Access to stored historical sensor measurements is likely 

to be misused to deduce the control strategy in place. Filters used to analyze data should 

not only map to consideration in terms of security and privacy, but also in terms of 

reliability. Readings from sensor modules can be corrupted or prevented from being 

fetched by an attacker taking control of the sensor environment. Interchange of sensor 

measurements can be juggled in number format or subjected to logical fluctuations. Fog 

nodes should not only assure quick communication and pre-processing of big data and/or 

the swapping and firmware update of AI models but also protect it from data interception 
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or tampering. Virtualization technologies may allow composition of cloud applications 

using various languages and libraries, but can be abused by forks that query stolen AI 

models, corrupt them, or misuses them to develop attacking algorithms. Standardized 

and open-source libraries for trained models and AI methods offer programmers high 

flexibility to use known AS black boxes in denials, avoidance, and signatures against 

attacks, but can also support threat analysis or advanced penalty testing processes, 

resulting in an AI model with a well identified blind spot. By retaining online ADA, the 

changes in statistics online model should be assessed on the cloud. An attacker taking 

control of the service monitoring may change the actual control mode of the system, 

modifying sensor reading and signals emitted to the actuators, as well as fuzzing the 

assumptions of the classifiers and hence corrupt the Expert/Optimum Mode Gen. The 

lack of focus on security and privacy suitably speaks for the low bias, unfalsifiability, 

and cross-purpose dimensions. Unfocusing on the audit on a good amount of operand 

and substitution allowed. The risk of disregarding threat and safeguard attributes is high, 

as the audit may generate spurious risk numbers and validation loopholes. A good deal 

of the swapping of responsibility and liability, accessibility, and usability issues is 

mostly indicative of secondary biases. 

 

Fig 11.2:Hardware-based security emerges for AI. 

11.3.1. Vulnerabilities in AI Systems 
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AI systems that operate in high-risk environments, such as law enforcement, healthcare, 

finance, etc., should be built with robust security and privacy mechanisms. Those 

requirements are needed for the longevity of ethical AI practices, especially when using 

AI systems with reinforcement learning-based approaches. Moreover, there should also 

be fail-safe mechanisms in place for AI hardware environments. Unfortunately, there are 

vulnerabilities in AI-enabled systems, including a lack of suitable software tools and 

platforms for consumer AI systems, along with the misuse of existing tools. As attackers 

increasingly target the software supply chain, the risk of open-source library 

vulnerabilities increases. AI systems have the potential to introduce vulnerabilities into 

product codes when AI-generated code is incorporated into software frameworks. 

Therefore, it is essential to develop algorithms or tools to ensure that generated artifacts 

are of high quality and trustworthy. 

AI systems have been extensively adopted across a wide range of applications due to the 

rapid advances in machine learning, data collection, processing, and analyzing 

capabilities. With the recent success of deep learning models in solving complex tasks, 

it is vital to ensure those AI systems are operating properly for applications impacting 

individuals’ health or the economy. Safety-oriented assurance techniques, such as 

software testing and verification, had been successful in ensuring the safety properties 

of traditional software systems. In cases where the behavior of the software is generated 

through a machine learning process, it is challenging to protect against the mathematical 

models of a black-box nature. Nevertheless, the attributions of a machine learning model 

can often be extracted through the inputs and the outputs. Hence, a potentially malicious 

product can also be analyzed to determine whether its behavior is as expected. 

11.3.2. Threat Models for AI Hardware 

Figure 11.13 illustrates three possible attack scenarios for AI HW implementations. 

These scenarios are detailed below, followed with a discussion of the insourcing attack 

vector for establishing control over AI HWs. 

11.3.2.1. Scenario 1: Asset-Tracking and AI Misuse 

Malicious actors are continuously trying to gain insight or obtain technology, 

information, or trade secrets on AI HWs. AI HWs, once acquired, can be used as a 

service as-is, or further analyzed to replicate local contenders, modify original 

architecture (possibly for a desired application), or plan further attacks against involved 

institutions. AI HW misuse can further involve tampered up-sourcing for service-centric 

companies. 



  

177 
 

11.3.2.2. Scenario 2: Second-Order HW Trojan and Misuse Data Injection 

In this attack, a found AI HW is deployed normally to replicate its behavior for the 

intended purpose. Data from the initial use case is collected and processed using a 

shadow engine for on-device usage. AI HW effect is then promoted in a parallel but 

unwanted use case, or in a slow-growing but extensive cascade of changes in input 

patterns that are used to exploit an engineered performance defect. 

11.4. Privacy Concerns in AI Hardware 

Increasing concerns of data privacy in AI hardware environments go along with the rapid 

growth of cloud services. Privacy-preserving machine learning (PPML) has been a 

critical issue in many scenarios involving private data, such as machine learning as a 

service, federated learning, and inference at the edge. However, there are numerous 

privacy concerns such as the protection from malicious service providers or adversarial 

insiders who can manipulate the program or corrupt the service provider and/or the 

hardware platform. 

Recently, with the emergence of modern cryptography techniques such as homomorphic 

encryption and secure multi-party computation (MPC), a reasonable solution for PPML 

was proposed. However, there are challenges in practical applications because of the 

substantial computation and communications involved and the inefficiency of research 

efforts. For these reasons, hardware-level defenses against adversaries in PPML 

scenarios have gained increasing attention. The trusted execution environment (TEE) 

has been developed to support secure AI applications and verified to be effective in 

protecting data privacy from both software and hardware attacks. The model owner can 

upload the model to the TEE of the service provider, and the inference will be processed 

within a shielded execution environment, preventing access to or modification of either 

the input data or the model. 

11.4.1. Data Leakage Risks 

Immediately after the training of any model on inference data, there is a risk of data 

leakage. During this training phase, what the model has learned or memorized about the 

inference data can be inferred through a white box that internally uses the model. Several 

attacks and metrics are designed for such leakage on the architecture and parameter level, 

but still, there is a big gap regarding whether the temporal, power, electromagnetic, and 

more side-channel information can leak temporal information about the inference data 

or not, specifically in the case of Neural Networks. These types of attacks are a blatant 

violation of user privacy as this may allow an attacker to steal spatiotemporal and audio 

data, or potentially even training images on which a pre-trained model was trained. Deep 
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learning is at the core of multiple applications from image recognition to image 

reconstruction-related models. These models are being deployed as deep learning black 

boxes as service providers. In this architecture and model sharing platform, a perilous 

trade-off exists between privacy protection and utility. 

11.4.2. User Privacy Protection Mechanisms 

An increasing focus in the deep learning community arises from privacy, which ensures 

that the local model and its parameters are private from the server. In the federated 

learning environment, each client has local data that must not be sent to the coordinator 

while producing a global model. Meanwhile, the client can receive the global model sent 

from the server, and then this model can be used for local predictions. How to protect 

local model parameters when the local model parameters are sent to the server and the 

global model is imported by the client must be addressed. 

Secure Multiparty Computation is a solution, which can securely aggregate model 

parameters, update weights, and produce the global model. The broadcasting weights 

can be transmitted to all clients in multiple broadcasts. All clients can receive the global 

model and perform prediction with this model, but no information on model parameters 

would be leaked. However, this approach would incur more training time, 

communication bandwidth, and computational cost. 

Homomorphic Encryption is another potential solution, particularly for large matrix 

multiplication. Instead of uploading the local model, an encrypted model is sent to the 

server and decrypted at an appropriate party to perform aggregation. Meanwhile, this 

method can make secure computation on the encrypted domain. However, it is inefficient 

for practical workloads due to its extremely large key size and slow running speed. Thus, 

an alternative method could involve precomputing and storing an abundant number of 

input model values. 

A method is proposed to protect users’ privacy by hiding model parameters using 

quantized values. The local model is uploaded as floating-point quantized values derived 

from the original live model. These values are operated in lower bit-width formats with 

the mapping technique, such that numerical information is not leaked while using the 

given bit-width quantization. With proof, the proposed approach outperforms previous 

method counterparts with lower communication and larger protection, enabling usage in 

the presence of untrusted environments. 
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11.5. Fail-Safe Mechanisms 

Engineers working on fail-safe system design have to decide high-level system safety 

architecture as well as key components. Moreover, server-grade hardware must be made 

fail-safe on input and control hardware which prohibits data manipulation, precluding 

any performance gains while ensuring that the current basic architecture is to be 

preserved. Fail-safe design risks may be broadly categorized in terms of architecture and 

in terms of components. In respect to architecture, the issue is improvement of resilience. 

The system must implement additional hardware and/or software including arbiter 

devices or watchdog timers acting as processors to handle timing. Additionally, data 

must travel in parallel along physical lines where devices running identical codes 

“compare” data in special structures to detect the occurrence of a single event upset. 

Detection of double errors is possible when these “dual modular redundant” physical 

resources operate physically independently. Hardware and software improvements must 

I) reboot upon fault detection, not just ignore them; fail-silent approach where processors 

must monitor each other and restart, not just ignore faults. In terms of architecture, the 

presented view focused on basic modifications of widely deployed current technologies: 

reducing clock frequency up to two times, collecting “parity information” from memory 

chips instead of running separate additional ones on the same line, redundancy 

improvement - not only duplication more by a factor of twenty but on gates and lines; 

random-access memory like row and columns. In detailed processing errors, hardware 

and software must control other hardware. Timing comprises observing event 

occurrence and corresponding control whereas inputs must be examined for outliers. 

 

Fig:  Security, privacy, and fail-safe mechanisms in AI hardware environments. 
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11.5.1. Design Principles for Fail-Safe Systems 

The challenge is to deal with problems in a new manner unconventional to the proposed 

methodology by going outside of the norm and design principles of traditional 

architectures and including features that allow to verify properties based on equations 

and other intrinsically robust methods. 

The ideal would consist of (1) the inclusion of formal aspects to enforce the satisfaction 

of properties with the hardware level, but this aspect is inherently difficult to implement; 

other alternatives could (2) employ new architectural components at the lower level to 

make the work easier, (3) employ more ambitious solutions involving all system levels, 

levels of abstraction, and concurrent operations. A composable approach guarantees that 

if proper functionalities have been provided, the system cannot go outside of the 

specifications. A main witty observation with respect to the composable components is 

that the holistic system is easier to protect than its parts, while traditional wisdom states 

just the opposite. But when new components that intrinsically satisfy properties are 

introduced, it is assumed that no transgressions occur at that lower level. 

A new goal is the design of codecs capable of generating seal-offs by specification 

beyond formal proofs and behavioral models. More formally, a seal-off consists of a 

transformation of a system into a model of another system that satisfies the desired 

properties. A central task is to cover a wide range of behaviors as well as unanticipated 

scenarios as much as possible considering implicit classes of systems, not only explicit 

patterns or formats. This task demands ingeniousness that devising a general framework 

beyond some arbitrary dimensions is difficult and perhaps impossible. Empirical 

approaches professed with excellent performance are unexplainable and cannot 

guarantee trouble-free operation. Solutions based on math consider sets of generative 

variables having high cardinality and possibly unbounded dimensionality. The 

conjecture is that logic parity corrections could set higher capabilities than merely 

deterministic ones in terms of fault tolerance. Therefore, a description with the aid of 

self-generating solutions or settings that could avoid the need to guarantee correct 

behavior might be possible. The trade-off is to be versatile enough to stay robust but 

principled enough to allow verification of properties. 

11.5.2. Testing and Validation of Fail-Safe Mechanisms 

In the last few years, ongoing interest in testing and validation of deep learning systems, 

both critical safety systems and other systems. Human-out-of-the-loop operation systems 

raise questions of general safety assurance, i.e., testing and validation of safety properties 

prior to deployment. This is a formidable challenge. A system is rendered supremely 

brittle when the rules of operation, and even the encoding of such rules, are determined 
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by other complex systems adding layers of coupling and interpretational uncertainty to 

decision making. At the same time there is recognition of the unknown unknown 

problem, and growing concern that competent high-consequence-use systems that are 

behaving correctly when tested could still be catastrophically faulty when operating in 

the real world, simply by being placed in unexpected or untested conditions or 

configurations by actors or inputs that were not anticipated. Understanding and bounding 

the space of possible world representations to which systems may be subjected is a 

separate and related challenge of substratum modeling. However, fundamental limits on 

preemptively thinking of everything that could go wrong one needs to be able to stress-

test systems for failure cases not trivially generated by inspection of arbitrary parameter 

settings or in the real world derived from complexity. 

Robust validation techniques are needed for the possible set of ways in which a system 

of learning agents could act incorrectly. This is related to runtime verification, 

formalized approaches to runtime verification of inherently predictable behavior systems 

and less formal but more powerful approaches involving property testing and 

falsification. Safety properties postulate particular input sets that cannot result in 

particular outputs; going through the bounds of the input set in, say, a numerical 

catastrophe. Falsifying a safety property involves finding an input such that the agent 

acts incorrectly; it is intractable in the worst case. Falsification is related to other 

validation and robustness assessment tasks, such as understanding a system’s domain of 

operation and sensitivity, viable parameter settings and redesigns, level set estimation, 

seeking islands of safety in system designs, and most-likely-failure analysis. For numeric 

simulation models both sampling-based, and intelligent black-box optimization or 

planning based methods have been successfully applied to large-scale expensive systems 

swiftly identifying failure islands that provide insight into systemic vulnerabilities. 

Agent modeling, in particular piecewise linear models, could be deployed to these ends 

with less systematic verification and robustness assessment forming a direct coupling 

with pressure-testing design of structures and hyperparameters themselves. 

11.6. Robust Security Strategies 

Robust security solutions are becoming increasingly necessary in the age of AI hardware 

systems due to a multitude of security concerns. Emerging concerns for AI hardware 

security arise from the integration of multiple IPs on the same die, along with the rapid 

advancement of photonic measurement techniques, which open up a new attack surface. 

In this context, trusted manufacturing becomes a critical challenge in hardware security, 

and necessitates multiple-layer countermeasures to ensure trustworthy AI hardware 

systems. 
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AI hardware and workload vulnerabilities present numerous opportunities for 

weaknesses in an AI hardware system. AI-specific computation imperatives, such as 

incalculable weights, data-intensive processing, and nonlinear operations, make its 

hardware environment different from traditional hardening techniques. For an AI-

specific hardware system, systematic defects and process variations of digital circuit 

designs may cause malfunctioning or latent failure. Specialty regions such as 

computational cores, onboard memory, network interfaces, and digital-to-analog 

converters can be reverse-engineered through side-channel information leakage 

channels. Additionally, AI workloads are highly dependent on the underlying hardware 

structure, and minor perturbations of weights or data can greatly degrade the 

performance. 

Defenses against hardware attacks can be implemented in robust AI hardware systems, 

including post-manufacturing test, on-chip scanning vulnerability detection, and 

intrusion detection techniques. As a result, the AI hardware system can continually 

evolve with increased capability and improved robustness over time. Up-to-date 

architectures against emerging vulnerabilities can also be integrated into a trusted AI 

hardware system to safeguard various workloads or attack modes. The ownership and 

configuration of robust AI hardware systems can be controlled by a trust manager, while 

attackers may only exploit malfunctioning, unproduced, or misconfigured results instead 

of high-value hardwares. 

11.6.1. Encryption Techniques 

One of the approaches to the design of secure hardware platforms for systems based on 

cryptography includes implementation of symmetric and asymmetric encryption 

techniques, which are often referred to as traditional cryptography techniques. With 

mobile payments on the rise worldwide, security and privacy of financial transactions in 

the mobile environment has become increasingly challenging. Public key infrastructures 

(PKIs) based on the RSA and ECC encryption techniques provide a reasonable level of 

protection against many attacks. Much stronger protection against insider threats can be 

achieved with almost any public key depending on very large random integers (512 to 

more than 10000 bits long) where ‘almost any’ means not special (like perfect squares). 

AES and other symmetric key techniques only protect against outsiders. The second 

technical option to be briefly considered is degree 1 encoding, which offers a secure chip 

at positive cost where no stronger assurance of protection is possible as with information-

theoretic protection of non-homomorphic encoding of assumptions. The two subject 

areas covered are biohacking, threat agent defection and very large primes. Several 

symmetric encryption techniques have undergone testing, including RC5, RC6, 

Rijndael, and Twofish, with the later one selected since its structure seemed least 
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susceptible and its long key sizes minimal. The ‘vanilla’ implementations have improved 

timing performance, but unprotected designs still have major vulnerabilities to a variety 

of attacks and mitigations are proposed. Implementing symmetric encryption either as 

an extractor or within a formal security model is near impossible; the best option may 

be a hybrid approach which is both the fastest and most secure. High threat agent 

defection risk exists in such areas as HW Trojan insertion, document modification, and 

mal- or back-door insertion. Threat levels, agent applicability, behavioral defects and 

protection requirements have been analysed within the context of pricing and legal 

aspects of military contracts. Key elements of robust hardware designs for protection 

against defects are proposed. Implementing AES or other symmetric encryption 

techniques on FPGAs offers protection against logic probing and side-channel attacks. 

Depending on threat level, either none, partial or full protection is needed. 

11.6.2. Access Control Models 

Access Control may refer to controlling who or what can have access to a particular 

resource, which is the same as restricting access to certain resources. Hence, access 

control can be categorized as a set of controls that are put in place in order to restrict 

access to certain resources. Access control is the first step in computer security and 

constitutes the process of preventing unauthorized users from effectively using a service. 

Access control mechanisms for directly protecting sensitive information from 

unauthorized users. These access control mechanisms take the form of security policies 

implemented within the security object of systems, services, and applications which help 

enforce user control over his/her sensitive information. When sensitive information is 

shared with other users, if a Privacy Protection Mechanism (PPM) is not in place, an 

authorized user can still compromise the privacy of a person leading to the problem of 

Identity Disclosure. A privacy-preserving access control framework is developed that 

permits an authorized user to carry out query processing while satisfying certain privacy 

constraints on the query answers. Here the motivation underlying the problem, the 

proposed system, solution approaches, and prototypes that have been developed are 

described. The proposed system provides a novel approach to Discretionary Access 

Control (DAC). Discretionary Access Control (DAC) is access control based on a user’s 

discretion. Access Control Lists (ACLs) are a typical example of DAC. In Mandatory 

Access Control (MAC), security labels are assigned to data and a security clearance is 

added to users by a system administrator according to the following guidelines, 

application importance, and data classification. MAC is stricter than DAC. MAC is 

suited for military organizations where data classification and confidentiality is 

important. Role Based Access Control (RBAC) is a secure access control model that has 

gained popularity. In RBAC, users are governed based on the role that the subject holds 

within an organization and access authorizations are assigned to roles instead of users. 
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11.6.3. Intrusion Detection Systems 

The hardware security mechanisms can be augmented with intrusion detection 

procedures to ensure robustness against adversary attacks and the privacy of the sensitive 

data used in machine learning systems. An Intrusion Detection System (IDS) monitors 

whether the trained machine learning model is misused. Models that use control flow 

instructions such as branches can incorporate hardware-based control flow assertion 

checking mechanisms to enforce robustness against adversary attacks. In this case, a 

correct sequence of control flow branches is detected, and memory violations associated 

with buffer overflow attacks are detected. The detection process could also be extended 

to the data flow level to check whether the data being used is diverged from some normal 

range. Overall, integration of current software-based IDS with hardware-assisted control 

flow checking or hardware-assisted data flow checking can be considered a potential 

robust security mechanism providing real-time performance. The IDS can infer 

statistical models on the built hardware accelerators/trained machine learning models 

and check whether the running conditions are still in a statistical area by collecting and 

sending runtime information after deployment. For instance, classifiers can estimate the 

probability of each category or class, and the posterior probability of the model on benign 

data can be stored in the IDS. By comparing the cleared information, information loss 

can be inferred to judge whether the conditions have changed. Statistical alterations 

generally apply to ensure the robustness of a pre-trained system under model drift on 

benign data and provide a better auditing mechanism for completed models. 

11.7. Conclusion 

In AI hardware environments, as with any computing environment, robust security, 

privacy, and fail-safe mechanisms have to be in place. AI platforms will be responsible 

for processing and disseminating sensitive information. In AI hardware environments, 

this means, at a minimum, the availability of the following capabilities: 

1. **Security Keys Containing Detailed Instructions on Loading Secret Keys, Filling the 

Equity Register, Executing Basic Operations, and Storing the Result**. Verifying that 

the instruction set of the secret hardware matches the instruction set of standard hardware 

is essential when investigating non-standard hardware. Ideally, the internal state of the 

fibre-MAR will contain a large number of registers holding auxiliary data. Over time, 

this state will be corrupted through unavoidable errors that would shift the output into 

an empty state. As the interaction with gaining fitness data becomes limited, the limited 

information available for recovering the internal state will be inadequate. As a result, the 

performance of the highly efficient fibre clock will be comprised entirely. A fibreglass-

based security architecture, acting as a hardware token holder, can provide these 

essential capabilities for highly sensitive information. 
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2. **Cryptographic Mechanisms to Filter Signals**. AI hardware environments can use 

programmable filters to modify the frequency spectrum of incoming signals. In the 

filtering process, precise descriptions of the filtering characteristics have to be available. 

In the frequency domain, filter coefficients will be complex values, while in the time 

domain, filter coefficients will consist of pairs of integers. Various signal filtering tasks 

impose a diversity of coefficient sets. In environments characterised by frequent minor 

filtering devices, programming the filtering coefficients becomes a bottleneck. As the 

security tokens hold the filtering characteristics, either filtering result signal will provide 

new standard inputs for the fibreglass clock while generating a precise description of the 

filtering characteristics provided by the hardware tokens. 

3. **Tools to Query the State of Each Element**. Every component of the AI 

hardware environment has to issue basic bits. Concerning fibreglass-circuits, this 

means querying external-assisted memories. In assessing quality, on-chip fibre MMV 

storage enables low-power processing of highly stored intelligent data. To safeguard 

the integrity of queried fibreglass data, limiting what data can be queried is paramount. 

In events of extensive attacks, fibreglass logic should be self-destructed to avoid the 

information gain on off-chip fibreglass state. All fibreglass registers held inside secret 

scramblers must also remain committed or verifiably unobservable until then. In this 

case, a quantifier action should be designed to verify the freshness of the obfuscated 

fibreglass values before assessing the state. Unfortunately, this quantifier has to expose 

challenges on input, amount of memory accesses, and sequencing. Both passively and 

actively corrupt models should remain indistinguishable from the legitimate fibreglass 

one. 
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