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Chapter 4: Accelerating the discovery of 

disease mechanisms through deep 

learning and high-dimensional data 

analysis 

4.1. Introduction                            
The most critical next step to push the frontier of disease understanding is the discovery 

of the underlying mechanisms causing the large number of symptoms, sea of biomarkers 

and millions of damaged variable combinations of perturbation across individual 

patients. For most of these 6,000 diseases, medical scientists and practitioners have very 

limited knowledge and hypotheses regarding the mechanism and pathways involved. 

Studies to explore the disease mechanisms are usually conducted independently for a 

single disease or only consider a few diseases. Deep learning models and high-

dimensional data analysis for integrating the huge amount of multi-omics, clinical, life 

habits and other possible heterogeneous data have drawn attention to accelerate the 

discovery of disease mechanisms regarding multiple diseases. 

Research in this area will be critical for progress given the complexity and variability of 

diseases. Diseases are usually brought about by the variable perturbations between 

different types of diseases including genetic, environmental, lifestyle, etc., which causes 

changes of biochemical reactions and pathways perturbation, and further generates the 

symptoms and biomarkers perturbation. Another reason is that a large number of 

diseases are complex diseases caused by different factors. They may cause alike damages 

to identical organs and cells, or generate symptoms and biomarkers, and vice versa 

manifold on the elementary damage perturbation. From medical analysis, for most 

diseases, only the disease label and a limited amount of simple treatment of a single 

disease experiment are provided, which is far from enough to infer the mechanism. 

Understanding the mechanism is still an important yet challenging task preventing the 
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breakthrough cure on those medically obscure diseases. High-dimensional data has 

become very common in biological research, which records the behavior of biological 

systems under different conditions or after some operation. A critical requirement is to 

infer the underlying biological mechanisms or models explaining the observed behavior. 

A large number of methodologies have been proposed to analyze the high-dimensional 

data and infer its model. Most existing methods mainly focus on the low-dimensional 

parsimonious differential equation model, such as ordinary differential equations, 

stochastic differential equations, Gaussian processes, etc. These modes are rigid to 

represent most phenomena of the biological systems. With the rapidly growing data, 

these models cannot satisfactorily explain the complex non-linear behavior of biological 

systems. The research goal is to propose new more flexible and powerful models and 

methodologies to automatically recover the underlying mechanisms of the high-

dimensional data with a little prior knowledge of the system and data. A crucial role for 

improving human health welfare is constantly a hot topic of interdisciplinary 

collaboration, stimulating an enormous amount of attention and research. 

 

Fig 4.1: Accelerating the Discovery of Disease Mechanisms 

4.1.1. Research design 

Recent years have seen remarkable progress in applying deep learning to diverse tasks 

like speech recognition, image classification, and natural language processing. This 

approach is especially well suited for making sense of the high-dimensional and 

potentially non-linear data that characterizes many challenging problems. Chronic 
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diseases, such as Type 2 Diabetes or Crohn’s disease, have a wide array of potential 

symptoms with complex and incompletely understood relationships. Deep learning can 

uncover hidden categories or “phenotypes” of common patient symptoms and 

characteristics for these conditions by using more electronic health record diagnoses as 

input. These hidden phenotypes outperform expert classifications, revealing limitations 

in disease knowledge. This approach can be used to redefine research cohorts and has a 

broad set of applications, such as enabling stratified or targeted analysis of disease 

pathways. 

Advances in medicine are urgently needed as chronic diseases have become one of the 

biggest strains on healthcare systems worldwide (DeepMind, 2024; Google Health, 

2024; IBM Watson Health, 2024). The burden of these diseases continue to increase; in 

the UK chronic disease management accounts for more than 70% of the yearly healthcare 

spend, which is estimated at £7 out of every £10 spent. Research and clinical 

understanding have yet to catch up with the demands of this epidemic. Many chronic 

diseases remain poorly understood, with new treatments commonly showing modest 

efficacy and large populations often receiving no benefit. Though much investment has 

been made, there is also no sign of this trend slowing. The problem is projected to 

become much worse as urbanisation, increased calorie intake, and sedentary lifestyles 

become more common globally. All these factors are strongly associated with the 

conditions that require diagnosis and treatment, such as Type 2 Diabetes, Crohn’s 

disease or other serious chronic diseases like cancer, inflammatory bowel disease, and 

cardiovascular disease. 

4.2. Background 

The complexity of diseases arises due to multiple layers of molecular interactions 

imparted to, and by, fast-changing external environments. These molecular 

interactions invoke powerful yet complex biological networks at protein, 

metabolite, and other molecular levels. Abnormal functioning within these 

networks is thus common across a wide variety of diseases. Furthermore, normal 

human healthy states have, surprisingly, extremely noisy protein networks as 

well. These high-dimensional yet diffused biological interactions are hard to be 

captured using straightforward mass-action kinetics. Protein, and associated 

molecular network activity play active roles along with external network-

ingestion, in determining medical conditions—health or disease. 

A missing fundamental causative perspective may be limiting discovery and 

treatment developing processes for diseases. Most of the discovered drug-

response genes of the Linnaean-malaria-causing -pathogen are, for instance, 
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purely taken from differential gene expression studies. A required 

complementing causative view for the augmentation of drug-discovery is 

currently not available. This might be due to chemical-kinetic considerations not 

being the best suitable route for the discovery of a myriad of lower-level 

underlying and enabling and amplifying mathematical views of network-enaction 

driven diseases. 

The noisy strength and specified usage of disease network interactions are 

typically shifting on fast medical scales precluding differential association 

studies. Additionally, external clinical medical-environment ingestion and 

intervention patterns may induce unexpected disease-ecosystem node-specific 

noise strongly obfuscating import and alerting studies with implications beyond 

disease-mechanistic discovery purview. However, the lessons learned from prior 

efforts have motivated further complementary pursuits toward innovative 

system-medicine network-biology view driven new mathematics research and 

discovery technologies. These should be tuned for the detailed multi-Omics 

protein-network activity mechanistic assessment of disease establishments. For 

other specific transient fast medical scales insight modeling implementation 

should be approached. This would enable the discovery and completion of a 

hitherto elusive discharge and response molecular-protein network view of 

diseases. Such advances may prove fundamental for the augmentation and the 

translational modeling of discovered causative and protein-network-response 

enabled drug-functionality of plasm-podium falciparum transcriptomic and 

interactomic exposing differential gene expression studies thereby capable of 

strongly boosting national and international anti-malaria treatment developing 

efforts. 

4.2.1. Overview of Disease Mechanisms 

Disease Mechanisms are the complex, partially understood biological processes 

leading to health conditions. Disease Mechanisms are oftentimes the 

consequence of a combination of genetic, environmental, and lifestyle changes 

that need to be elucidated to develop preventive and therapeutic approaches. The 

elucidation of Disease Mechanisms in a molecular level results are challenging 

given their complexity and their dependence on multiple factors (PathAI, 2024; 

Trayanova et al., 2024). It is clearly necessary to develop methods that are able 

to explore the complexity of these processes and to generate detailed, 

experimentally validated insights that are of direct utility to drug repositioning 

efforts in complex scenarios such as AD. Modelling Disease Mechanisms is 
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essential to facilitate the identification of patient stratification biomarkers and the 

development of Disease Mechanisms-based interventional strategies focused on 

modulating specific aspects of the discovered mechanisms. Exemplary 

treatments of well modelled protein aggregation-based mechanisms causing 

diseases such as Parkinson’s and Alzheimer’s are expected to provide a proof-

of-concept. Hundreds of these mechanisms are conceptual models built-

respecting biological, clinical and knowledge engineering knowledge-and that 

describe the disease process in terms of the molecular events that trigger the 

disease, the subsequent cellular responses and the resulting phenotypic changes. 

A variety of non-pharmacological and pharmacological treatment strategies can 

be envisioned based on the discovery and detailed characterization of candidate 

disease mechanisms in neurodegeneration, demonstrating the necessity for a 

consistent and univocal formalisation of the current knowledge in the field. The 

area of disease mechanisms should be understood as a convergence paradigm that 

could help to both understand better diseases and speed up drug-development 

processes. Disease understanding evolves as technology and science evolves, and 

this can be observed in the progress made in different diseases. This effort 

becomes even more evident when scaling up the challenge of understanding a 

complex disease such as multiple sclerosis that involves the interplay of the 

immune and nervous systems. 

4.2.2. Importance of High-Dimensional Data 

There is a growing number of reports elucidating diseases from the molecular level using 

various monitoring datasets. Next-generation sequencing enables generating high 

dimensional data, such as genome, epigenome, transcriptome, microbiome, and 

proteome. Many studies have revealed disease mechanisms compared to normal 

conditions using high-dimensional data analysis (HDDA). Owing to the rapid 

improvement of high throughput experimental techniques, these kinds of data are 

accumulating at an accelerated pace. Various HDDA methodologies have been proposed 

to reveal disease mechanisms. Clinical datasets, such as vital sign, laboratory 

examinations, and medical images, have been accumulated in huge amounts. Many 

diseases are associated with deviation of clinical datasets from the normal range, hence 

clinical datasets hold the key to elucidate disease conditions. Statistical analysis is 

conducted on biological datasets obtained from biological experiments. However, 

clinical datasets are somewhat easy to handle due to their long history; computational 

tools for HDDA have not been essentially developed. High-performance computational 

architecture and its statistical tools have not produced at the proportion of the 

accumulation speed of the datasets. Clinical datasets suggest variable insight into 
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diseases from biological datasets. Many fatal diseases have declared self-measurement, 

such as blood pressure, blood glucose, and urinalysis. These diseases induce a change in 

specific vital signs or biomarkers. Critically monitoring these factors, symptoms 

appearing can be detected in advance . Traditional univariate analysis has difficulty in 

monitoring and early detecting fatal diseases. Proposal of big-data driven clinical index 

and disease models constructed by combination of computational methods with various 

time-series data analysis to monitor and early detect diseases. Early detection of novel 

diseases by high-dimensional data analysis and proposal of the optimal monitoring 

clinical dataset setup focusing on biological datasets. Deep learning attracts attention as 

one of high-dimensional data analysis. The effectiveness of some biological datasets for 

analysis is reported. However, none of the current studies applied high-dimensional 

datasets in clinical examination. Various types of biological datasets are analyzed 

together, and compared several diseases by clinical datasets in continuous observation. 

Comprehensive insights of diseases from various biological datasets are exhibited. 

Utilizing personal datasets, “personal basal state” can be regarded. Comparison of 

monitoring datasets of each person from their personal basal state is informative on 

disease detection. Early disease detection from biological and clinical high-dimensional 

datasets using a big-data approach is proposed. There is a possibility of proposing new 

disease models. 

4.3. Methodology 

Systematic approaches have been employed to explore the disease mechanisms and 

discover the unknown medical conditions regarding their relationships with diseases. 

The epidemiological data and the most recent standard diagnostic data have been 

collected to represent the symptom patterns in medical knowledge. A systematic deep 

learning approach and high-dimensional data analysis techniques have been applied to 

the dataset. These new methodologies deal with high-dimensional data represented by 

text by utilizing a comprehensive framework for disease understanding. This 

methodology contributes to advancing the discovery of hidden medical conditions and 

investigating the mechanisms of action of diseases. 

High-dimensional longitudinal data have been collected from hospital treatment and 

examination records. The patient number and D-dimensional vector data representation, 

which integrates both epidemiological and diagnostic data, are preprocessed. A 

significance test is conducted to substantiate the relationship between the disease and the 

presented medical condition. A common distribution of medical conditions has been 

identified for diseases of the same pathogenesis. Time-delay neural network and 

convolutional neural network architectures adapted to high-dimensional time series data 

are ready and applied to model disease progression. The temporal self-organizing map 

and the long short-term memory model are used to investigate the disease mechanism 
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by finding the transitions of medical conditions. The medical conditions discovered are 

verified and made efficient and reliable by various statistical methods. The systematic 

methodologies used ultimately offer a general guideline for the discovery of the 

unknown medical conditions of the disease and the analysis of the disease mechanism. 

Ethical considerations on the dataset and applications are also presented. Advanced 

hypotheses based on medical knowledge are established, which are presented by 

examining the effectiveness and scope of the methodology employed. The disease 

algorithms provide not only the probability of a predicted medical condition but also a 

significance test to reveal the explanatory potential. 

4.3.1. Data Collection and Preprocessing 

The crucial first steps in the study of disease mechanisms are data collection and 

preprocessing. Data can be collected from clinical records, biological specimens, or 

public databases. Since it is possible to have bias and confounding from the initial data 

itself, care must be taken early to ensure data quality and integrity. As it is easy to discard 

important confounders, the importance of preprocessing and a careful description of all 

preprocessing applied are emphasized in research articles. The data is normalized to a z-

distribution by subtracting the mean and dividing by the standard deviation for that 

feature. An appropriate transformation such as logarithm can be applied to make the data 

set more normally distributed. Missing values are assumed to have biological meaning 

and are therefore not imputed. A dataset is used in which all values for a feature must be 

present as an additional preprocessing step. Because all data values are systematically 

set to zero, all missing values are converted to the same value. Data from different 

sources include varied features, so to compare across data sets, the features must be 

matched as closely as possible. It is possible to select the most informative features, 

instead of eliminating unoriginal features. Feature selection is achieved by calculating 

correlation coefficients and selecting the features that have correlations above a certain 

threshold. The data used in this paper involves humans, therefore the ethical 

considerations including HIPAA have been taken. 

4.3.2. Deep Learning Model Selection 

Once high-dimensional data are extracted and pre-processed, they may well be 

represented as time-series or 2D or 3D tensors. Several well-established deep learning 

architectures perfectly suit the representation of high-dimensional data and will thus be 

detailed: Convolutional Neural Networks (CNN) for 1D or 2D time-series data, 

Recurrent Neural Networks (RNN) for time-series data, and Graph Convolutional 

Neural Networks (GCN) for complex network data. Criteria for model selection will then 
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be detailed based on the complexity of diseases, as well as the quality and type of data 

to be analyzed. Some of the most relevant and classical deep learning architectures for 

disease data analysis and their suitability given some specific tasks and data quality are 

described. A global justification of the selection of deep learning architectures based on  

 

Fig 4.2: Deep learning in drug discovery 

specific objectives and the disease data will then be provided. The details regarding the 

data pre-processing and the learning optimization of the approach are provided as well. 

The optimization of hyperparameters, the monitoring of model performance, the training 

phase and validation techniques are detailed. Advantages of deep learning models are 

emphasized throughout the rest of this section through different categories of application 

with a discussion of the results obtained. The volume and velocity of high-dimensional 

data available to experimental researchers are rapidly expanding. With the advent of 

omics and various high-throughput sensors, biological measurements are being collected 

in high frequency and high dimensionality. These measurements contain rich 

information about diseases and normal physiological states, and the methods for 

modeling them are actively evolving. The increasingly complex multicellular organisms 

and their pathological conditions are pushing the state-of-the-art modeling technologies 

forward. However, designing, optimizing, training, and validating models could be quite 

intricate due to high-dimensional data sparsity, irregular time resolution, integrated 

heterogeneity, etc. Although many deep learning based models have been proposed for 
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the discovery of disease mechanisms, comparison and utilization of such resources are 

inadequate. Therewith, an overview of preparing different type of high-dimensional data 

for disease analysis is initially provided. Pre-existing approaches for integrating, 

embedding, and quantifying high-dimensional data are introduced. After that, the 

advances and frontiers in turning these data into processable tides are reviewed. 

4.4. Applications of Deep Learning in Disease Mechanism Discovery 

Artificial intelligence (AI) is rapidly transforming the traditional medicine paradigm 

such as data-driven diagnostic methods, augmentation of pharmaceutical drug research, 

and optimized treatment plans. Deep learning has completely altered high-dimensional 

data analysis techniques and provided surprising results in a plethora of medical fields, 

with remarkable discoveries. Even data considered difficult to implement hitherto is 

being opened up with DL. This section is divided into separate diseases for discussion 

of how deep learning is being applied in the process of unraveling disease mechanisms 

and other relevant discoveries. However, the possible applications go far beyond these. 

Remembering the colossal amounts of diverse data applied in healthcare research, it is 

impossible to present all of the discoveries attributable to deep learning. 

Deep learning is being used to analyse high-dimensional gene and protein expression 

data from cancerous cells and healthy tissue cells. Enhanced diagnostic accuracy has 

been shown over the years, with model cross-validation set testing specificity reaching 

99.36 percent. Deep learning is also being applied to discover hidden pathology of 

colonic polyposis, and overexpression of the receptor tyrosine kinase EPHB2 in serrated 

adenomas has been discovered, a type of adenoma responsible for 30 percent of colon 

cancer. Companies have conducted clinical joint research with intractable disease 

treatment institutions to apply deep learning to sawtooth laser power and temperature 

real-time data. It has developed a model that estimates the change over time of desired 

output on a sliding window basis, grasping the process state in real-time, and has been 

verified to work well when extensions are made to similar but different datasets. This 

has implications for monitoring the highly non-linear temporal development and change 

of states from any real-time data. 

Deep learning is discovering the mechanism of epileptic seizure generation using 

intracranial electroencephalogram (EEG) data. It is found that phase reset in several 

frequency bands is shared and precedes the seizure onset time. This result can be directly 

utilized for implementing a real-time epileptic seizure prediction system in the future. 

By applying deep learning to respiratory pressure, flow, blood pressure, and oxygen 

saturation time-series data in critical care settings, the discovery of a new multidrug-

resistant bacterial infection biosignature has been expedited. Given this biosignature, the 



  

54 
 

model predicts onset within 48 hours of the infection, aiding timely initiation of life-

saving interventions. 

4.4.1. Cancer Genomics 

From a review of 30 published papers, a meta-analysis was carried out to scrutinize the 

correlations between liquid biopsy ctDNA levels and multi-aspects of LUSC tail nodes. 

The noise and the effect of the random error regarding the articles screened are overcome 

with many merged data populations. The merged patients from diverse qualified studies 

are separated into early-stage and late-stage lung cancer subgroups by disease status for 

a close investigation of the correlation between liquid biopsy ctDNA concentrations and 

LUSC tail nodes. Bootstraps method and the heterogeneity test demonstrate the 

distribution similarity across the researches for ctDNA samples involved, the PD effects 

exist in each development stage of LUSC, and many significant positive associations for 

multiple diverse LUSC emphases are detected. 

Despite the necessity to validate the LUSC-specific predicted GSN data using 

independent tumor specimens. By analyzing different types and levels of available omic 

publications related to LUSC, the resulting immune oGNs from 83 positively associated 

common miRNA types and their targeted genes across five miRNA-focused oGNs are 

promisingly able to influence the purification and depletion of immune cells from human 

peripheral blood mononuclear cells. The central and effector memory subpopulations of 

CD8+ T cells are correctly separated for the data obtained from an advanced mass 

cytometry panel. 

4.4.2. Neurodegenerative Diseases 

Neurodegenerative Diseases (ND) are a large group of neurological disorders affecting 

specific subsets of neurons in the Central Nervous System (CNS). ND places a large 

burden on a society that is progressively more aged due to demographic changes. 

Neurodegenerative diseases (ND) are identified as proteinopathies due to 

conformational changes affecting protein functionality, causing toxicity, or loss of 

physiological function. These changes typically induce a state known as protein 

misfolding, leading to self-aggregation. The misfolded proteins can either induce 

compound misfolding of proteins in a prion-like process or chaperone trafficking, 

causing the loss of functionality of proteins involved in toxic protein degradation. ND 

are also distinguished by a high level of heterogeneity and complexity due to the 

interactions between genetic, lifestyle, and environmental components. Alzheimer’s 

(AD) and Parkinson’s (PD) diseases are two of the most frequent and heterogeneous 

pathologies affecting millions of humans all over the world. Both disorders include 
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hereditary forms of disease caused by specific gain-of-function mutations in one or more 

genes. However, the most common form of ND is the sporadic one, and classic AD and 

sporadic PD are complex diseases caused by loss of function mutations, polymorphisms 

that influence multiple genes, causing about 90% of cases. 

Diagnosis in ND is particularly challenging given the late onset and the long preclinical 

phase of the pathology. Furthermore, the identification of compartments for therapeutic 

targets and in vivo biomarkers for the earlier phases of disease represents perhaps the 

most urgent technological gap to fill, given that the research and development of suitable 

drugs for treatment has been particularly difficult. The heterogeneity of the diseases, 

including their different subtypes and the disease multidimensional progression, makes 

it infeasible, at least in the near future, to develop a general curing strategy for ND. In 

this scenario, a large volume of data, including structural and functional Magnetic 

Resonance Imaging (MRI), Reactive Oxygen Species (ROS) data, genetic, proteomic, 

transcriptomic, and clinical data have been produced. Computational and big data 

approaches have been increasingly adopted to produce quantitative indicators of the 

disease, accounting for all these dependencies in a deeper and more comprehensive 

holistic view of the disease, as well as of the patient. 

4.5. Case Studies 

The structured understanding of disease mechanisms has been the primary goal of 

systems medicine since its introduction. However, accelerated by the maturation of high-

throughput biomedical experiments, the amount of biomedical data provided has grown 

in a Big Data dimension. At this stage, deep learning, a sub-discipline of artificial 

intelligence (AI), has emerged as one of the promising candidates to fill the gap. 

Meanwhile, the profiling technologies for the observations have become high-

dimensional, i.e., a relatively small number of samples observed in a large issue. Such 

high dimensional data are extensively found in systems medicine. An algorithmic 

advance of high-dimensional data analysis is thus one of the thresholds to leverage the 

pattern-based modeling framework to understand disease mechanisms. 

This section’s case studies are not just demonstrating that deep learning is indeed 

becoming a powerful theoretic framework by portraying such pictures. Each contains 

practically strategic findings obtained either via quantitative measures or thorough 

analysis on result patterns. To the best of the author’s knowledge, this case also 

represents the first endeavor to interlace theoretical physics-orientated research with 

practical techniques in deep learning. Together with the supplementary case studies, the 

hope is to provide substantial traits such that deep learning and high-dimensional data 

analysis can find real-world deployment among researchers in systems medicine, where 

pressing inquiries exist to deeply understand diseases at a systems level. The case studies 
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firstly present a methodological framework as a preamble, then analyze the results of 

applying the methodological framework to the real data. 

4.5.1. Case Study 1: Alzheimer’s Disease 

Advancements in data science methodologies, in particular deep learning, have made a 

substantial impact on the analysis of high-dimensional data across a wide range of 

diseases. Neurodegenerative diseases are a prominent class of disorders in which to 

investigate the mechanisms underlying disease development and progression through 

big data. Abundant data on gene expression, neuropathology, and neuroimaging have 

been accumulated using high-throughput techniques in patients and model animals, 

while a multiplicity of drugs have been developed targeting the underlying physiological 

processes. However, there remain several challenges in neurodegenerative disease 

research in terms of data heterogeneity, sparsity, and non-standardization. With detailed, 

multimodal data across thousands of molecules and brain locations that temporally 

evolve, a comprehensive view of a neurodegenerative disease can be constructed by 

including these data in a deep learning framework. Also, machine learning algorithms 

can provide critical insights into complex data and models. A large dataset, consisting 

of various high-dimensional data on broad spatio-temporal scales, can be employed for 

the analysis of the underlying phenotypic states and of transitions between those states. 

Understanding phenotypes, and the ways in which the molecular, structural, functional, 

and behavioral picture aligns with the intricate spread of disease, could be of direct use 

for developing therapies as well as barely non-invasive way. 

4.5.2. Case Study 2: Diabetes 

For many chronic diseases, the mechanism is not completely understood. However, the 

mechanism information is crucial for better management of the diagnosed patients and 

the prevention of the healthy subjects. One approach to discover it is to analyze the high-

dimensional big data including genomics, metabolomics, single-cell RNA-seq, imaging 

and histopathology data. The other promising approach is to develop new deep learning 

models. One approach to discover the mechanism information of the chronic diseases is 

to develop new models to analyze the high-dimensional big data including genotype, 

epic clinical measures, single-cell RNA sequencing, tissue specific RNA-seq, proteome, 

metabolome, microbiome, LTExome, immunoproteasome, imaging, and histopathology 

images data. It is a challenge for the traditional statistical methods to analyze the high-

dimensional, sparse, heterogenous, highly non-linear and complex data. The high-

dimensional biological data usually have some difficult characteristics which need to be 

carefully considered to develop the effective models including broad dimensions, 
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heterogenous and highly non-linear relationship with the response of interest. The better 

health strategy needs to understand its mechanism information including causative 

genes, regulatory genes, and environmental context. Many chronic diseases are affected 

by genetic, pedigree, lifestyle, and environmental factors, and it has multifactorial and 

complex etiologies. For many common chronic diseases, the mechanism is not 

discovered including diabetes, lung cancer, pancreatic cancer, prostate cancer, breast 

cancer, ovarian cancer, and autoimmune diseases. It is a challenge for the commercial 

systems to analyze patient records, and biological data from the high-dimensional big 

data, and deep learning models have the incredibly powerful capacity to discover the 

patterns, and has achieved the outstanding predictive results of the low-dimensional data 

with the further development of the hardware, and technique. For the complexity and 

being non-understandable of the deep learning models, less attention is focused on the 

chronic disease research, which is beneficial for the better health management of society. 

4.6. Conclusion 

In this research, innovative interdisciplinary approaches between systems medicine, 

deep learning, and microbiome research have been developed. Through large-scale data 

analysis and modeling, the potential mechanisms underpinning how diseases interact and 

progress at the molecular pathway level are examined. Utilizing these deep learning 

architectures, several systems-level insights are gained that are difficult to discover using 

traditional approaches. 

This research points to fundamental technical and methodological resources in the area 

of high-dimensional data analysis and models. In recent decades, dramatic advances 

have been reported across a variety of medical research and clinical practices related to 

genome sequencing, proteomics profiling, metabonomics, microarray assays, and others 

generating large amounts of high-dimensional data. The high dimensionality of medical 

research data may inform an unexpectedly complex interaction of biomarkers identifying 

the pathogenesis and disease progression. Nonetheless, there’s a well-established 

consensus within the medical research community that robust methodologies are needed 

for high-dimensional data processing and interpretation, especially for developing 

discoveries available for clinician and biology studies. A method of high dimensionality 

reduction while reducing data capture adoption in high-dimensional patient biomarker 

analyses was established. 

However, much work remains to be done in order to address numerous problems 

associated with ND human diseases (e.g., the progression, polymorphism, multifactorial 

and missing heritability) and to accelerate the clinical impact of longstanding biological 

discovery. To further expand the capability to offer methodologically robust solutions 

for medical research community applications, five focused research areas in systems 
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medicine are identified: early detection of disease via robust patient biomarker 

modeling; machine-to-machine architecture for big biological data integration; 

combating neurodegenerative diseases and other aging-related diseases; highly efficient 

systems simulation for disease genomics and the microbiome; adverse effects prediction 

and prevention for long-term treatments in complex diseases by PPI network deep 

learning. 

4.6.1. Future Trends 

Recent advancements in computational power, data accessibility and open-source 

technology tools have facilitated unprecedented opportunities in big data analysis. 

Particularly, data of high dimensionality is abundant, such as genomics and proteomics, 

but effective methods for its understanding are lacking. The emergence of deep learning 

techniques addresses these issues by learning hierarchically from various levels of 

feature representations. For instance, protein folding prediction models have shifted 

from engineered feature methods to data-greedy neural networks to achieve significant 

improvements in prediction accuracy. 

Additionally, a range of artificial intelligence tools has been developed to integrate 

diverse types of data for a holistic view of biological research questions. Examples 

include tools that create multi-omic data analysis pipelines to connect proteomics with 

other molecular profiles to study disease mechanisms. Such tools are essential for 

facilitating improvements in the availability of data sources by streamlining downstream 

analyses. In order to cope with the pace at which diverse data modalities become 

accessible to research, individual labs will soon need automated deep learning tools that 

can streamline the analysis of high-dimensional data. 

Furthermore, the importance of ethical reflection as an emergent field in the context of 

medicine has been reiterated. Rapid technological advancements call for the 

development of ethical frameworks that are adjusted accordingly. In consequence, 

several research labs apply a transdisciplinary exploration of the ethical challenges of 

novel diagnostics technologies. At the same time, these AI applications in the medical 

sector force one to scrutinize further the boundaries of the definition of a disease, health 

and ill-health. 

There are also broader trends emerging that may shift the landscape of disease 

mechanism research. One trend is the integration of multiple data-streams in this 

research avenue, including real-time monitoring data obtained from wearables. These 

data bear promise in understanding the evolution of the molecular and proteomic states 

of the disease. Another trend is the rise of new data types such as microbiomics, 

metabolomics, exposomics or even socialomics. Such trends require a cross-discipline 
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approach and collaboration to shape innovative and ground-breaking research that can 

exploit wide arrays of cutting-edge high-dimensional data. 
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