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Chapter 8: Intelligent vehicle health 

monitoring through engine data, 

artificial intelligence, and machine 

learning 

8.1. Introduction                              
Data rejection and filtration are required in this step to remove outliers and noise, to get 

a realistic picture of normal behaviour. The output of a health monitoring system is 

usually a numerical quantity or an indicator that quantifies the condition of the monitored 

system's component or subsystem. Different conditions can be represented by different 

values of such indicators. These features capture higher-level information in the sensor 

data. The parameters acting as condition indicators for faults are identified and 

monitored to detect, identify, and characterise faults by studying anomalies and trends. 

Diagnostic processes allow the rapid determination of specific components that need to 

be replaced during maintenance. Prognostic processes enable the prediction of the 

residual life of components by analysing trends in historical observations. A scheme 

capable of performing fault detection and identification has to be developed first. In case 

faults are identified, isolation schemes should indicate the degraded subsystem or part 

of the system which is affected by the fault. Finally, a set of different nudges has to be 

identified and assessed, regarding the more or less strong deviation from expected 

performance that is introduced by the fault and its progression. This assessment has to 

be performed either by making direct use of a generic degradation model or by 

employing machine learning techniques. 

Once the health indicators for all characteristic faults of each critical subsystem of a 

vehicle have been clearly identified, artificial intelligence techniques can be employed 

to identify trends, gain insights from the massive volume of data, and make inferences 

from them. Machine learning refers to techniques designed to take in information and 

learn from it. These systems have the capability to evaluate and categorize received data 
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and draw inferences from the data. A diagnostic system based on machine-learning 

techniques has the capability to automatically detect the best predictors of system failure. 

An intelligent vehicle level health management would require a robust reasoning system 

that could clearly distinguish between the different layers of the vehicle. Since the 

various subsystems of an APC have unique health indicators, suitable algorithms must 

be chosen for data processing, feature selection, and extraction. The choice of algorithm 

would be based on the requirements of the system and the data being processed for 

insights. 

 

Fig 8.1: Innovative Driver Monitoring Systems and On-Board-Vehicle Devices 

 

8.1.1. Research design 

This section outlines the research methodology, including the research questions and 

hypotheses, the sampling technique and selection of the sample, research design, 

research instrument, pilot study, data collection procedure, and data analysis technique. 

The research was aimed and focused on a better understanding of intelligent vehicle 

health management using engine data and AI techniques. The primary objective of the 

research was the utilization of the optimum method to estimate the TRP of the engine 

along with the experimental set-up of data acquisition for running an IC engine as inputs 

for model formation of the intelligent vehicle health management system. The study 

firmly aims to utilize data preprocessing techniques, feature extraction techniques, and 

optimum feature selection techniques. It was planned and implemented to compare the 

performances of machine learning techniques that predict the TRP of the engine 

accurately and efficiently. A couple of weeks before conducting the full study, 5 

respondents were given a pilot test of the research instrument on some selection 
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parameters of the sampling design. Based on their suggestions, the research 

questionnaire was modified. The research was conducted using an online survey that 

best reached the respondents of the study. The statistical analysis in the present research 

included frequency distribution, graphing, descriptive analysis, data screening, 

reliability analysis, normality analysis, and correlation analysis. The selected machine 

learning techniques were implemented on the collected data to create regression models 

that predict the TRP of both new and old engines accurately. 

Data rejection and filtration are required in this step to remove outliers and noise. If the 

data have come from different sources, these will also need to be combined. Instead of 

feeding sensor data directly into machine-learning models, it is common to extract 

features from the sensor data. In the next step, the parameters acting as condition 

indicators for faults are identified and monitored to detect, identify, and characterise 

faults. Diagnostic processes allow the rapid determination of specific 

components/systems that need to be replaced during maintenance . Prognostic processes 

enable the prediction of the residual life of components/systems. Once the health 

indicators for all characteristic faults of each critical subsystem of a vehicle have been 

clearly identified, artificial intelligence techniques can be employed to identify trends 

and gain insights from data. Machine learning is a subset of AI designed to take in 

information and learn from it. A diagnostic system based on machine-learning 

techniques has the capability to automatically detect the best predictors of system failure. 

An intelligent vehicle level health management would require a robust reasoning system 

that could distinguish between the different layers of the vehicle. Suitable algorithms 

must be chosen for data processing, feature selection, and extraction. The choice of 

algorithm would be based on the requirements of the system and the data being processed 

for insights. 

8.2. Background and Motivation 

Modern vehicles are fitted with a number of sensors generating a wide range of data, 

ranging from low-frequency data representing system control signals, to mid-frequency 

data representing vehicle environment and state, to high-frequency data indicating 

system health problems. It is the processed data, rather than the raw sensor data, that 

provide more relevant, reliable assessments of the vehicles and their subsystems. 

Advanced Data Processing and Analysis (DPA) techniques are required to filter, process, 

and extract information from the raw data, which can then be used for vehicle 

performance benchmarking, safety evaluation, and health condition monitoring. There 

are three main layers of data processing: (1) data rejection and filtration, (2) data 

processing and feature extraction, and (3) data analysis. Data rejection and filtration are 

required to remove outliers and noise rarely seen in normal operating scenarios of the 
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vehicle, to get a realistic picture of the normal behaviour. Various techniques need to be 

employed to check signal validity and condition, and if erroneous data are found based 

on threshold limits or statistical distributions, they are removed. Meanwhile, basic 

transformations are performed to get the data in a more manageable format and improve 

their reliability in the later analysis processes. For example, the data may need to be time 

synchronized and resampled according to a uniform sampling interval, or converted to 

percentage values from raw voltage levels. 

Features are extracted from the sensor data, capturing a number of higher level 

information from the raw data points, such as moving averages, signal decomposition, 

frequency content, and so on. They should be data-driven indicators with good adherence 

to the behaviour that is being monitored, hence able to detect subtle/hard to predict 

anomalies that other datasets or methods may ignore or fail. Prior to implementing a 

modelling approach, a number of parameters acting as condition indicators for the 

specified faults need to be identified, preferably on both a physical/engineering basis and 

also on a data-driven basis. These condition indicators are then monitored to detect, 

identify, and characterise the faults by studying anomalies and trends in new 

observations of history or monitoring data. A diagnostic process allows for determining 

specific components needing replacement during a given maintenance interval at an 

engineering level, in addition to improving on-board understanding of the vehicle and 

factors causing premature failure. A prognostic process enables the prediction of the 

residual life of components/systems by analysing trends in historical observations. 

Obtaining insights and making inferences from the health indicators for faults of critical 

subsystems of a vehicle using Artificial Intelligence (AI) techniques can be another layer 

of abstraction above the data processing/feature extraction. These health indicators vary 

greatly from data types and types of faults, e.g. frequency characteristics for bearing and 

high-frequency values for excessive friction and wear, and can be mapped to different 

AI techniques for data analysis, gain insights and reasoning. Machine learning is a 

collective term applied to a range of techniques designed to learn from information 

within a specific domain, e.g. grouping, classification, regression, trend/exemplar 

analysis, rule derivation, and inference.  

8.3. Engine Data Acquisition 

Intelligent health state monitoring of advanced powertrains can be accomplished using 

de-centralized monitoring through the on-board data logging of condition monitoring 

systems that can provide early indication of developing faults. These systems can be 

based on inexpensive on-board data loggers acquiring engine data for data rejection and 

filtration for noise removal and outlier rejection to get a realistic picture of the normal 

operation. The filtered data can then be stored on-board and downloaded onto a cloud 
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server from where it can be accessed for assessment of powertrain health. Intelligent 

algorithms such as artificial neural networks, support vector machines and decision trees 

can be trained with past fault occurrence data to detect and predict likely future 

occurrence of faults. Further, use of multiple data loggers can provide intelligent health 

state monitoring for vehicle level and subsystem level conditions through estimating 

health states with linkage to both knowledge-based and data-based systems. 

In automotive applications, a variety of sensors are typically used, such as position, 

speed, temperature, pressure and flow-rate sensors. Instead of feeding the raw sensor 

data directly into the machine-learning models, it is common to extract features from the 

sensor data. The raw sensor data contain information from different sources, and the 

feature refinement stage allows for extracting such information and generating features 

that are relevant for the following processing.  

 

Fig 8.2: Data Acquisition System 

8.3.1. Types of Engine Data 

A vehicle generates vast amounts of data through sensors and ECUs already built into 

the vehicle. This data is thought to contain a wealth of information regarding the HMI 

of the vehicle, including UXV (Unmanned Ground Vehicle) configuration status, 

component performance, and future failure of components. The vehicle data can be 

classified into CAN (Controller Area Network) data, personal data, and the context of 

these events, which are described in words. CAN data and personal data are structured 

data, which are recorded in a predetermined format. The context data may include free 
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text input, voice command results, and multi-sensory event timeline captured data, which 

is more generic. 

Some of the CAN data such as GPS data and battery voltage are already available in 

standard form, while some other types of CAN data depend on the actual implementation 

of the subsystem. CAN data can be classified into three groups: vehicle state, driving 

behaviour, and component data. For example, a gear shift can be detected when the 

vehicle speed does not change with time for a fixed period but the throttle position 

changes from being fixed to 100% or 100% to being fixed for a certain duration. A case 

where the vehicle accelerates and decelerates in a short period by more than a threshold 

can be marked as aggressive driving behaviour. By examining the amounts before and 

after the sudden change compared to the previous average amounts, driving habits such 

as hard breaks or accelerating can be detected. 

8.3.2. Data Collection Methods 

Currently, each vehicle is equipped with sensors for Enhanced Vehicle Health 

Management (EVHM) and Intelligent Vehicle Health Management (IVHM). The data 

collection methodology can be divided into two categories: (1) vehicle-level sensor data 

when the vehicle is in operation, and (2) component-level data collection using devices 

like an oscillograph when the vehicle is stopped . The most commonly used sensor 

parameters from the vehicle are the engine parameters, which form the basis of this 

chapter. 

The vehicle engine’s data are collected through an On Board Diagnostics (OBD) II port. 

An engine’s performance parameters such as MAF and RPI can be collected from 

vehicles equipped with specific IC engines. Most of the modern-day vehicles come 

equipped with a Vehicle Area Network (CAN), which is accessed using a mini USB 

interfacing device for data collection. The engine health parameters in the form of 

physical units can be derived from the CAN values using a conversion algorithm. The 

onboard parameters such as RPI, RPM, and MAF are recorded using a CAN-OBD-II 

device. Data is collected at a sampling frequency of 1 Hz during running conditions. 

Data rejection and filtration are required to remove outliers and noise. If the data have 

come from different sources, these will also need to be combined. Instead of feeding 

sensor data directly into machine-learning models, it is common to extract features from 

the sensor data. In the next step, the parameters acting as condition indicators for faults 

are identified and monitored to detect, identify, and characterise faults by studying 

anomalies and trends. Diagnostic processes allow the rapid determination of 

components/systems that need to be replaced during maintenance and can also contribute 

to understanding the factors causing any premature failure. Prognostic processes enable 

the prediction of the residual life of components/systems and the most likely failure 

mode by analysing trends in historical observations. Once the health indicators for all 
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characteristic faults of each critical subsystem of a vehicle have been clearly identified, 

artificial intelligence techniques can be employed to identify trends and gain insights 

from the data. Machine learning refers to techniques designed to take in information 

within a specific domain and learn from it. A diagnostic system based on machine-

learning techniques has the capability to detect predictors of system failure by detecting 

failure patterns in the training dataset. Intelligent vehicle level health management 

requires a robust reasoning system that could distinguish between the different layers of 

the vehicle and accommodate data from multiple systems. Suitable algorithms must be 

chosen for data processing, feature selection, and extraction based on the requirements 

of the system and the data being processed. 

8.4. Artificial Intelligence in Vehicle Monitoring 

Artificial Intelligence (AI) offers advanced techniques to gain insights from data and 

draw inferences from information (Automotive World 2024; Axios et al., 2024; 

KnowledgeAgent 2024). Ultimately, the purpose of data analytics is to take inputs one 

step further to identify and assess trends. A machine learning scheme takes information 

that falls within a defined domain and learns from it. Noticing that a certain scenario 

matches an input in memory, the process looks for the most appropriate output. The 

learning occurring during this process helps to both build and refine the representation 

of data. An intelligent system at the vehicle level aims to optimize preventive 

maintenance. It would require a reasoning system that was capable of distinguishing 

between layers at different levels of abstraction. At least three possible layers: the 

vehicle, sub-systems, and components; each layer has its own characteristics. Suitable 

algorithms for data processing, feature selection, and extraction must be chosen to fit the 

technology-based requirements and information-based nature. 

For an intelligent Vehicle Health Monitoring (VHM) System (IVA), it must first be 

established what the aged/used-up/near-failure state of the component/sub-system is 

compared to the relatively new state. Tools such as physical models of the system, 

leading to statistical models, simulations, and data analytics can extract behavior as a 

function of time. After identifying parameters, stored data acquired during normal 

conditioning tracking parameters must be analyzed to build and extract models. Model 

fitness describes the model’s behavior in terms of the fitted coefficients, which must be 

used for tracking. Calibration of the model can achieve precise coefficients. Sensors can 

be analyzed to identify the most sensitive in fault detection. These parameters can be 

monitored to detect and characterize faults by isolating deviations of the system behavior 

from the expected/normal performance. 
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8.4.1. Overview of AI Techniques 

The newly emerging industry of intelligent health monitoring for vehicles is an 

interdisciplinary domain where vehicular field data, together with vehicle data, need to 

be combined and analysed using artificial intelligence (AI) techniques. Normally, when 

a project is conducted in this domain, the first step is to determine check boxes such as 

what type of sensor data the vehicles emit, how frequent these signals are obtained, what 

vehicle data should be captured, and how frequent these messages should be logged. The 

next step is to determine a cloud platform or on-prem solution to receive this data from 

vehicles and have a pipeline to query this data before applying AI techniques to it. This 

stage requires expertise in vehicular networks and data management. The next stage is 

the application of AI techniques to the vehicular field data and vehicle data received in 

the last step. This is the main engineering task, and there are several options available, 

such as health monitoring based on supervised classification techniques, survival 

analysis, or unsupervised anomaly detection methods. Over the last few years, intelligent 

vehicle health monitoring has become one of the main trends of the automotive industry. 

As more and more vehicles are produced, the volume of the vehicular field data rapidly 

increases, posing challenges to traditional post-hoc data analysis methods. New AI 

methods are required to automate the workflow and obtain insights from vast amounts 

of vehicular data. From a data engineering point of view, the workflow of intelligent 

vehicle health monitoring consists of four major stages. The first consists of a pipeline 

to receive the vehicular field data and vehicle health-related data in cloud storage format. 

Data typically streamed from vehicles may be in a standard format such as .json or 

.parquet, and land in cloud storage. The second stage is data processing to convert the 

raw data to a consumable format by AI techniques. Data rejection and filtration are 

required in this step to remove outliers and noise. Instead of feeding sensor data directly 

into machine-learning models, it is common to extract features from the sensor data. 

Commonly used features for the prediction of system health are frequency based 

features, time-based features, wavelet transform features, and long-term Fourier 

transform features. A list of well-established features is available, and domain experts 

can also suggest custom-made ones. In the next step, the parameters acting as condition 

indicators for the faults are identified and monitored to detect, identify, and characterise 

the faults. Diagnostic processes allow the rapid determination of the specific 

components/systems that need to be replaced during maintenance. Prognostic processes 

enable the prediction of the residual life of components/systems and the most likely 

failure mode by analysing trends in historical observations. AI techniques can be 

employed to leverage their ability to identify trends, gain insights from the massive 

volume of data, and make inferences from them. Therefore, this stage accepts data in the 

consumable format processed in the last stage and applies AI techniques to it. 
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8.4.2. Role of AI in Predictive Maintenance 

Condition monitoring identifies the operating condition of devices based on online 

measurements (OpenXcell et al., 2024; Reuters et al., 2024). CM techniques can be 

divided into two groups. Vibration-acoustic analysis, infrared monitoring, and model-

based condition analysis are features that traditional techniques fail to provide. New 

techniques, which are developed in the context of IOT, are more reliable due to their 

independence of device behavior and not affecting operation past the installed sensors. 

However, as with all efficiencies achieved with new tools, this comes with a trade-off in 

complexity and increased need for data processing. In addition, proper handling of the 

IoT is critical to a successful setup. Data processing and analysis in condition monitoring 

is achieved with modern ML methods, which implement high-quality intelligent 

algorithms with the ability to recognize complex data patterns. 

ML is able to automatically analyze massive amounts of data thanks to their innate 

algorithms. In comparison with traditional procedure-specific methods, ML analyzes big 

data and finds hidden correlations. These data can be complex, consisting of images and 

curves, and generated in a constantly changing environment, such as heavy industrial 

tasks involving mining, construction, or the automotive sector. This paper aims to define 

the common definitions of PdM, the use of measurement sensors, and the mainstream 

ML models. Various applications in static and dynamic devices are also given. 

Challenges that PdM faces are also analyzed, focusing on the core question: how to 

obtain quality data for implementation. 

With IoT data and ML analysis techniques, PdM has excellent potential for further 

growth and increased market penetration. With developments in IoT and data analytics 

techniques, as well as component evolution itself, predictions will become more precise 

and trustworthy. However, employing ML in PdM, as with any sophisticated analysis 

technique, follows a systematic process in stages that need to be executed correctly to 

achieve proper prediction and a successful return on investment. This process is 

represented by a PdM deployment overview chart which clearly delineates the pre-

processing of historical data recorded in varying conditions during past working cycles. 

Data collection through sensors installed on devices which form a PD, gathering IoT 

networks is essential in this context. LW should typically comprise several sensors 

which report their measurements through a common unit, measures, and analysis steps 

performed on aggregated datasets, creating valuable datasets for application to an ML 

model. ML models performance is tightly connected with the quality of data. 
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8.5. Machine Learning Algorithms 

From the perspective of machine learning algorithms, four techniques are proposed 

including K-Nearest Neighbors (K-NN), Support Vector Machines (SVM), Decision 

Trees (DT), and Artificial Neural Networks (ANN). This section describes the 

algorithms to implement. 

8.5.1. K-Nearest Neighbors: 

K-NN is one of the basic classifiers based on the instance theory. It classifies the test 

samples according to the labels of K samples nearest to it from the training samples. - 

Prediction: The built model does not have existing classifiers, and all of the training 

samples are stored in the model database. All samples have the same weight, and their 

classification is determined by calculating the distance to the sample that is nearest to 

the test sample in the feature space, and the attribute with the smallest distance is 

selected. The parameter K is defined for the classification of cases with identical 

distances. For samples that belong to a variety of labeled classes, samples belonging to 

different classes are assigned weights based on their distances, that is, the closer they are 

to the samples the greater their weight. 

8.5.2. Support Vector Machines:  

SVM classifies data using hyperplanes in a good way. It measures the distance between 

the hyperplane and the nearest data points from both of the classifications, and searches 

for a hyperplane with the maximal margin. SVM draws the decision boundary by 

creating a hyperplane for separable cases (there can be an extreme measure of the gap of 

data points of both classes; the case is in the linear separable case). If a hyperplane is 

drawn, its unique optimization can classify all points. It can also be controlled to accept 

some points wrongly classified and furthermore analyze the structure of the data 

(reflected by the orthogonal distances from nearest points to decision boundary). By 

introducing the slack variable, SVM allows the consequence to be classified badly on 

purpose to a certain degree. The non-separable case is also one of the important features 

(it maps data points into another space with a high dimension where they might be easier 

to separate). 

In the presented preliminary work, an intelligent health monitoring system is proposed 

for a vehicle based on artificial intelligence and machine learning techniques. The 

process is explained along with the various data processing steps involved in developing 

the intelligent system. In addition to the proposed techniques, a detailed analysis of the 

historical data from the health and usage management system was performed to identify 

the parameters that behave differently under faulty conditions and could serve as good 
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health indicators. These parameters are classically monitored to develop a vehicle-level 

health monitoring and management system. 

 

                              Fig : Data-Driven Engine Health Monitoring with AI 

8.5.3. Supervised Learning Techniques 

Each Artificial Intelligence (AI)/Machine Learning (ML) technique tackles the data 

mining task in a different manner, which should also be a consideration before the 

technique selection. It is often important to know whether the chosen techniques can 

handle the problems at hand. Different constraints such as time, interpretability and 

performance may come into play whilst making this selection. The main types of data 

mining techniques are: 

1. Supervised learning techniques: Techniques in which a training set of data with an 

additional output variable is fed into the model which learns to make predictions for 

unseen inputs. These inference models can take many forms depending on the underlying 

mathematical approach. 

2. Unsupervised learning techniques: Techniques which are based on the inputs only 

(without outputs), so presuming no knowledge of the system. These models extract 

insights from the data without a specific target in mind. Thus, these models tend to be 

exploratory rather than predictive. Clustering, anomaly detection and matrix 

factorization are the main categories of unsupervised techniques. 

3. Semi Supervised learning techniques: Techniques which combine the two previous 

kinds of models. Supervised models are usually more reliable, though often come with 

high overhead costs associated with labelling much data. Hence some training data may 
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be reserved for an unsupervised model, which the supervised model would need and be 

validated against. There are a wide variety of semi-supervised techniques. 

4. Rules extraction techniques: Techniques which generate a small number of 

interpretable conditions for the inference model output (as opposed to continuous 

prediction). Output can then be presented in lay terms instead of numerical values which 

may not be interpretable to a human. The process of generating rules and thus accepting 

the model is usually computationally expensive and added to the response time. 

8.5.4. Unsupervised Learning Techniques 

Generally, there are two categories of machine-learning techniques; supervised and 

unsupervised techniques. The first category requires a labelled dataset with ground truth 

where features and target values of the data need to be provided. Such models first learn 

from numerous examples during the training phase, and they use this information to 

predict the output values when deployed in a real environment. In the second approach, 

a model is trained with an unlabelled dataset which consists of only input features. The 

model learns a profile of the data and detects outliers or samples behaving differently 

compared to the normal behaviour of the vehicles. Unsupervised learning techniques are 

used to create a standard profile of normal behaviour, track the latest behaviour of the 

vehicle and potentially detect if a sample appears to be abnormal, i.e., not adhering to 

the learnt standard. By creating an estimated output from the features acted upon by a 

mathematical transformation, the predicted output can be compared to the actual output 

as a simple error value. 

Association Rule Learning is one of the classic techniques in machine learning that finds 

relevant dependencies of events described by simple facts stored as observations in a 

database. A successful association-rule discovery application analyses retail sales 

transactions and identifies what products are frequently bought together. The counterpart 

for vehicular data, where each data point consists of parameters of a single vehicle, time, 

and value, can find out correlations of different parameters in the same data point, 

identify clusters of parameters tracking similar patterns, and discover what parameters 

change together over time or with other parameters. Discovering spatial and temporal 

correlations at different resolutions can also be filtered and represented as a GIST, stored 

and displayed as a temporal GIST snapshot, latency in time, and regions. Other classic 

data-mining techniques for vehicular data can be employed, such as non-parametric 

clustering to segregate clusters in the parameters before applying classification 

algorithms. 
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8.6. Conclusion 

The above-mentioned features are examined statistically to analyze how the 

characteristics would change over time during a failed state. After examining the 

standard deviation, skewness, kurtosis, coefficient of variation, and linear slopes of the 

features, it is observed that the decision variable of the confidence mechanism provides 

the most promising results. As some of the features can exhibit abrupt changes or sudden 

spikes or dips while changing into a failed state, a simple one-stage thresholding 

algorithm would fail to detect such patterns. Therefore, a multi-layered decision 

mechanism is proposed to differentiate between the healthy and faulty conditions, while 

employing a suitable tapering function to reduce the false alarms. The sigma-decision 

layer is a nonlinear approach that could successfully account for sudden changes and 

detect only the faults with a long time horizon. The quantified health of the vehicle is 

very useful in determining the priority of the monitored health parameters in a vehicle 

health management and maintenance system. 

The proposed intelligent health monitoring system is implemented on actual fleet data 

obtained from a new generation combat vehicle, and its successful utilization in the field 

is demonstrated. The main challenges and future work addressing the scalability aspect 

of the proposed system while retaining its high accuracy are also discussed. Additionally, 

the still infamous safety-critical aspect of intelligent systems, especially AI-driven ones, 

is a cause of concern. Vehicle manufacturers can try to develop interpretability 

approaches to understand the vehicle health diagnostic and prognostic decisions by 

analyzing lower-dimensional projections of the high-dimensional parameter space. 

8.6.1. Future Trends 

Intelligent vehicular health management is expected to evolve rapidly with the 

incorporation of new technologies. Featured additions may include portable telematics 

devices, new vehicular sensors, and the vehicular internet of things (V-IOT). Today’s 

telematics hardware is designed with new generations of wireless modules with higher 

speeds and lower costs, such as cellular fifth generation and the upcoming sixth 

generation and other low-power wide-area network (LPWAN) communication 

protocols. Integration of portable telematics devices into existing vehicles is expected to 

flourish due to their affordability and ease of installation. 

The latest generation of sensors at affordable prices, especially those employing micro-

electromechanical systems (MEMS), may soon be widely incorporated into the health-

monitoring system of the vehicle to create a more realistic vehicle health picture with 

the ability to track a vehicle’s driving history and cumulative wear. With increasing 

connectivity and cheaper sensors, there is a need to refine algorithms for damage 

estimation and predictive maintenance to use more realistic data. Automated telematics 
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inspections and data collection may replace manual driver inspections with telematics-

enabled services and telematics partnerships and collaborations with commercial fleets. 

Technologies for real-time individual vehicle health management that have not advanced 

in the above aspects include mining of various individual vehicle sensor and operational 

data, failure diagnosis, scene reconstruction, and damage estimation from vehicle-wide 

in-depth supervised learning to enhance the use of health and usage data for intelligent 

vehicle fine-grained health and usage management. Meanwhile, regulation and policy 

development are necessary to ensure fair markets and assist in deploying the vehicle 

telematics and health management system. Even though the future is unknown, potential 

trends were highlighted here. 
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